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Poincaré-Covariant Analysis: Physics Case

Within quantum field theories, the Bethe–Salpeter framework, underpinned

by the Dyson–Schwinger equation controlling the dressed quark propagator,

enables the Poincaré-covariant description of quark–antiquark bound states.

This quark Dyson–Schwinger equation is part of the infinite tower of coupled

Dyson–Schwinger equations, which requires to truncate this tower to a finite

set of coupled relations. The merits of such a covariant approach are evident:

F Quark models constitute a convenient framework for the comprehensive

investigation of hadron states by comparatively simple technical means.

F Technical/computational constraints limit nonperturbative approaches.

F The covariant analyses use QCD input and modelling to bridge this gap.

Understandably, the first target of the covariant approach usually is the case

of quarkonia, bound states of a quark and its antiquark, and thus flavourless.

In order to gain a comprehensive picture, we complete this kind of studies by

applying a single common framework to all conceivable flavour combinations

and fathom its implications for the predicted meson masses, decay constants

and in-meson condensates by comparison with experiment or other findings:

F Covariant studies of open-flavour mesons have been and remain limited.

F Nonetheless, a covariant study yields utmost extensive sets of results [1].



Dyson–Schwinger–Bethe–Salpeter Liaison

The Bethe–Salpeter framework represents a bound state of total momentum

P, composed of quark and antiquark of relative momentum p, by such state’s

Bethe–Salpeter amplitude Γ(p;P ) or Bethe–Salpeter wave function χ(p;P ),

related by the dressed propagators of the two bound-state constituents, S1,2:

χ(p;P ) ≡ S1(p + η P ) Γ(p;P )S2(p− (1− η)P ) , η ∈ R .

These propagators may be obtained as the solutions of the Dyson–Schwinger

equation for the quark two-point function, in rainbow truncation of the form

S−1(p) = Z2 (i γ · p + mb) +
4

3
Z2

2

∫ Λ

q

G
(
(p− q)2

)
Tµν(p− q) γµ S(q) γν ,

adopting current-quark wave-function renormalization constant Z2 and bare

massmb, the free Landau-gauge gluon-propagator transverse-projector part

Tµν(k) ≡ δµν −
kµ kν
k2

,

translationally invariant integration measure
∫ Λ

q Pauli–Villars regularized at

scale Λ, and an effective coupling k2 G(k2) mimicking the effects of full gluon

propagator and full quark–gluon vertex; the mass renormalization factor Zm
relates bare quark massmb and renormalized quark massmq(µ) at a scale µ:

mb = Zmmq(µ) .

A bound state’s Bethe–Salpeter amplitude or wave function is governed by a

homogeneous Bethe–Salpeter equation, which in ladder truncation (in order

to satisfy the QCD axial-vector Ward–Takahashi identity) reads, for mesons,

Γ(p;P ) = −4

3
Z2

2

∫ Λ

q

G
(
(p− q)2

)
Tµν(p− q) γµ χ(q;P ) γν .

Expansion of Γ(p;P ) in Lorentz covariants recasts this bound-state equation

into a system of four (for bound states of spin zero) or eight (for bound states

of non-zero spin) coupled equations. An estimate of (some of) the systematic

uncertainties inherent to such treatment can be acquired by adopting for the

effective couplings k2 G(k2) at least two different (rather popular) models [2].

From the solution for a bound state’s Bethe–Salpeter amplitude Γ(p;P ) and

massM, we find its decay constant f and in-hadron condensate |〈q̄ q〉|1/3 [3],

the hadron-to-vacuum matrix element of the relevant quark-bilinear density.



It’s a Long Way to (((((((((((((hhhhhhhhhhhhhTipperary Bound States

Within a covariant approach, the classification of predicted states in terms of

quantum numbers is not as straightforward as in nonrelativistic frameworks.

F In quark models: construction of a quark-bilinear bound state with total

spin s = 0, 1 and relative orbital angular momentum ` of its ingredients.

F Permitted bound-state spectrum identified by total angular momentum

J , parity P = (−1)`+1, and charge-conjugation parityC = (−1)`+s (for

states with well-defined C), constrained by |`−s| ≤ J ≤ |`+s| to some

assignment JP C ∈ {0++, 0−+, 1++, 1+−, 1−−, 2++, 2−+, 2−−, 3++, . . .}.
F States with JP C ∈ {0−−, 0+−, 1−+, 2+−, 3−+, . . .} are viewed as exotic.

F So far, just hints of isovector 1−+ states have been found experimentally.

F This situation carries over to open-flavour mesons where one encounters

quasi-exotic mesons, mirroring exotic mesons in the equal-mass case [4].

F Bethe–Salpeter amplitude: more complex than solution of quark model.

F So, a covariant approach predicts more meson states than quark models.

F Orbital angular momentum ` can be identified also in the covariant case,

e.g., for the ρmeson and its excitations[5]. This can be visualized via the

contributions to the norm of χ(p;P ) of the various Lorentz covariants of

different values of ` attributable to them in the given meson’s rest frame.

F For ground and first excited state of the ρ, one finds [5, Figs. 7 and 12],

for the 8×8 combinations of Lorentz covariants in the vector-meson case
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Meson Mass, Decay Constant, Condensate

For a meson composed of antiquark q̄ and quark q′, we depict our predictions

for the massesMq̄ q′ and leptonic decay constants fq̄ q′ of its ground state and

lowest radial excitations in single shared plots, as exemplified by two mesons:

F strange meson involving massless (χ) or light (q) and s quark[1, Fig. 14]:
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F charmed, strange heavy meson, formed by an s and a c quark[1, Fig. 17]:
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F For comparison with experiment, we combine our results found from the

effective-interaction models under study[2] for two fits [1] of the involved

quark masses to single predictions (given by boxes), as illustrated for the

strange [1, Fig. 24] (top) or charmed, strange [1, Fig. 25] (bottom) states:
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F It goes without saying that the example findings presented above should

merely serve as a teaser: the complete sets of our results may be found in

Ref. [1]. A first idea of the size of the systematic uncertainties inherent to

the employed approach can be inferred by variation of the model details.



F Finally, we find the in-hadron condensates 〈q̄ q〉 of all mesons[1, Fig. 21]:
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Summary: Findings, Conclusions, Outlook
F The Dyson–Schwinger–Bethe–Salpeter-rooted covariant framework has

both qualitative and quantitative features inherited directly from QCD.

F Therein, model studies are comparatively cheap, as far as the computing

power required is concerned, and may be implemented comprehensively.

F With technical issues overcome, a new class of QCD models will emerge.

F The models will have scope and comprehension akin to the quark model.
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