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Systems studied: 70Zn+70Zn, 84Ni+64Ni, 64Zn+64Zn, and 64Zn+64Ni
at 35 MeV per nucleon using NIMROD

Projectile
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Velocity gradient and surface tension amplifies instabilities
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Composition of HF and LF vs rotation angle
= direct observation of the time dependence of NZ equilibration
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Angular (a) distributions:

YEARS OF BEAM

exploring the nuclear frontier

70Zn + 70Zn
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Composition vs decay alignment:

Overall composition
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« Exponential fit: a + b e-c(@)
a = equilibrium value
¢ = rate constant for equilibration
* First-order kinetics (for all the systems
studied).
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e Composition vs decay alignment:
Overall composition Dynamical composition
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Secondary decay (SD):

using GEMINI++

full markers: <A>/a correlation prior to SD o1

open markers: <A>/a correlation of the final state fragments
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Varying the initial excitation energy:

- In both cases (@ M), exponential dependence maintained.
- Shift to lower composition and muting of the amplitude
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- System with initially larger asymmetry shifted down > - (49 =010

strongly by SD. (System farther from valley of stability AR ;ﬁigijﬁﬁﬁ

feels a stronger force driving it back toward the valley) Q)

- After SD, the more n-rich system remains more n-rich. o
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The trend is not destroyed or created, and the

characteristic rate of the exponential is retained.
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o A Composition vs decay alignment:
for different systems
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Equilibrium composition

<A> =3 + b e-c(o)

« ZL, Zn values fairly clustered =9 equilibrium -
value for LF (HF) depends on Z. (Zn) but not 2
on Zx (ZvL). [

£

- Comparing 79Zn (M) and 64Ni (-.-) systems S
(similar n-rich system composition): c
~ same equilibrium composition. .

Q2

- 647n (@): consistently less n-rich equilibrium E—

compositions Ll

- The asymmetric 64Zn + 64Nj system (M)
slightly + n-rich daughters than the n-poor syst.
slightly - n-rich daughters than the n-rich systs.

—> target effect
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<A\> =g + b e-<()
- Exponential slope

- Average rate constant zs*:

LF 4+ 1
HF 4+2

- Relevant parameter to
calculate the equilibration
times.

- Describes how fast the

equilibration occurs within the

PLF*.

Rate constant for equilibration:

35!5

Rate Constant (zs™)

o N b

—l—
i —— v
-  1O-Gb-
- O+ @B
0@+

—L-IlllllIII|III|III|III|III|III|III|III|IIIII-IIIII|III|III|III|III|III|III|III|III|IIIII-
N_IIIII|III|III|III|III|III|III|III|III|IIIII__IIIIIlIIIlIIIlIIIlIII|III|III|III|III|IIIII_

o -
N

—
o
—
N
—
N
—
(o))

Atomic Number

— IIIII|III|III|III|III|III|III|III|III|IIIII IIIII|III|III|III|III|III|III|III|III|IIIII

« Agreement of rates — force driving the equilibration is independent of the size of both partners
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YEARS OF BEAM S °
exploring the nuclear frontier u m m a ry [ ]

Study the time-dependence of n-p equilibration in dynamically deformed nuclear systems by examining

the composition of fragments produced by a system out of equilibrium.

- Method to measure the equilibration's time evolution by studying the fragments emitted from the PLF* as
a function of the breakup alignment angle.

- The alignment angle serves efficiently as an effective clock for equilibration.

The variation of the composition as a
function of the alignment angle shows an
exponential behavior for both LF and HF,
suggesting first-order kinetics, for all the
systems studied.

- The yield and measured composition are
used to extract an estimate for the purely
dynamical component.

- Small systematic effect in the
composition for reactions of a relatively
n-poor projectile with a n-rich target.

- No significant differences in the rate
constants between systems of
different initial composition.

IWM-EC, Catania 2018
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I. INTRODUCTION

The motivation for investigating the nuclear equation of
state (EOS) comes from the desire to give a macroscopic
description of the nucleus as a many body system and to
understand the thermodynamic relationships that characterize
the strongly interacting nuclear matter. In particular, we aim
at understanding the EOS as governing the processes related
to the dynamics of heavy-ion collisions.

In this work we are interested in the aspect of the EOS
associated with the asymmetry of neutrons and protons. The
asymmetry energy strongly influences the location of the valley
of B stability, the migration of neutrons and protons in nuclear
reactions, and the structure and composition of neutron stars.
The multi-neutron and multi-proton exchange between two
large puclei in heavv-ion collisions allows peutron-proton

PHYSICAL REVIEW C 95, 044604 (2017)
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We study neutron-proton equilibration in dynamically deformed nuclear systems by investigating the
correlations between the two largest fragments produced in collisions of °Zn + 7°Zn, %Zn + %Zn, *Ni + *Ni
and *Zn + *Ni at 35 MeV per nucleon. The extent of equilibration is investigated using the rotation angle as a
clock for the equilibration. The initially dissimilar fragments converge exponentially with consistent rate constants
across a wide variety of reaction partners and systems, indicating that the equilibration follows first-order kinetics.

the competition of the velocity gradient with surface tension
amplifies instabilities [panel (c)]; analogy to the breakup of a
Rayleigh jet may be appropriate [11]. The velocity gradient
stretches the system beyond the capabilities of the nuclear
force to hold it together and the system ruptures [panel (d)].
After one rupture of the neck, the now separated PLF* and
TLF* are likely to be strongly deformed along the separation
axis and, because of their deformation, they are likely to break
again. The subsequent breakup of the PLF* into two pieces (the
heavy fragment, HF, and the light fragment, LF) is illustrated
in panel (e). If some time elapses between the PLF*-TLF*
scission and the HF-LF scission, the angular momentum of
the PLF* causes rotation through an angle so that the relative
velocity g of HF and LF makes a nonzero angle with the

PLF*-TLF* separation axis Ucm. the center-of-mass velocity
e e X

PRC 95, 044604 (2017)
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Next:

BLOB calculation:
Violent nuclear reaction dynamics, neck fragmentation
- Comparison to Boltzmann-

Langevin One Body (BLOB)
Dynamical transport model

Relatively fast running theory/
experiment comparison tool.

Characterize the very fast early
stages of the collision process
which are out of equilibrium.

e ©

Sizable neck fragments.

Unifies in a common approach the
description of fluctuations in
nuclear matter, and a predictive
description of the disintegration of

nuclei into nuclear fragments. _ _
70Zn+70Zn 35AMeV (b=5.7) producing 45Ca,40Cl,5Li,d (at 400fm/c)

https://www.youtube.com/watch?v=I5ul-iux1ik
Paolo Napolitani
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Next:

YEARS OF BEAM

exploring the nuclear frontier

- 3 Fragments analysis

How did the breaking happened?
Was it simultaneously or in a double
rupture?

Did the 3rd fragment separated first or
maybe not?

Are the 3 fragments aligned with each
other? Are they in a string of pearls?

Are they aligned with the Vcm vector?
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Next:

YEARS OF BEAM

exploring the nuclear frontier

* Follow up experiment

How does the beam energy affects the reaction
mechanism?

How does this affect the NZ equilibration?

NIMROD 41 array

IWM-EC, Catania 2018 Alis Rodriguez Manso 18
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YEARS OF BEAM

exploring the nuclear frontier

Backup Slides
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YEARS OF BEAM

exploring the nuclear frontier

Neutron lon Multidetector for
Reaction Oriented Dynamics (NIMROD)

\
5.615
/‘ 3.8‘89'
\/
9.179; !
13. / : 21"!33' 8.0!0.3' 10, |
578" 33 0.1461 52.666"| 28.650° 15.347"
51 557" 86.265" 69.160" 45.000° 35.777"

Fig. 1. Angular configuration of the NIMROD-ISiS detector.

Multidetector array for reactions between massive target and projectiles:

» Total of 228 detector modules arranged in 14 annular rings (2-3
detectors/module)

* Projectile energies go from 20MeV to 4GeV
* 411 coverage (3.6° to 167.0°) = nearly complete geometrical coverage
« excellent isotopic ID
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t=alw where W = Jh/l ¢ 0.06

o
o
o1

W(angular frequency),
J (angular momentum)

©
o
=

* The J is determined using the width of the
out-of-plane a particle distribution

Normalized Yield
o
o
w
IIII|IIII|IIII|IIII|IIII|IIII

0.02
« GEMINI++ simulations: reproducing this 0.01
width can be done with spin from 10nh (E*/
A=0.8MeV) to 50h (E*/A=1.2MeV). We can 0 08206 04 05 05 04 08 08 1

take J=22h with a factor of 2.2 uncertainty.

« Moment of inertia is calculated using a 2 touching spheres model:

- 2 2
lefr = Mzyremzn? + /sMyylzy? + Mz Femz? 4 7/5Mz) Iz 2

* Using a complete rotational period:

t=(1-4) zs
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