IWM-EC 2018:

Dynamical properties and secondary decay effects of projectile fragmentation in ¹²⁴Sn,¹⁰⁷Sn + ¹²⁰Sn at 600 MeV/nucleon

Jun Su, Long Zhu, Wen-Jie Xie, Feng-Shou Zhang, and Wolfgang Trautmann

Sino-French Inst. of Nucl. Engineering and Technology, Sun Yat-sen University

IWM-EC 2018:

Dynamical properties and secondary decay effects of projectile fragmentation in ¹²⁴Sn,¹⁰⁷Sn + ¹²⁰Sn at 600 MeV/nucleon

Jun Su, Long Zhu, Wen-Jie Xie, Feng-Shou Zhang, and Wolfgang Trautmann

Sun Yat-sen University Yuncheng University IMP-CAS Lanzhou Beijing Normal University GSI Darmstadt

Sino-French Inst. of Nucl. Engineering and Technology, Sun Yat-sen University

Intro I: Pauli blocking and projectile fragmentation?

Intro II: the MST puzzle

 $Z_{\text{bound}} = \Sigma Z_i \text{ with } Z_i \ge 2$

Intro II: the MST puzzle

¹⁹⁷Au + ¹⁹⁷Au @ 600

Intro II: the MST puzzle

¹⁹⁷Au + Cu @ 600 MeV/nucleon

$Z_{\text{bound}} = \Sigma Z_i \text{ with } Z_i \ge 2$

long history:

Dorso & Randrup 1991 Puri, Hartnack, Aichelin 1996 Vermani & Puri 2009 Le Fèvre et al. 2015

Gossiaux et al., NPA (1997)

7

experiment S254: UNILAC + SIS-FRS + ALADIN

C. Sfienti et al., PRL 102 (2009), R. Ogul et al., PRC 83 (2011)

IQMD-BNU: Pauli blocking

Jun Su et al., PRC 89, 014619 (2014)

Phase-Space Density Constraint (PSDC) as in CoMD (Papa, Maruyama, and Bonasera, 2001)

from PRC 89: At each time step and for each nucleon, the phase space occupation \overline{f}_i is checked. If phase space occupation \overline{f}_i has a value greater than 1, the momentum of the ith nucleon is changed randomly by many-body elastic scattering.

collisions:

usually allowed with probability $(1-f'_i)(1-f'_j)$ where f'_i and f'_j are the phase space densities **before** the scattered particle is placed there;

here the Pauli blocking method related to the phase-space density constraint (PSDC) is used. If f_i and f_j at the **final states** are both less than 1, the collision is accepted.

IQMD-BNU: evolution with time

all graphics by Jun Su

hot \longrightarrow cold fragments

(IMF: Z=3-20)

no E_{stop} dependence of final fragment multiplicity

SMM ensemble calculations statistical description

IQMD + GEMINI dynamical description

R. Ogul et al., PRC 83 (2011)

Jun Su et al., submitted to PRC

IMFs and the Phase-Space Density Constraint (PSDC)

¹²⁴Sn + ¹²⁰Sn @ 600 MeV/nucleon

b = 5 fm

b = 9 fm

M _{IMF} (3≤Z≤20)	w/o PSDC	w. PSDC and PSDC Pauli	w. PSDC and (1-fi')(1-fj') Pauli
b = 5 fm	1.46912	1.73146	1.56738
b = 9 fm	0.02923	0.60661	-

solving the MST problem?

¹²⁴Sn + ¹²⁰Sn @ 600

¹⁹⁷Au + ¹⁹⁷Au @ 600

Jun Su et al., work in progress

Begemann-Blaich et al., PRC (1993) 15

solving the MST problem?

¹²⁴Sn + ¹²⁰Sn @ 600

¹⁹⁷Au + ¹⁹⁷Au @ 600

Jun Su et al., work in progress

Begemann-Blaich et al., PRC (1993) 16

isotope distributions

10³

10²

10¹

10[°]

10³

10²

4

В

0

a (mb) 10¹ 10⁰ 10³ 2 4 Ne F ¹²⁴Sn data 10² 0 $E_{stop} = 2 \text{ MeV/u}$ 10¹ = 3 MeV/u $\mathsf{E}_{\mathsf{stop}}$ E_{stop} 10° = 4 MeV/u 2 -2 2 -2 0 4 0 4 N-Z

Jun Su et al., subm. to PRC

isotope distributions

¹²⁴Sn

Jun Su et al., subm. to PRC

significance of <N>/Z

Jun Su et al., subm. to PRC

stiffness of the symmetry energy

Jun Su et al., in preparation

sensitivity to density

Jun Su et al., in preparation

significance of <N>/Z

Jun Su et al., in preparation

summary

- satisfactory description achieved with IQMD+GEMINI
- phase space density constraint (PSDC) is important
- provides solution to the "MST problem"
- consistent with Müller, Begemann-Blaich, Aichelin, PLB 298 (1993)
- isotope distributions approached with GEMINI
- minor sensitivity to strength of E_{sym} chosen for IQMD
- projectile fragmentation probes subsaturation densities

FAIR construction site

[htt

