

First Results and Prospects from the LHCb Experiment

Franz Muheim University of Edinburgh

On behalf of the LHCb collaboration

Flavor Physics and CP Violation 2010

25 - 29 May 2010 FPCP, Torino, Italy 1

Outline

- LHCb Experiment
- Detector Performance
- Minimum Bias Events

- Charm Production
- Early B Physics Prospects
- Outlook and Conclusions

First LHCb Events at 7 TeV

30th March 2010

LHCb Event Display

25 - 29 May 2010 FPCP, Torino, Italy 4

LHC Collisions at 7 TeV

Luminosity

• LHC is ramping up

- Expect $O(200 \text{ pb}^{-1})$ in 2010
- 0.2 to 1 pb⁻¹ summer conferences

Sensitivity Studies (MC)

- At E_{cm} = 14 TeV
- Event yields 2 fb-1 per annum
- LHCb design luminosity of 2x10³² cm⁻²s⁻¹
- Cross section (b-bbar) = 500 μb

Outlook/Comparison

- For 2011 expect design luminosity
 and ~ 1 fb⁻¹ of data
- Lower energy, smaller cross section large uncertainty
- Small reduction in statistical precision for 2011

Last LHCC meeting: "With current luminosity projections LHCb is the only detector capable to achieve almost completely its full physics potential during the 2010-2011 run

LHCb Trigger

Trigger Strategy

Trigger Implementation

- Lower collision rate in 2010 allows to lower thresholds
- Benefits charm physics

2010 Trigger Operations

- LO Min. Bias trigger low E_T and p_T cuts All stored, rate < 2 kHz
- L0 x HLT1 (current status)
 up to L0 rate of 25 kHz
 Looser IP cuts
- HLT2 will be phased in
 25 kHz < L0 rate < 300 kHz

VELO - VErtex LOcator

25 - 29 May 2010

VELO Performance

- Closing VELO in 10 min to 10 um accuracy
- Alignment with primary vertices
- Hit residual as expected
- Impact parameter resolution ~ 1/p_T
- Performance close to expectations

VELO and Tracking Stations

Good agreement between data and MC

Ring Imaging Cherenkov Counters LHCb

RICH1

Nov/Dec 2009 LHC beams √s = 900 GeV

RICH2

Orange points → photon hits

Continuous lines → expected distribution for each particle hypothesis

25 - 29 May 2010 FPCP, Torino, Italy 10

Particle Identification

PID Performance

- Alignment and Calibration underway
- Angular resolutions close to expectations
- Calibration of efficiencies and Mis-id rates with data (K_S, Λ, φ and D*+)

φ→KK at 7 TeV

Strange Hadrons at $\int s = 7 \text{ TeV}$

Ks⁰ Production at 900 GeV

First LHCb

Physics Result

LHCb Preliminary

2009 Data Sample

- ∫s = 900 GeV
- 6.8±1.0 μb⁻¹

Measurement

- $K_{\rm S}$ reconstruction in $\pi\pi$ mode
- Vertex detector (open) not used

Luminosity

- from beam-beam and beam-gas
- Achieved 15% precision

Results

- Transverse Momentum p_T
- in 3 bins of rapidity y
- Consistent with Pythia 6.4 and PerugiaO tuning

Outlook

- Final K_s , Λ , Λ bar and p, pbar at \sqrt{s} = 900 GeV & 7 TeV in preparation

FPCP, Torino, Italy

$J/\psi \rightarrow \mu^+\mu^-$ at $\int s = 7 \text{ TeV}$

Muon system

- Fully operational
- Pion and kaon
 misidentification rates
 close to MC expectations
- $J/\psi \rightarrow \mu^{\dagger}\mu^{-}$
 - 128 candidates in 0.8 nb⁻¹ tight muon selection
 - To measure muon efficiency larger data set required
 - Pseudo proper time

$$\frac{\left(\vec{V_{1/\psi}} - \vec{V_1}\right).\vec{p_{1/\psi}}m_{1/\psi}}{p_{1/\psi}^2}$$

Candidates for inclusive J/ψ from B decays Are any of these from exclusive B decays?

$B^+ \rightarrow J/\psi K^+$ candidate

21 April 2010: LHCb observes first reconstructed Beauty Particle

All Observables far from cut values

Charm - the First-Year Beauty?

Mixing

- Well established
- SM prediction limited precision

CP violation

- Weak limits
- Negligible in SM
- Large New Physics contribution possible
- Needs sensitivity below <0.1%

Precision Charm Physics

 Crucial for future heavy flavour programme

• LHCb

- Competitive with 100 pb⁻¹

• LHCb charm programme

- Charm signals in first month of 7 TeV data
- Yields benefit from lower trigger thresholds
- Open charm production for summer conferences
- y_{CP} , A_{Γ} , ... with 100 pb⁻¹

D^0 Mesons at $\int s = 7$ TeV

Charm Hadrons at $\sqrt{s} = 7\text{TeV}$

$D_{(s)}^{\dagger} \rightarrow K^{\dagger}K^{-}\pi^{\dagger}$ at $\int s = 7$ TeV thep

- D_s mesons
 - Important for B_s physics

- Direct CP violation in charm decays
 - $D^+ \to K^+ K^- \pi^+$ is Cabibbo suppressed, can interfere with gluonic Penguin, sensitive to New Physics

- Control channels Cabibbo favoured $D_s^+ \to K^+K^-\pi^+$ and $D^+ \to K^+\pi^-\pi^+$
- Expect several million events in 100 pb⁻¹

B Production at $\int s = 7 \text{ TeV}$

First B_s Candidate with good S/B, consistent with expectations, Expect ~100k events in 100 pb⁻¹

Probe New Physics in Probe New Physics in

- Is there NP in B_s°-B_s° mixing?
 - $B_s \rightarrow J/\psi \phi$ is golden mode at hadron colliders
 - Very precise SM prediction for small weak phase $\phi_s = -2\beta_s$
 - $\phi_s(J/\psi\phi) = -0.0368 \pm 0.0017$
- **Current Results**
 - From CDF and DO
 - Prefer non-zero ϕ_s
- Weak Limits on new physics
 - Weak phase in B_s mixing ϕ_s is not well measured yet
 - New Physics could be around the corner!

Prospects with $B_s \rightarrow J/\psi \phi$

- Probe New Physics
 - In box diagrams
- Expected Sensitivity
 - yield: 117k in 2 fb⁻¹
 - σ (ϕ_s) ~ 0.07 with 1 fb⁻¹

Exciting Prospects

- If φ_s at Tevatron central value
- LHCb will make 5σ discovery of new physics in this run

Additional measurements

- CP-eigenstate $B_s \rightarrow J/\psi f_0(980)$, $f_0(980) \rightarrow \pi^+\pi^-$

Precision required to establish ϕ_s = 0.7 at 5σ

Probe New Physics

- in penguin diagrams
- Best mode B_s → φφ

A_{fs} - CP Violation in Mixing

- Flavour specific Asymmetry
 - New D0 measurement

$$A_{sl}^b = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$$

- A_{fs} at LHCb
 - MC sensitivity study for untagged $B_{s(d)} \rightarrow D_{s(d)} \mu v \& B_s \rightarrow D_s \pi$

$$A^{unt,q}_{fs} = \frac{\Gamma(B^0_q \text{ or } \bar{B}^0_q \to f) - \Gamma(B^0_q \text{ or } \bar{B}^0_q \to \bar{f})}{\Gamma(B^0_q \text{ or } \bar{B}^0_q \to f) + \Gamma(B^0_q \text{ or } \bar{B}^0_q \to \bar{f})}$$

- Key Method: $\Delta A_{fs} = A_{fs}^{s} A_{fs}^{d}$
 - Expect ~1M $B_{s(d)}$ -> $D_{s(d)}\mu\nu$ events in 1 fb⁻¹ at 7 TeV
 - Statistical sensitivity for ΔA_{fs} at 0.1% level
 - Method is robust against production, detector asymmetries

R. Lambert, PhD Thesis, Edinburgh, 2009 N. Brook et al., Public LHCb note 2007

New Physics in $B_s \rightarrow \mu^+ \mu^-$

- Highly suppressed in SM
 - Prediction $BR(B_5 \to \mu^+ \mu^-) = (3.86 \pm 0.15) \times 10^{-9}$
 - could be strongly enhanced in SUSY
- Constrained MSSM
 - BR(B_S $\rightarrow \mu^+\mu^-$) ~ tan⁶ β/M_H^2
 - Predicts much larger BR($B_S \rightarrow \mu^+ \mu^-$) ~ a few 10⁻⁹ to 10⁻⁷
 - Dependent on gaugino mass m_{1/2}

Studies for B_s→µ⁺µ⁻

- - Using K_5 and Λ decays
- Muon Identification Geometrical Likelihood
 - Using K_s decays

- Trigger efficiency
 - LOXHLT1
 - using $J/\psi \rightarrow \mu^+\mu^-$

Good agreement between data and MC

FPCP,

Prospect with $B_s \rightarrow \mu^+ \mu^-$

Expected Sensitivity

- 200 pb⁻¹ to improve upon expected Tevatron limit with 8fb⁻¹
- 3 fb⁻¹ for 3σ evidence and 10 fb⁻¹ for 5σ observation of SM value @ 14TeV

Prospects with B-K*µµ

With 1 fb⁻¹ LHCb expects 1200 events with q^2 < 6 GeV² At Belle central value, SM could be excluded at 4σ

25 - 29 May 2010 FPCP, Torino, Italy 27

Hadronic B decays

CKM angle γ from B⁺ \rightarrow D⁰K⁺

"ADS+GLW" Strategy

- Diagrams interfere, sensitive to CKM angle CKM angle γ
- Measure the relative rates of $B^- \to DK^-$ and $B^+ \to DK^+$ decays with D's in final states such as: $K^-\pi^+$ and $K^+\pi^-$, $K^-\pi^+\pi^-\pi^+$ and $K^+\pi^-\pi^+\pi^-$, K^+K^- Atwood, Dunietz and Soni, Phys. Rev. Lett. 78, 3257 (1997).
- Similar method for neutral $B^0 \rightarrow DK^{*0}$ decays (GLW)

Gronau, London, Wyler, PLB. 253, 483 (1991)

- Will also use Dalitz plot of D⁰ decays into a 3- body CP eigenstate $D^0 \rightarrow K_5^0 \pi^+ \pi^-$

Giri, Grossman, Soffer, Zupan, PRD 68, 050418 (2003).

• Prospects for CKM angle γ

- With 100 pb-1 can improve upon B-factories
- Expect 70 doubly Cabibbo suppressed events in ADS
- Estimated precision 7° in 1 fb-1

No time to discuss here

- CP asymmetries in gluonic $b \rightarrow s$ penguin decays
 - $B_s \rightarrow \varphi \varphi$, K^*K^*
- Charmless Hadronic B Decays
 - Time-dependent B_d , $B_s \rightarrow hh$ analysis, B_s mixing $B_s \rightarrow D_s \pi$
- Radiative penguin decays
 - $B_s \rightarrow \varphi \gamma$, $B_s \rightarrow K^* \gamma$
- Radiative CKM angle γ
 - 3-body Dalitz decays, $B_s \rightarrow D_s K$
- CKM angle sin2β
 - $-B_d \rightarrow J/\psi K_S$
- CKM angle a
 - **-** B→ρπ
- Spectroscopy
 - X, Y, Z, ...
- Unexpected
 - Long lived particles, e.g. hidden valleys

Outlook

• <≈1 pb-1 Summer 2010

- Charm and B cross sections at 7 TeV and high rapidity
- with D and J/psi mesons and semileptonic B decays

~200 pb-1 2010

- Compete with or improve upon Tevatron and B-factories
- Bs \rightarrow J/ $\psi\phi$, Bs $\rightarrow\mu\mu$, , Bd \rightarrow K* $\mu\mu$, Bs mixing, CKM angle γ ,

• ~1 fb-1 2011

- Start of full LHCb physics programme
- Probe new physics in CP Violation and rare heavy flavour decays

• LHC Physics in ~2015

- New Physics (NP) will hopefully be discovered by ATLAS/CMS and LHCb
- New Physics will very likely show up in Flavour observables
- Better Flavour Physics will be required to elucidate NP flavour structure or probe NP at higher mass scale

• LHCb Upgrade

- LHC is a Super Flavour factory, O(1MHz) rate of b-quarks
- Operate experiment at ~10 times design luminosity

See talk by Frederic Machefert

Conclusions

- LHCb experiment is fully commissioned
 - All detectors are working close to expectations
- Data taking with LHC beams at 7 TeV
 - Detector performance close to expectations
 - Alignment and calibraton well underway
 - Trigger, Vertex detector and Particle ID close to expectations
- LHCb Detector Performance is excellent
 - Many strange and charm hadrons already observed
 - First Beauty particles observed
 - Exciting prospects with 100 pb⁻¹ in 2010
- Looking forward to analyse full 2010/11 LHC data set
 - Could observe New Physics with this run
- LHCb upgrade R&D has started

Backup Slides

25 - 29 May 2010 FPCP, Torino, Italy 33

B Production at $\int s = 7$ TeV

34

25 - 29 May 2010 FPCP, Torino, Italy

LHCb Upgrade Plans

- Status of LHC Physics in ~2015
 - New Physics may or may not be discovered by ATLAS/CMS and LHCb
 - New Physics will very likely show up in Flavour observables
- Flavour physics beyond the first phase of LHC
 - Better Flavour Physics will be required
 to elucidate the NP flavour structure or probe NP at higher mass scale
 - LHC is a Super Flavour factory
 10⁶ Hz of b-quarks produced → LHCb Upgrade
- LHCb Upgrade Strategy
 - running at 10 times design luminosity, i.e. at $\sim 2 \times 10^{33}$ cm⁻²s⁻¹
 - read out full experiment at 40 MHz, currently at 1 MHz
 - \rightarrow vertex and photon detector needs to be replaced
 - Upgrade expected at ~ 2016, R&D has started

See talk by Frederic Machefert

Outlook

<a>1 pb⁻¹ summer

 Charm and B cross sections at 7 TeV and high rapidity using D, J/psi and semileptonic decays

• ~200 pb⁻¹ 2010

- Compete with or improve on Tevatron and B-factories
- $B_s \rightarrow J/\psi \phi$, $B_s \rightarrow \mu \mu$, , $B_d \rightarrow K^* \mu \mu$, B_s mixing, CKM angle γ ,

• ~1 fb⁻¹ 2011

- LHCb physics programme
- Probe new physics in CP Violation and rare heavy flavour decays

No time to discuss

- CP asymmetries in gluonic b→s penguin decays,
 - B_s→φφ, K*K*
- Charmless Hadronic B
 Decays, time-dependent
 - B_d , $B_s \rightarrow hh$ analysis
- CKM angle Y
 - 3-body Dalitz decays
- Radiative penguin decays
 - $B_s \rightarrow \varphi \gamma$, $B_s \rightarrow K^* \gamma$
- CKM angle sin2B
 - $B_d \rightarrow J/\psi K_S$
- CKM angle a
 - $B \rightarrow \rho \pi$
- Spectroscopy X, Y, Z,

LHCb upgrade

- After ~2015

Minimum Bias

25 - 29 May 2010

FPCP, Torino, Italy

RICH PID Performance

Example of performance: $p-\pi$ discrimination

Data

Monte Carlo

$$\Delta \log \mathcal{L}(p - \pi) > 0$$

- Alignment and calibration still in early stages
- Thus, impressive to have such reasonable agreement between MC and

data so soon!

25 - 29 May 2010

Expect marked improvements in the coming weeks

$D_s \rightarrow \Phi \pi$

$D_{(s)}^{+} \rightarrow \phi \pi^{+}, \phi \rightarrow KK$

RICH PID

- Crucial for Ds
- Facilitated finding first
 B candidate B⁺ → J\ΨK⁺
- Particle zoo is increasing each day: Λ_c , Ω^- , ...
- PID performance results will appear soon

Exciting Outlook

- After a few weeks of data taking, RICH is running very well and used to produce first results
- Looking forward to increasing data sets for physics analysis

25 - 29 May 2010

The End

