On the Origin of the Elliptic Flow and its Dependence on the Equation of State in Heavy Ion Reactions at Intermediate Energies

On print in Phys. Rev. C (2018)

by A. Le Fèvre¹, Y. Leifels¹, C. Hartnack² and J. Aichelin^{2,3}

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

²SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France 3ELAS, Frankfurt University, Cormony

³FIAS, Frankfurt University, Germany

On the Origin of the Elliptic Flow and its Dependence on the Equation of State in Heavy Ion Reactions at Intermediate Energies

On print in Phys. Rev. C (2018)

by A. Le Fèvre¹, Y. Leifels¹, C. Hartnack² and J. Aichelin^{2,3}

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

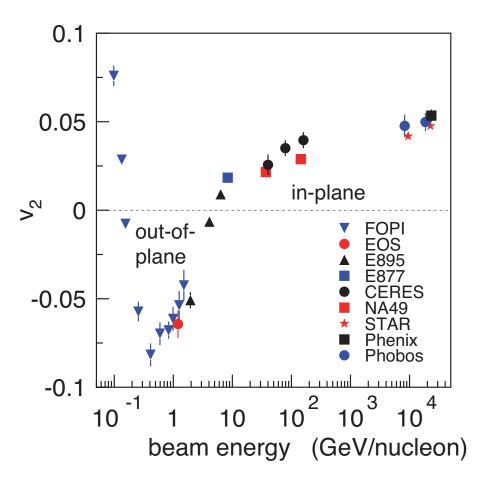
²SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France

³FIAS, Frankfurt University, Germany

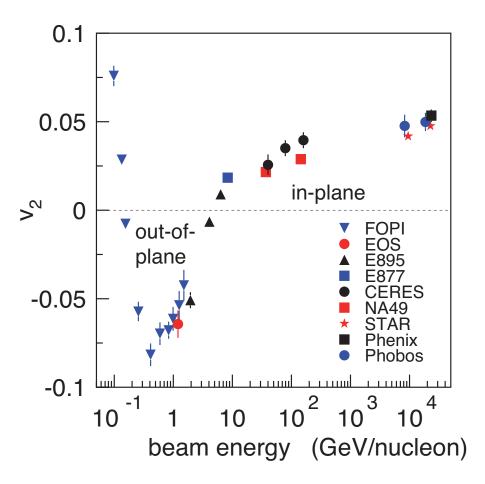
Introduction

- The Quantum Molecular Dynamics approach
- Elliptic flow at mid-rapidity: the strongest sensitivity to the Nuclear Equation of State
- Survey of the reaction
- Collisions versus mean field
- Incident energy dependance

▶Summary

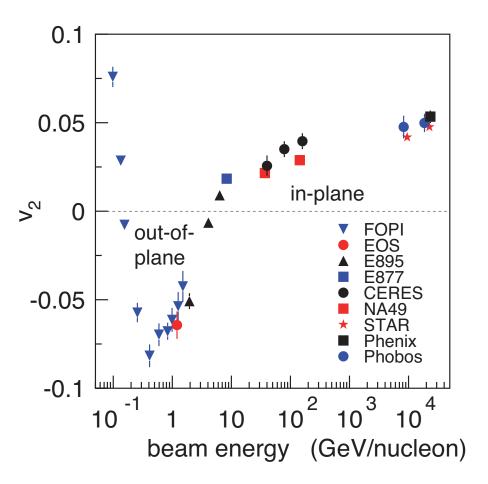


The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years.



The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years.

It has been predicted in hydrodynamical simulations of heavy ion reactions



The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years.

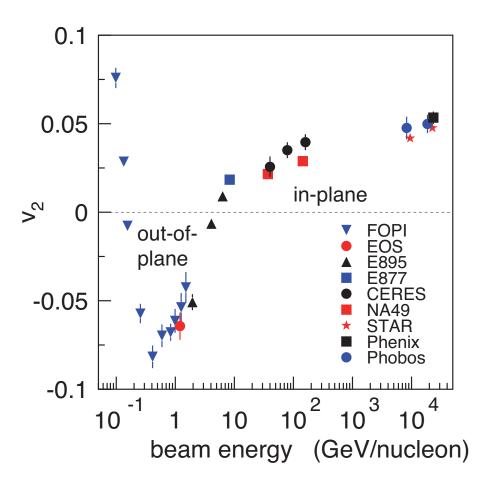
It has been predicted in hydrodynamical simulations of heavy ion reactions

- H. Stoecker et al., Phys. Rev. C 25 (1982) 1873.

- G. Buchwald et al., Phys. Rev. C 28 (1983) 2349.

ELMHOLTZ ASSOCIATION

- H. Stoecker and W. Greiner, Phys. Rept. 137 (1986) 277.



The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years.

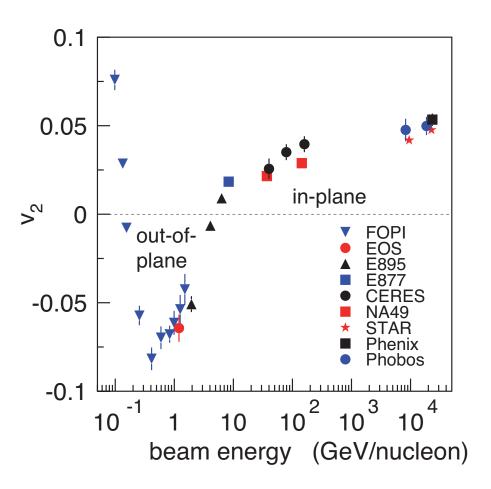
It has been predicted in hydrodynamical simulations of heavy ion reactions

- H. Stoecker et al., Phys. Rev. C 25 (1982) 1873.

- G. Buchwald et al., Phys. Rev. C 28 (1983) 2349.
- H. Stoecker and W. Greiner, Phys. Rept. 137 (1986) 277.

and has later been found experimentally by the Plastic Ball collaboration

- H.H. Gutbrod et al., Phys. Rev. C 42 (1990) 640.



The elliptic flow (v_2) at midrapidity, originally called out-of-plane emission or squeeze-out, has attracted a lot of attention during the last years.

It has been predicted in hydrodynamical simulations of heavy ion reactions

- H. Stoecker et al., Phys. Rev. C 25 (1982) 1873.

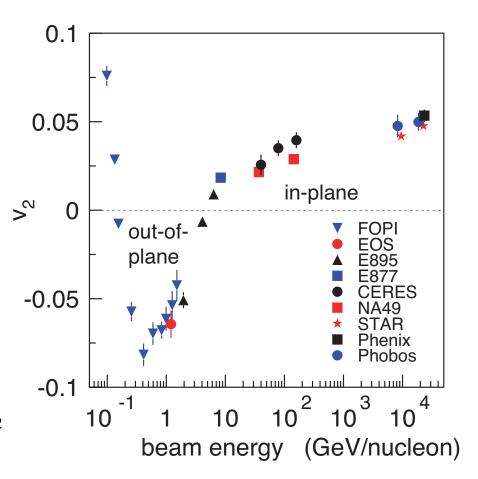
- G. Buchwald et al., Phys. Rev. C 28 (1983) 2349.

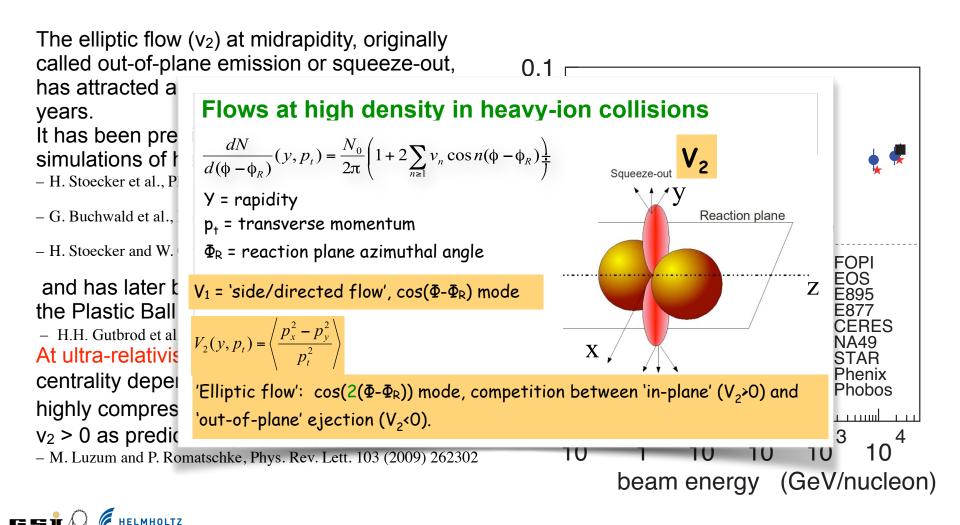
ELMHOLTZ

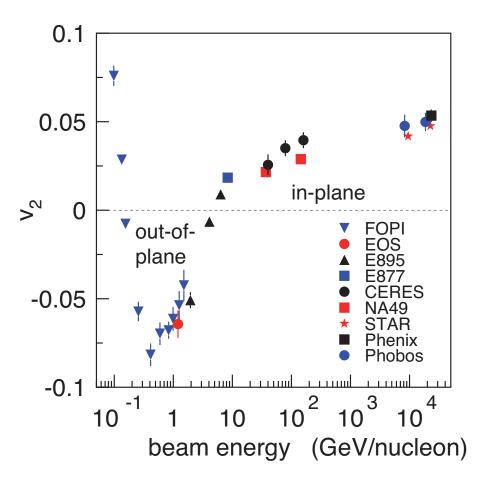
- H. Stoecker and W. Greiner, Phys. Rept. 137 (1986) 277.

and has later been found experimentally by the Plastic Ball collaboration

H.H. Gutbrod et al., Phys. Rev. C 42 (1990) 640.
 At ultra-relativiste energies: measured v₂ and centrality dependance ⇔ expansion of initially highly compressed almond shaped fireball ⇒ v₂ > 0 as predicted by hydrodynamics
 M. Luzum and P. Romatschke, Phys. Rev. Lett. 103 (2009) 262302



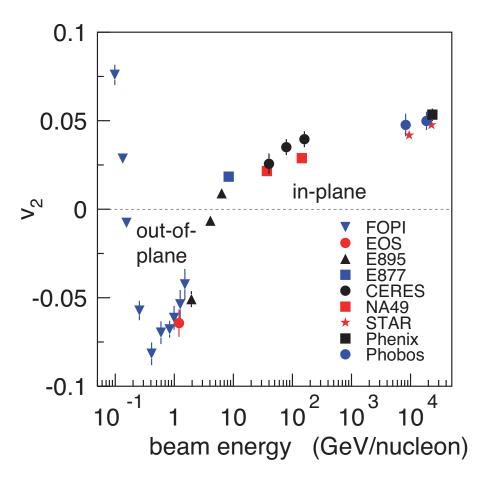




At lower energies: various experimental groups

– H. H. Gutbrod et al. Phys. Rev. C 42 (1990) 640.

 C. Pinkenburg et al. [E895 Collaboration], Phys. Rev. Lett. 83 (1999) 1295 [nucl-ex/9903010].



At lower energies: various experimental groups

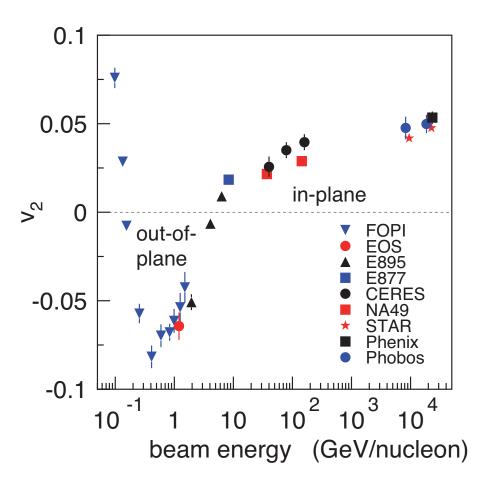
- H. H. Gutbrod et al. Phys. Rev. C 42 (1990) 640.

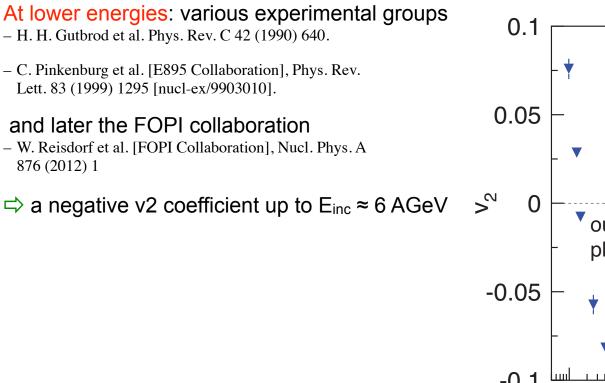
 C. Pinkenburg et al. [E895 Collaboration], Phys. Rev. Lett. 83 (1999) 1295 [nucl-ex/9903010].

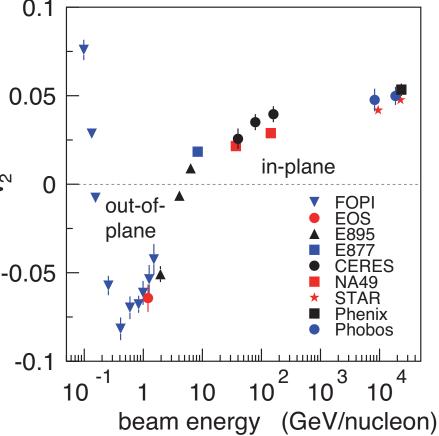
and later the FOPI collaboration

HELMHOLTZ

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1







At lower energies: various experimental groups

- H. H. Gutbrod et al. Phys. Rev. C 42 (1990) 640.

 C. Pinkenburg et al. [E895 Collaboration], Phys. Rev. Lett. 83 (1999) 1295 [nucl-ex/9903010].

and later the FOPI collaboration

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

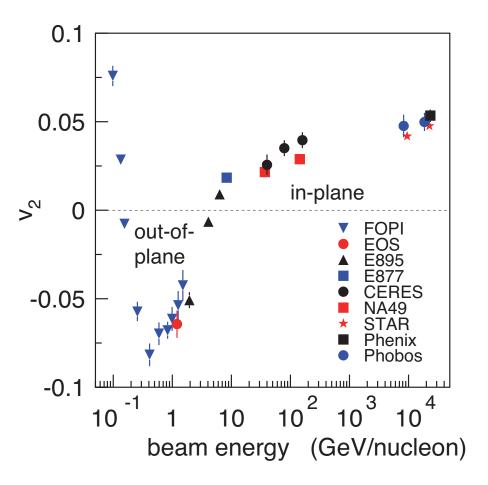
\Rightarrow a negative v2 coefficient up to $E_{inc} \approx 6 \text{ AGeV}$

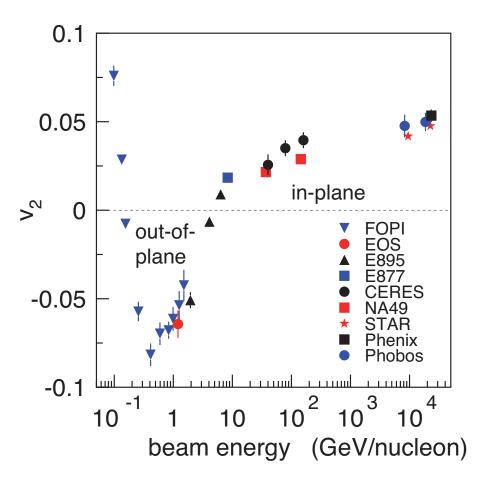
⇒ with a minimum at around 0.4-0.6 AGeV

- A. Andronic et al. [FOPI Collaboration], Phys. Lett. B 612 (2005) 173.
- G. Stoicea et al. [FOPI Collaboration], Phys. Rev. Lett. 92 (2004) 072303

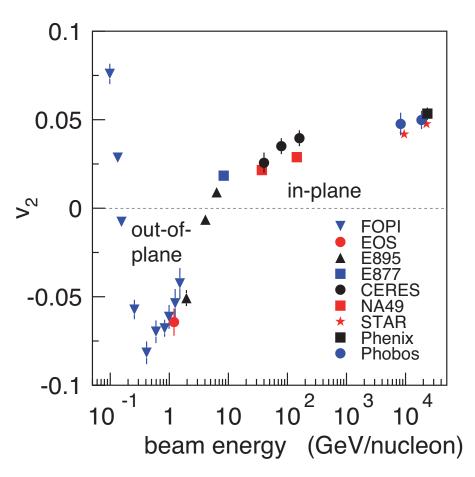
HELMHOLTZ

 A. Andronic, J. Lukasik, W. Reisdorf and W. Trautmann [FOPI and INDRA Collaborations], Eur. Phys. J. A 30 (2006) 31.





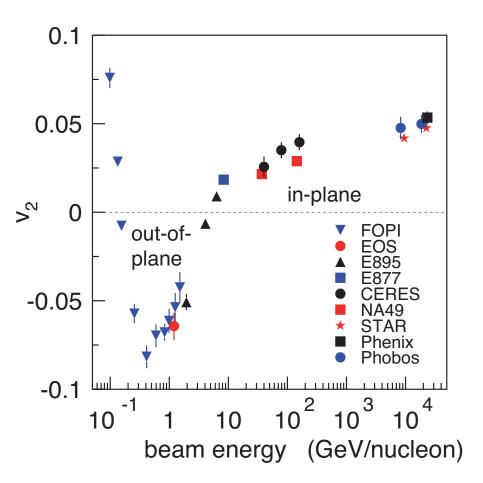
 \Rightarrow The elliptic flow has to be of different origin at these energies.



 \Rightarrow The elliptic flow has to be of different origin at these energies.

It has been suggested in

P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 1592



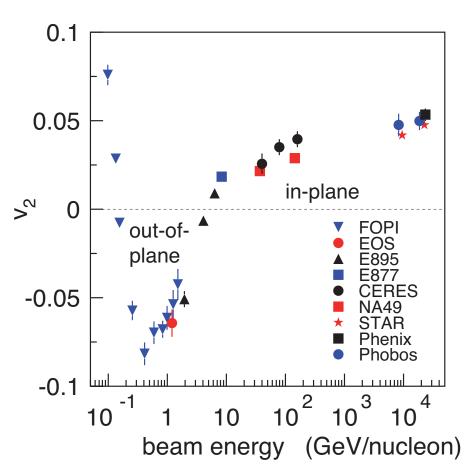
 \Rightarrow The elliptic flow has to be of different origin at these energies.

It has been suggested in

ELMHOLTZ ASSOCIATION

P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 1592

that the v₂ values are negative at low energies because the compressed matter expands while the spectator matter is still present and blocks the in-plane emission = « shadowing ».



 \Rightarrow The elliptic flow has to be of different origin at these energies.

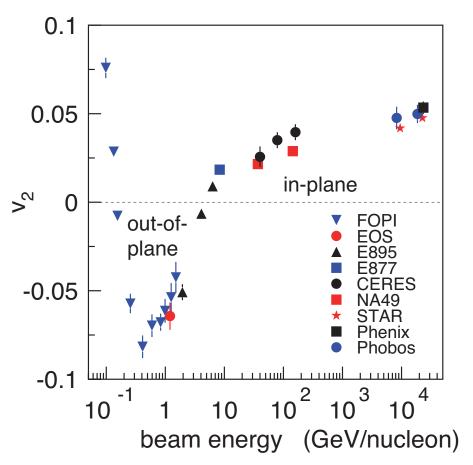
It has been suggested in

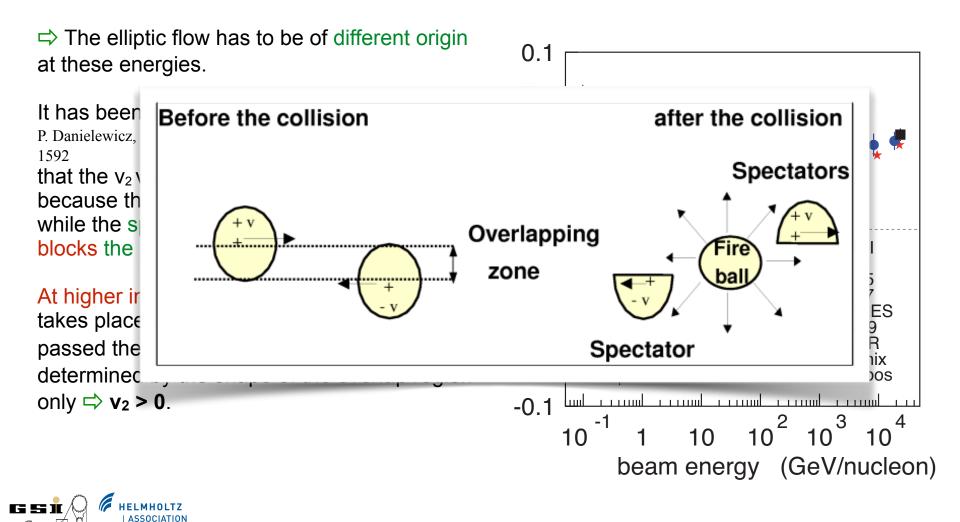
FI MHOLTZ

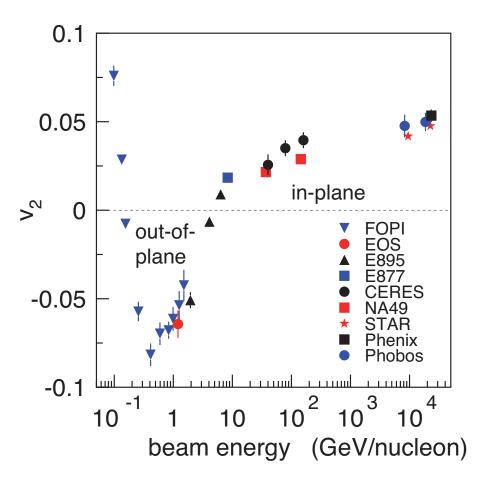
P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 1592

that the v₂ values are negative at low energies because the compressed matter expands while the spectator matter is still present and blocks the in-plane emission = « shadowing ».

At higher incident energies: the expansion takes place after the spectator matter has passed the compressed zone $\Rightarrow v_2$ is determined by the shape of the overlap region only $\Rightarrow v_2 > 0$.

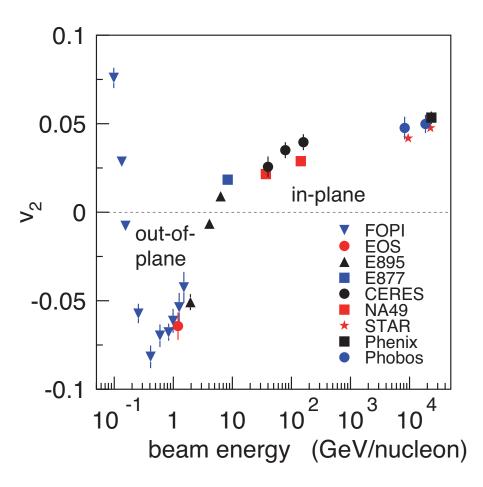






Minimum of $v_2 \Leftrightarrow$ maximum nuclear stopping with high baryon densities reached.

W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 232301 (2004)

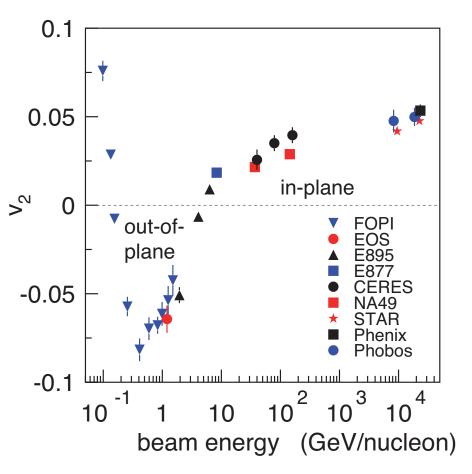


Minimum of $v_2 \Leftrightarrow$ maximum nuclear stopping with high baryon densities reached.

W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 232301 (2004)

Contrary to higher beam energies: no convincing experimental evidence that eventby-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72, 011901 (2005)



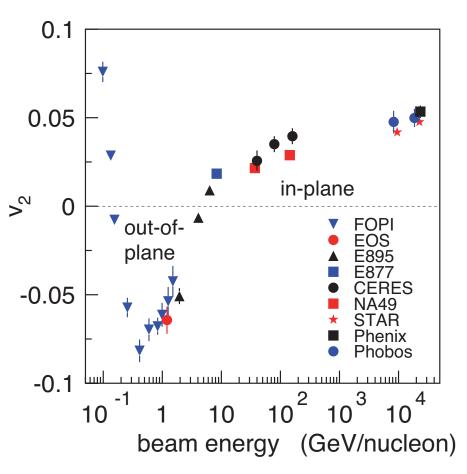
Minimum of $v_2 \Leftrightarrow$ maximum nuclear stopping with high baryon densities reached.

W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 232301 (2004)

Contrary to higher beam energies: no convincing experimental evidence that eventby-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72, 011901 (2005)

Most probable reasons:



Minimum of $v_2 \Leftrightarrow$ maximum nuclear stopping with high baryon densities reached.

W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 232301 (2004)

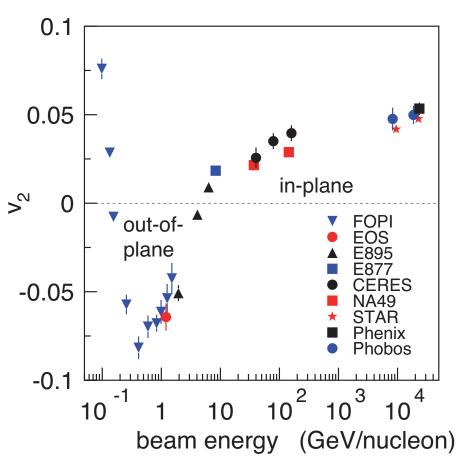
Contrary to higher beam energies: no convincing experimental evidence that eventby-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72, 011901 (2005)

Most probable reasons:

IELMHOLTZ

• interactions with spectator matter



Minimum of $v_2 \Leftrightarrow$ maximum nuclear stopping with high baryon densities reached.

W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 232301 (2004)

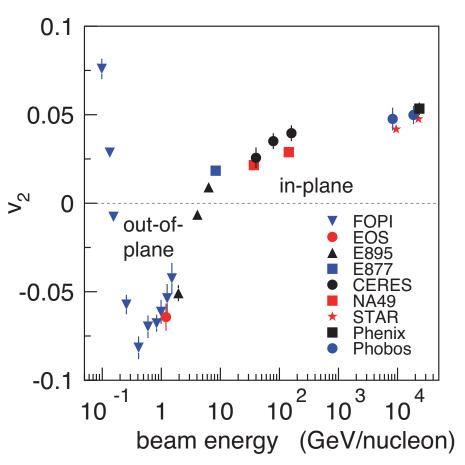
Contrary to higher beam energies: no convincing experimental evidence that eventby-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72, 011901 (2005)

Most probable reasons:

IELMHOLTZ

- interactions with spectator matter
- much longer collision times.



5

Minimum of $v_2 \Leftrightarrow$ maximum nuclear stopping with high baryon densities reached.

W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 232301 (2004)

Contrary to higher beam energies: no convincing experimental evidence that eventby-event fluctuations contribute to v_2 between 0.4 and 2 A GeV.

N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72, 011901 (2005)

Most probable reasons:

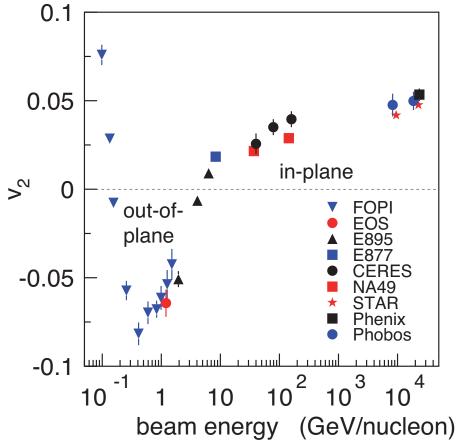
- interactions with spectator matter
- much longer collision times.

At even lower incident energies: v₂ becomes positive again: attractive NN forces outweigh the repulsive NN collisions.

- J. Lukasik et al., Phys. Lett. B 608 (2005) 223.

- M. Zheng et al., Phys. Rev. Lett. 83 (1999)

- P. K. Sahu et al., Nucl. Phys. A 672 (2000) 376



Details of the Quantum Molecular Dynamics (QMD) approach have been published in

- J. Aichelin, Phys. Rept. 202 (1991) 233.
- C. Hartnack et al., Phys. Rept. 510 (2012) 119
- C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions -> single-particle Wigner density:

$$f_{i}(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^{3} \hbar^{3}} e^{-\frac{2}{L} (\mathbf{r} - \mathbf{r}_{i}(t))^{2}} e^{-\frac{L}{2\hbar^{2}} (\mathbf{p} - \mathbf{p}_{i}(t))^{2}}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

Details of the Quantum Molecular Dynamics (QMD) approach have been published in – J. Aichelin, Phys. Rept. 202 (1991) 233.

- C. Hartnack et al., Phys. Rept. 510 (2012) 119
- C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions single-particle Wigner density:

$$f_{i}(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^{3} \hbar^{3}} e^{-\frac{2}{L} (\mathbf{r} - \mathbf{r}_{i}(t))^{2}} e^{-\frac{L}{2\hbar^{2}} (\mathbf{p} - \mathbf{p}_{i}(t))^{2}}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

$$\begin{split} V(\mathbf{r_i}, \mathbf{r_j}, \mathbf{p_i}, \mathbf{p_j}) &= G + V_{\text{Coul}} \\ &= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + + V_{sym} + V_{\text{Coul}} \\ &= t_1 \delta(\mathbf{r_i} - \mathbf{r_j}) + t_2 \delta(\mathbf{r_i} - \mathbf{r_j}) \rho^{\gamma - 1}(\mathbf{r_i}) + \\ &\quad t_3 \frac{\exp\{-|\mathbf{r_i} - \mathbf{r_j}|/\mu\}}{|\mathbf{r_i} - \mathbf{r_j}|/\mu} + \\ &\quad t_4 \ln^2(1 + t_5(\mathbf{p_i} - \mathbf{p_j})^2) \delta(\mathbf{r_i} - \mathbf{r_j}) + \\ &\quad t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\mathbf{r_i} - \mathbf{r_j}) + \frac{Z_i Z_j e^2}{|\mathbf{r_i} - \mathbf{r_j}|}. \end{split}$$

Convolution of the distribution functions f_i and $f_j \rightarrow single$ $particle potential (« mean-field ») = <math>V_{Skyrme} + V_{mdi}$ (local interactions + momentum dependence)

$$U_{i}(\mathbf{r}_{i},t) = \alpha \left(\frac{\rho_{int}}{\rho_{0}}\right) + \beta \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma} + \delta \ln^{2} \left(\varepsilon \left(\Delta \mathbf{p}\right)^{2} + 1\right) \left(\frac{\rho_{int}}{\rho_{0}}\right)$$

In nuclear matter t_1 , t_2 , t_4 , t_5 uniquely related α , β , δ , and $\epsilon \epsilon$ and δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

α, β, γ : 2 are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0 .

	$\alpha~({\rm MeV})$	$\beta~({\rm MeV})$	γ	δ (MeV) ε	$\left(\frac{c^2}{\text{GeV}^2}\right)$	$K \ ({\rm MeV})$
SM	-390	320	1.14	1.57	500	200
HM	-130	59	2.09	1.57	500	376

V

Details of the Quantum Molecular Dynamics (QMD) approach have been published in – J. Aichelin, Phys. Rept. 202 (1991) 233.

- C. Hartnack et al., Phys. Rept. 510 (2012) 119
- C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions single-particle Wigner density:

$$f_{i}(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^{3} \hbar^{3}} e^{-\frac{2}{L} (\mathbf{r} - \mathbf{r}_{i}(t))^{2}} e^{-\frac{L}{2\hbar^{2}} (\mathbf{p} - \mathbf{p}_{i}(t))^{2}}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

$$\begin{aligned} V(\mathbf{r_i}, \mathbf{r_j}, \mathbf{p_i}, \mathbf{p_j}) &= G + V_{\text{Coul}} \\ &= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + + V_{sym} + V_{\text{Coul}} \\ &= t_1 \delta(\mathbf{r_i} - \mathbf{r_j}) + t_2 \delta(\mathbf{r_i} - \mathbf{r_j}) \rho^{\gamma - 1}(\mathbf{r_i}) + t_3 \frac{\exp\{-|\mathbf{r_i} - \mathbf{r_j}|/\mu\}}{|\mathbf{r_i} - \mathbf{r_j}|/\mu} + t_4 \ln^2(1 + t_5(\mathbf{p_i} - \mathbf{p_j})^2)\delta(\mathbf{r_i} - \mathbf{r_j}) + t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\mathbf{r_i} - \mathbf{r_j}) + \frac{Z_i Z_j e^2}{|\mathbf{r_i} - \mathbf{r_j}|}. \end{aligned}$$

Convolution of the distribution functions f_i and $f_j \rightarrow single$ $particle potential (« mean-field ») = <math>V_{Skyrme} + V_{mdi}$ (local interactions + momentum dependence)

$$U_{i}(\mathbf{r}_{i},t) = \alpha \left(\frac{\rho_{int}}{\rho_{0}}\right) + \beta \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma} + \delta \ln^{2} \left(\varepsilon \left(\Delta \mathbf{p}\right)^{2} + 1\right) \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma}$$

In nuclear matter t_1 , t_2 , t_4 , t_5 uniquely related α , β , δ , and ϵ ϵ and δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

α, β, γ : 2 are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0 .

	$\alpha~({\rm MeV})$	$\beta~({\rm MeV})$	γ	δ (MeV) ε	$\left(\frac{c^2}{\text{GeV}^2}\right)$	$K \; ({\rm MeV})$
SM	-390	320	1.14	1.57	500	200
HM	-130	59	2.09	1.57	500	376

V

Details of the Quantum Molecular Dynamics (QMD) approach have been published in – J. Aichelin, Phys. Rept. 202 (1991) 233.

- C. Hartnack et al., Phys. Rept. 510 (2012) 119
- C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions single-particle Wigner density:

$$f_{i}(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^{3} \hbar^{3}} e^{-\frac{2}{L} (\mathbf{r} - \mathbf{r}_{i}(t))^{2}} e^{-\frac{L}{2\hbar^{2}} (\mathbf{p} - \mathbf{p}_{i}(t))^{2}}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

$$\begin{split} V(\mathbf{r_i}, \mathbf{r_j}, \mathbf{p_i}, \mathbf{p_j}) &= G + V_{\text{Coul}} \\ &= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + V_{sym} + V_{\text{Coul}} \\ &= t_1 \delta(\mathbf{r_i} - \mathbf{r_j}) + t_2 \delta(\mathbf{r_i} - \mathbf{r_j}) \rho^{\gamma - 1}(\mathbf{r_i}) + \\ & I_3 \frac{\exp\{-|\mathbf{r_i} - \mathbf{r_j}|/\mu\}}{|\mathbf{r_i} - \mathbf{r_j}|/\mu} + \\ & t_4 \ln^2(1 + t_5(\mathbf{p_i} - \mathbf{p_j})^2) \delta(\mathbf{r_i} - \mathbf{r_j}) + \\ & t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\mathbf{r_i} - \mathbf{r_j}) + \frac{Z_i Z_j e^2}{|\mathbf{r_i} - \mathbf{r_j}|}. \end{split}$$

Convolution of the distribution functions f_i and $f_j \rightarrow single$ $particle potential (« mean-field ») = <math>V_{Skyrme} + V_{mdi}$ (local interactions + momentum dependence)

$$U_{i}(\mathbf{r}_{i},t) = \alpha \left(\frac{\rho_{int}}{\rho_{0}}\right) + \beta \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma} + \delta \ln^{2} \left(\varepsilon \left(\Delta \mathbf{p}\right)^{2} + 1\right) \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma}$$

In nuclear matter t_1 , t_2 , t_4 , t_5 uniquely related α , β , δ , and ϵ ϵ and δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

α, β, γ : 2 are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0 .

	$\alpha~({\rm MeV})$	$\beta~({\rm MeV})$	γ	δ (MeV) ε	$\left(\frac{c^2}{\text{GeV}^2}\right)$	$K \ ({\rm MeV})$
SM	-390	320	1.14	1.57	500	200
HM	-130	59	2.09	1.57	500	376

V

Details of the Quantum Molecular Dynamics (QMD) approach have been published in – J. Aichelin, Phys. Rept. 202 (1991) 233.

- C. Hartnack et al., Phys. Rept. 510 (2012) 119
- C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions single-particle Wigner density:

$$f_{i}(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^{3} \hbar^{3}} e^{-\frac{2}{L} (\mathbf{r} - \mathbf{r}_{i}(t))^{2}} e^{-\frac{L}{2\hbar^{2}} (\mathbf{p} - \mathbf{p}_{i}(t))^{2}}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

$$\begin{aligned} (\mathbf{r}_{\mathbf{i}}, \mathbf{r}_{\mathbf{j}}, \mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}) &= G + V_{\text{Coul}} \\ &= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{Mdi}} + V_{sym} + V_{\text{Coul}} \\ &= t_1 \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + t_2 \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) \rho^{\gamma - 1}(\mathbf{r}_{\mathbf{i}}) + \\ &\quad t_3 \frac{\exp\{-|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|/\mu\}}{|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|/\mu} + \\ &\quad t_4 \ln^2(1 + t_5(\mathbf{p}_{\mathbf{i}} - \mathbf{p}_{\mathbf{j}})^2) \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + \\ &\quad t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + \frac{Z_i Z_j e^2}{|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|}. \end{aligned}$$

Convolution of the distribution functions f_i and $f_j \rightarrow single$ $particle potential (« mean-field ») = <math>V_{Skyrme} + V_{mdi}$ (local interactions + momentum dependence)

$$U_{i}(\mathbf{r}_{i},t) = \alpha \left(\frac{\rho_{int}}{\rho_{0}}\right) + \beta \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma} + \delta \ln^{2} \left(\varepsilon \left(\Delta \mathbf{p}\right)^{2} + 1\right) \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma}$$

In nuclear matter t_1 , t_2 , t_4 , t_5 uniquely related α , β , δ , and ϵ ϵ and δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

α, β, γ : 2 are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0 .

	$\alpha~({\rm MeV})$	$\beta~({\rm MeV})$	γ	δ (MeV) ε	$\left(\frac{c^2}{\text{GeV}^2}\right)$	$K \ ({\rm MeV})$
SM	-390	320	1.14	1.57	500	200
HM	-130	59	2.09	1.57	500	376

V

Details of the Quantum Molecular Dynamics (QMD) approach have been published in – J. Aichelin, Phys. Rept. 202 (1991) 233.

- C. Hartnack et al., Phys. Rept. 510 (2012) 119
- C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions single-particle Wigner density:

$$f_{i}(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^{3}\hbar^{3}} e^{-\frac{2}{L}(\mathbf{r} - \mathbf{r}_{i}(t))^{2}} e^{-\frac{L}{2\hbar^{2}}(\mathbf{p} - \mathbf{p}_{i}(t))^{2}}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

$$(\mathbf{r}_{\mathbf{i}}, \mathbf{r}_{\mathbf{j}}, \mathbf{p}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}) = G + V_{\text{Coul}}$$

$$= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + \frac{+V_{sym}}{+V_{sym}} V_{\text{Coul}}$$

$$= t_1 \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + t_2 \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) \rho^{\gamma - 1}(\mathbf{r}_{\mathbf{i}}) + t_3 \frac{\exp\{-|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|/\mu\}}{|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|/\mu} + t_4 \ln^2(1 + t_5(\mathbf{p}_{\mathbf{i}} - \mathbf{p}_{\mathbf{j}})^2) \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}) + \frac{Z_i Z_j e^2}{|\mathbf{r}_{\mathbf{i}} - \mathbf{r}_{\mathbf{j}}|}.$$

Convolution of the distribution functions f_i and $f_j \rightarrow single$ $particle potential (« mean-field ») = <math>V_{Skyrme} + V_{mdi}$ (local interactions + momentum dependence)

$$U_{i}(\mathbf{r}_{i},t) = \alpha \left(\frac{\rho_{int}}{\rho_{0}}\right) + \beta \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma} + \delta \ln^{2} \left(\varepsilon \left(\Delta \mathbf{p}\right)^{2} + 1\right) \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma}$$

In nuclear matter t_1 , t_2 , t_4 , t_5 uniquely related α , β , δ , and ϵ ϵ and δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

α, β, γ : 2 are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0 .

	$\alpha~({\rm MeV})$	$\beta~({\rm MeV})$	γ	δ (MeV) ε	$\left(\frac{c^2}{\text{GeV}^2}\right)$	$K \; ({\rm MeV})$
SM	-390	320	1.14	1.57	500	200
HM	-130	59	2.09	1.57	500	376

Details of the Quantum Molecular Dynamics (QMD) approach have been published in – J. Aichelin, Phys. Rept. 202 (1991) 233.

- C. Hartnack et al., Phys. Rept. 510 (2012) 119
- C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured in the incident energy region under consideration are published in

 W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A 876 (2012) 1

Here, we quote only how this approach allows for an exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions single-particle Wigner density:

$$f_{i}(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^{3} \hbar^{3}} e^{-\frac{2}{L} (\mathbf{r} - \mathbf{r}_{i}(t))^{2}} e^{-\frac{L}{2\hbar^{2}} (\mathbf{p} - \mathbf{p}_{i}(t))^{2}}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

The potential consists of several terms:

$$V(\mathbf{r_i}, \mathbf{r_j}, \mathbf{p_i}, \mathbf{p_j}) = G + V_{\text{Coul}}$$

$$= V_{\text{Skyrme}} + V_{\text{Yuk}} + V_{\text{mdi}} + + V_{sym} + V_{\text{Coul}}$$

$$= t_1 \delta(\mathbf{r_i} - \mathbf{r_j}) + t_2 \delta(\mathbf{r_i} - \mathbf{r_j}) \rho^{\gamma - 1}(\mathbf{r_i}) + t_3 \frac{\exp\{-|\mathbf{r_i} - \mathbf{r_j}|/\mu\}}{|\mathbf{r_i} - \mathbf{r_j}|/\mu} + t_4 \ln^2(1 + t_5(\mathbf{p_i} - \mathbf{p_j})^2) \delta(\mathbf{r_i} - \mathbf{r_j}) + t_6 \frac{1}{\varrho_0} T_3^i T_3^j \delta(\mathbf{r_i} - \mathbf{r_j}) - \frac{Z_i Z_j e^2}{|\mathbf{r_i} - \mathbf{r_j}|}.$$

Convolution of the distribution functions f_i and $f_j \rightarrow single-particle potential (« mean-field ») = V_{Skyrme} + V_{mdi}$ (local interactions + momentum dependence)

$$U_{i}(\mathbf{r}_{i},t) = \alpha \left(\frac{\rho_{int}}{\rho_{0}}\right) + \beta \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma} + \delta \ln^{2} \left(\varepsilon \left(\Delta \mathbf{p}\right)^{2} + 1\right) \left(\frac{\rho_{int}}{\rho_{0}}\right)$$

In nuclear matter t_1 , t_2 , t_4 , t_5 uniquely related α , β , δ , and $\epsilon \epsilon$ and δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

α, β, γ : 2 are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0 .

	$\alpha~({\rm MeV})$	$\beta~({\rm MeV})$	γ	δ (MeV) ε	$\left(\frac{c^2}{\text{GeV}^2}\right)$	$K \ ({\rm MeV})$
SM	-390	320	1.14	1.57	500	200
HM	-130	59	2.09	1.57	500	376

Details of the C approach have – J. Aichelin, Phy

– C. Hartnack et a

– C. Hartnack et a

Comparisons to in the incident e published in

 W. Reisdorf et a 876 (2012) 1

Here, we quote ..., exploration of the nuclear EoS

ELMHOLTZ

1

Nucleons are represented as Gaussian wave functions single-particle Wigner density:

$$f_i(\mathbf{r}, \mathbf{p}, t) = \frac{1}{\pi^3 \hbar^3} e^{-\frac{2}{L} (\mathbf{r} - \mathbf{r}_i(t))^2} e^{-\frac{L}{2\hbar^2} (\mathbf{p} - \mathbf{p}_i(t))^2}$$

The total one-body Wigner density is the sum of the Wigner densities of all nucleons

=
compression modulus of nuclear matter
=
curvature of the volume energy at
$$\rho = \rho_0$$
 (for T=0)

Κ

$$K = -V\frac{\partial p}{\partial V} = 9\rho^2 \frac{\partial^2 E/A(\rho)}{(\partial \rho)^2}|_{\rho=\rho_0}$$

$$\left\{ \begin{array}{l} +V_{\mathrm{mdi}} + +V_{sym} + V_{\mathrm{Coull}} \\ t_2 \delta(\mathbf{r_i} - \mathbf{r_j}) \rho^{\gamma - 1}(\mathbf{r_i}) + \\ \frac{c_j | / \mu \}}{/ \mu} + \\ 1 - \mathbf{p_j} \right\} + \\ - \mathbf{r_j}) + \frac{Z_i Z_j e^2}{|\mathbf{r_i} - \mathbf{r_j}|}.$$

inctions f_i and $f_j \rightarrow single-$) = V_{Skyrme} + V_{mdi} (local

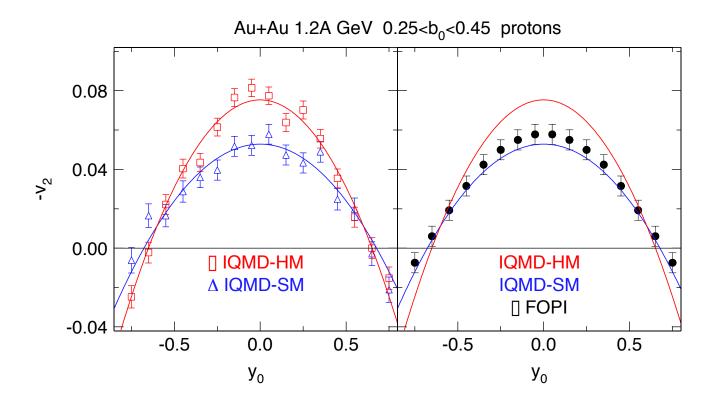
interactions + momentum dependence)

$$U_{i}(\mathbf{r}_{i},t) = \alpha \left(\frac{\rho_{int}}{\rho_{0}}\right) + \beta \left(\frac{\rho_{int}}{\rho_{0}}\right)^{\gamma} + \delta \ln^{2} \left(\varepsilon \left(\Delta \mathbf{p}\right)^{2} + 1\right) \left(\frac{\rho_{int}}{\rho_{0}}\right)$$

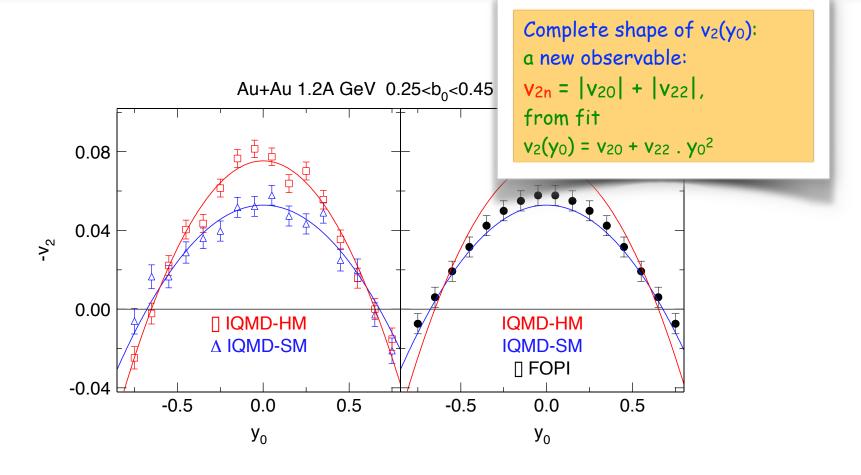
In nuclear matter t_1 , t_2 , t_4 , t_5 uniquely related α , β , δ , and ϵ ϵ and δ : given by fits to the optical potential extracted from elastic scattering data in pA collisions.

α, β, γ : 2 are constrained by volume energy has a minimum of $E/A(\rho_0) = -16$ MeV at ρ_0 .

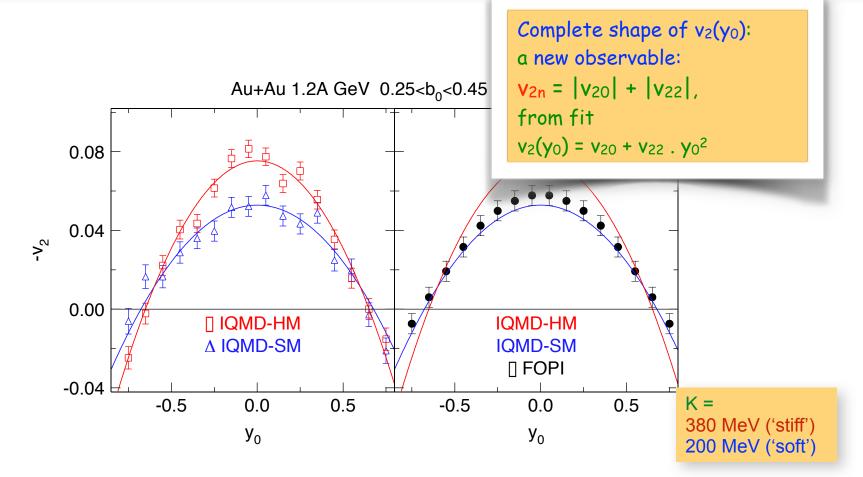
	α (MeV)	β (MeV)	γ	$\delta~({ m MeV})$ &	$\varepsilon \left(\frac{c^2}{\text{GeV}^2}\right)$	$K \; ({\rm MeV})$
SM	-390	320	1.14	1.57	500	200
HM	-130	59	2.09	1.57	500	376



A. Le Fèvre et al., Nucl. Phys. A 945 (2016) 112.



A. Le Fèvre et al., Nucl. Phys. A 945 (2016) 112.



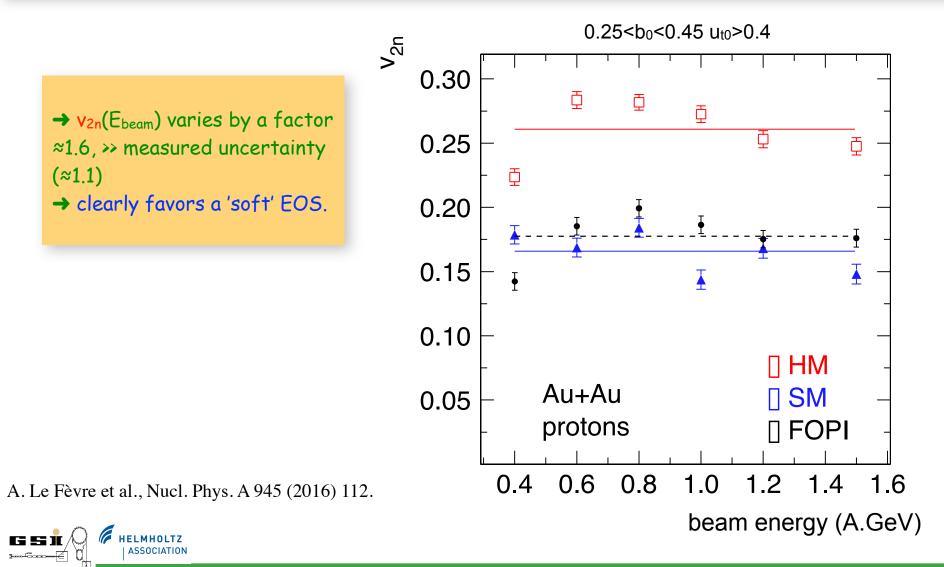
A. Le Fèvre et al., Nucl. Phys. A 945 (2016) 112.

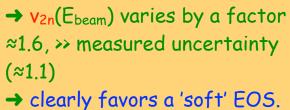
HELMHOLTZ

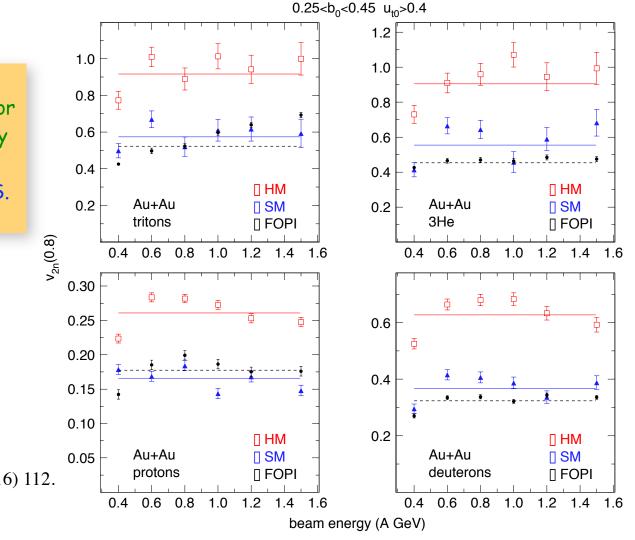
ASSOCIATION

r: si i

7



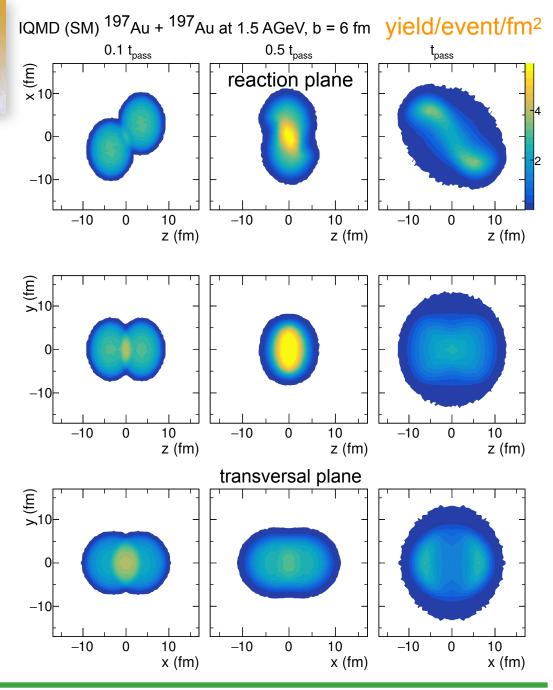


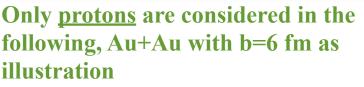


A. Le Fèvre et al., Nucl. Phys. A 945 (2016) 112.

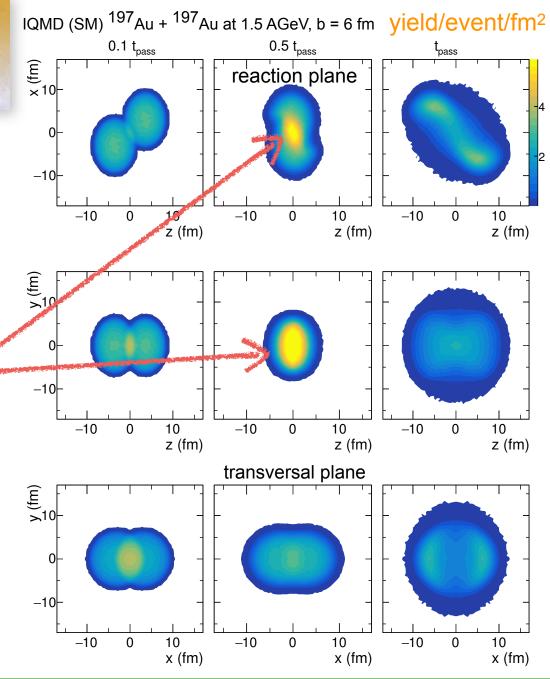
Only <u>protons</u> are considered in the following, Au+Au with b=6 fm as illustration

- z: beam direction
- x: impact parameter direction
- y: perpendicular to reaction plane
- t_{pass} = passing time





- z: beam direction
- x: impact parameter direction
 y: perpendicular to reaction plane
 t_{pass} = passing time
- Central (participant) matter is highly compressed at max. overlap (t = 0.5t_{pass}).



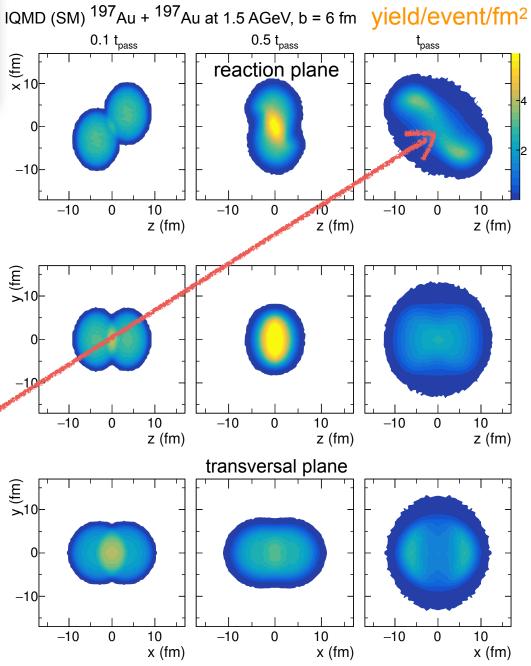
Only <u>protons</u> are considered in the following, Au+Au with b=6 fm as illustration

z: beam direction

x: impact parameter direction
y: perpendicular to reaction plane
t_{pass} = passing time

Central (participant) matter is highly compressed at max. overlap (t = 0.5t_{pass}).

Projectile and target remnants stay connected for longer than t_{pass} by a ridge with a quite high particle density. This ridge will disintegrate when projectile and target remnants separate further.



Only <u>protons</u> are considered in the following, Au+Au with b=6 fm as illustration

z: beam direction

x: impact parameter directiony: perpendicular to reaction plane

t_{pass} = passing time

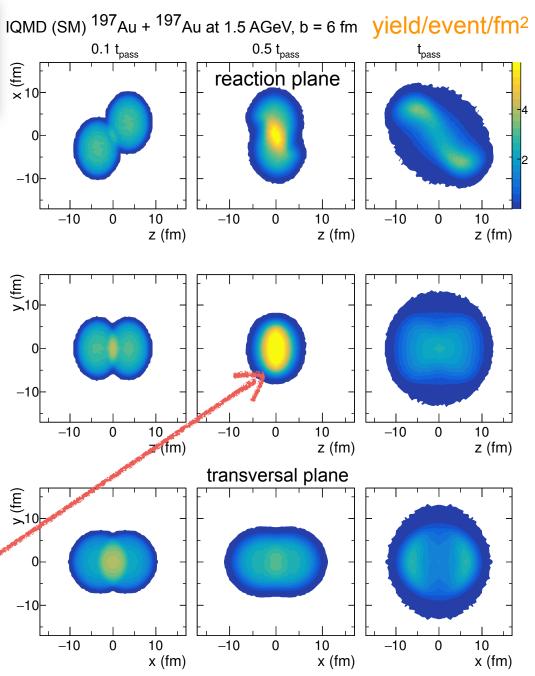
Central (participant) matter is highly compressed at max. overlap (t = 0.5t_{pass}).

Projectile and target remnants stay connected for longer than t_{pass} by a ridge with a quite high particle density. This ridge will disintegrate when projectile and target remnants separate further.

The importance of this ridge can be seen in the zy plane at max. overlap \rightarrow the highest density at z=0, in the ridge.

IELMHOLTZ

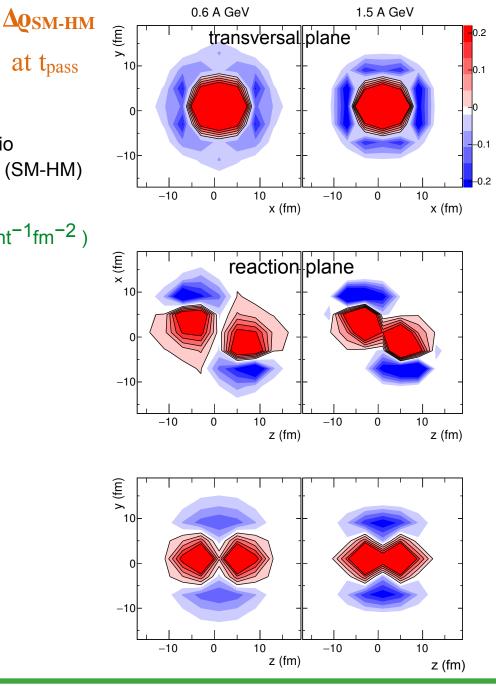
ASSOCIATION



The choice of the EoS influences the reaction scenario predicted by the model \Rightarrow reflected by the difference (SM-HM) of the proton densities projected onto the ij plane,

$$\Delta \rho_{ij} = \rho_{ij} SM - \rho_{ij} HM$$
 (event⁻¹fm⁻²)

at t_{pass}

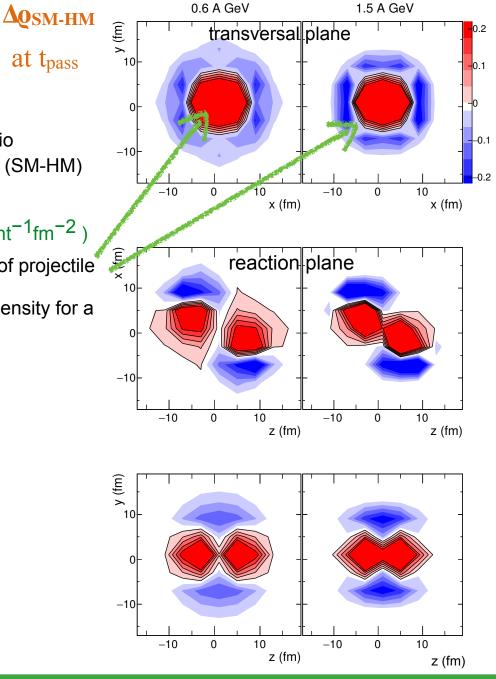


The choice of the EoS influences the reaction scenario predicted by the model \Rightarrow reflected by the difference (SM-HM) of the proton densities projected onto the ij plane,

 $\label{eq:pij} \Delta \rho_{ij} = \rho_{ij} \frac{SM}{-} \rho_{ij} \frac{HM}{-} (event^{-1} fm^{-2})$

Density of protons in the geometrical overlap region of projectile and target: higher for a soft EoS.

At larger distances from the reaction center: higher density for a hard EoS



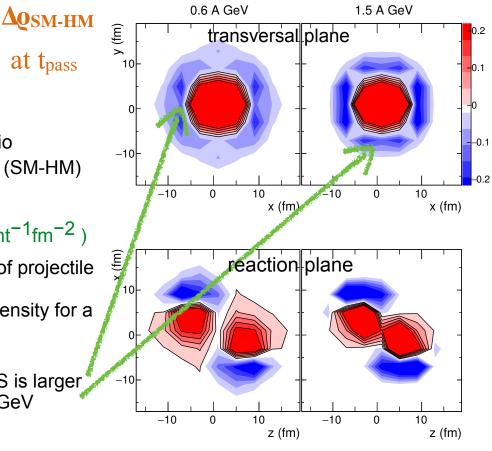
The choice of the EoS influences the reaction scenario predicted by the model \Rightarrow reflected by the difference (SM-HM) of the proton densities projected onto the ij plane,

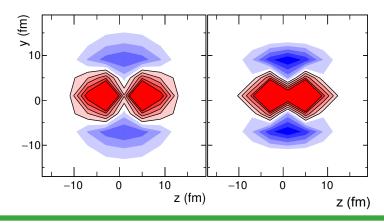
 ${\rm \Delta}\rho_{ij}\text{=}~\rho_{ij}\text{SM}$ – $\rho_{ij}\text{HM}$ (event $^{-1}\text{fm}^{-2}$)

Density of protons in the geometrical overlap region of projectile and target: higher for a soft EoS.

At larger distances from the reaction center: higher density for a hard EoS

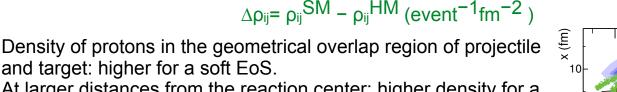
At 0.6 AGeV: this surplus in the density for a hard EoS is larger in x-direction, but it becomes rather isotropic at 1.5 AGeV





The choice of the EoS influences the reaction scenario predicted by the model \Rightarrow reflected by the difference (SM-HM) of the proton densities projected onto the ij plane,

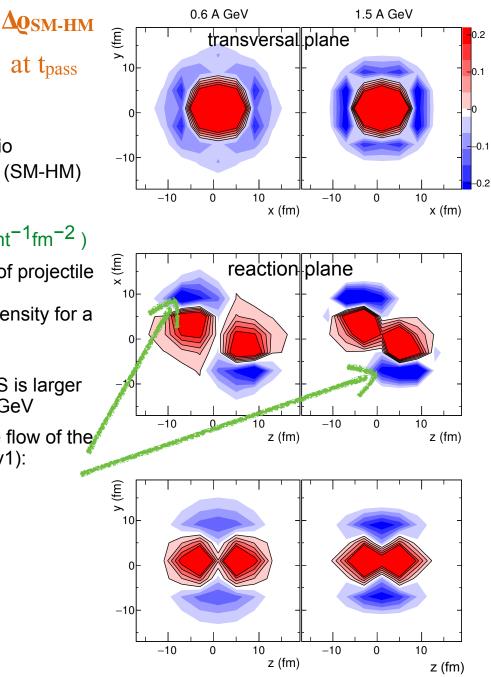
 $\Delta \rho_{ij} = \rho_{ij} SM - \rho_{ij} HM$ (event⁻¹fm⁻²)



At larger distances from the reaction center: higher density for a hard EoS

At 0.6 AGeV: this surplus in the density for a hard EoS is larger in x-direction, but it becomes rather isotropic at 1.5 AGeV

The excess in x-direction has its origin in the in-plane flow of the spectator matter expressed by a finite directed flow (v1): v1 (hard) >> v1 (soft)



and target: higher for a soft EoS.

HELMHOLTZ

ASSOCIATION

hard EoS

The choice of the EoS influences the reaction scenario predicted by the model \Rightarrow reflected by the difference (SM-HM) of the proton densities projected onto the ij plane,

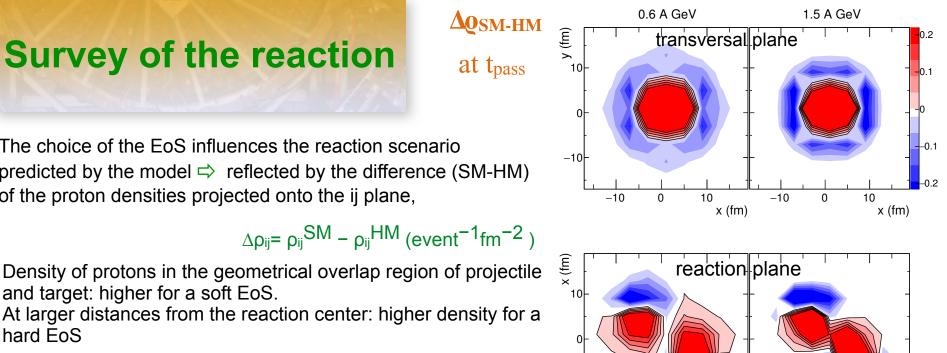
$$\Delta \rho_{ij} = \rho_{ij} SM - \rho_{ij} HM$$
 (event⁻¹fm⁻²)

at t_{pass}

-10

-10

0



At 0.6 AGeV: this surplus in the density for a hard EoS is larger in x-direction, but it becomes rather isotropic at 1.5 AGeV

The excess in x-direction has its origin in the in-plane flow of the spectator matter expressed by a finite directed flow (v1): v1 (hard) >> v1 (soft)

In y-direction the surplus in density of the hard EoS is concentrated at around z=0, being less extended but stronger at higher energies. The emission of these particles is caused by a stronger density gradient (and hence a stronger force) in ydirection for a hard (HM) EoS as compared to a soft (SM) one.

y (fm) 10 -10 -10 10 -10 10 0 0 z (fm) z (fm)

10

z (fm)

-10

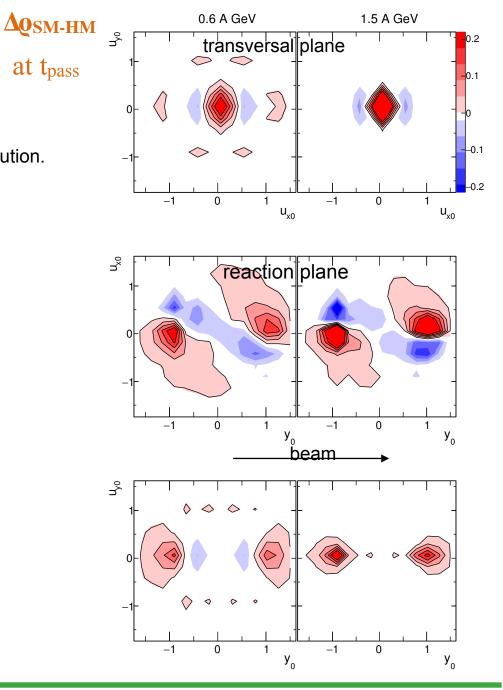
n

10

z (fm)

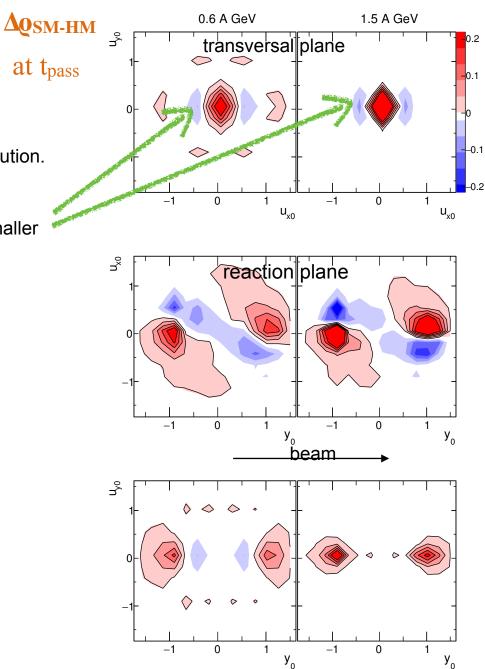
In velocity space we observe a complementary distribution.

at t_{pass}



In velocity space we observe a complementary distribution.

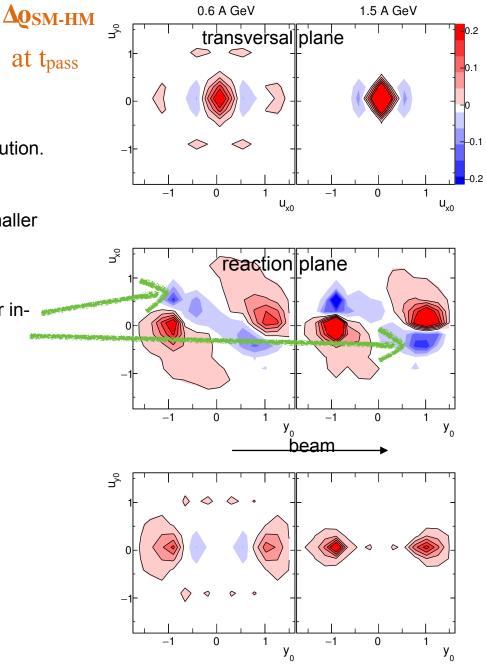
In the xy plane, the shift of protons in x direction is smaller for a soft (SM) than for a hard (HM) EoS



In velocity space we observe a complementary distribution.

In the xy plane, the shift of protons in x direction is smaller for a soft (SM) than for a hard (HM) EoS

This is due to a smaller acceleration yielding a weaker in-



In velocity space we observe a complementary distribution.

In the xy plane, the shift of protons in x direction is smaller for a soft (SM) than for a hard (HM) EoS

This is due to a smaller acceleration yielding a weaker inplane flow and hence a smaller velocity in x-direction

The soft EoS leads also to less stopping

1

y_o

-1

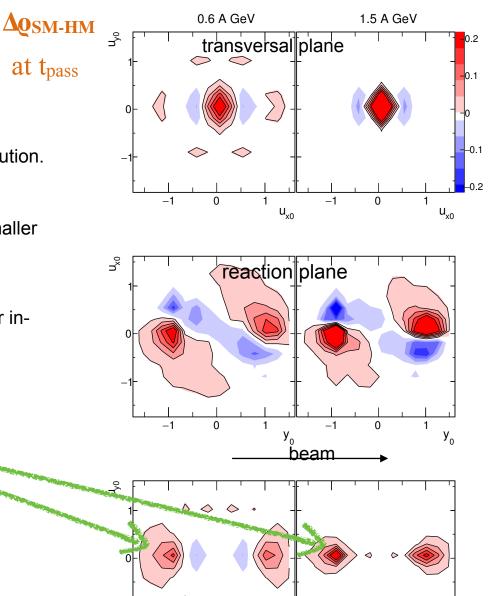
0

1

y₀

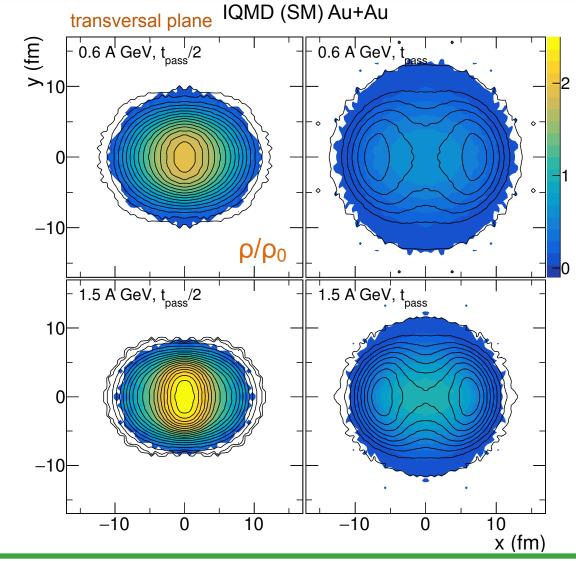
0

-1



We select now fast moving particles in the transverse direction at mid-rapidity:

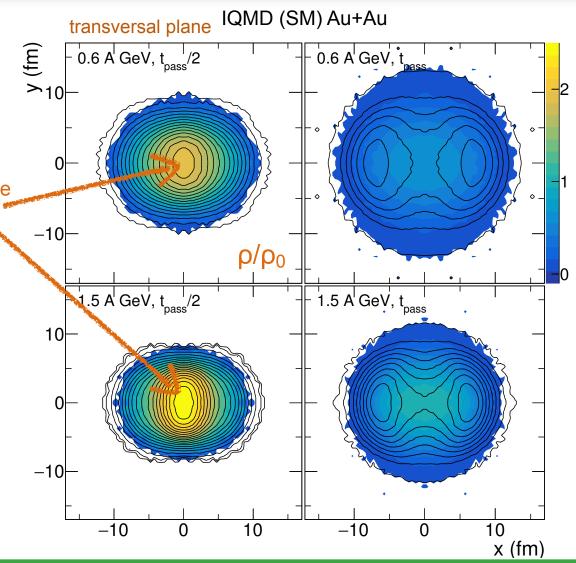
|y0| < 0.2, ut0 > 0.4 (used by the FOPI collaboration for the v2 investigation) in color. Compared to all (black contours).



We select now fast moving particles in the transverse direction at mid-rapidity:

|y0| < 0.2, ut0 > 0.4 (used by the FOPI collaboration for the v2 investigation) in color. Compared to all (black contours). At full overlap:

 the innermost participants = a dense almond shaped core, <u>out-of-plane</u> elongated, compression is highest.

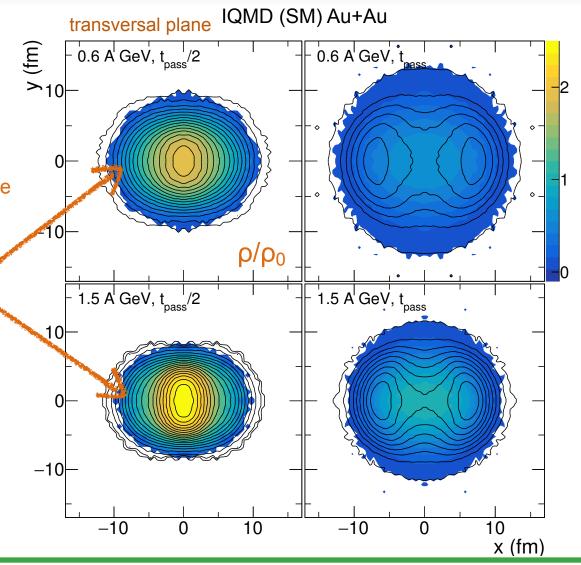


We select now fast moving particles in the transverse direction at mid-rapidity:

|y0| < 0.2, ut0 > 0.4 (used by the FOPI collaboration for the v2 investigation) in color. Compared to all (black contours). At full overlap:

 the innermost participants = a dense almond shaped core, <u>out-of-plane</u> elongated, compression is highest.

 the outermost participants = more dilute, extending <u>in-plane</u>, aligned with the spectator distribution.



We select now fast moving particles in the transverse direction at mid-rapidity:

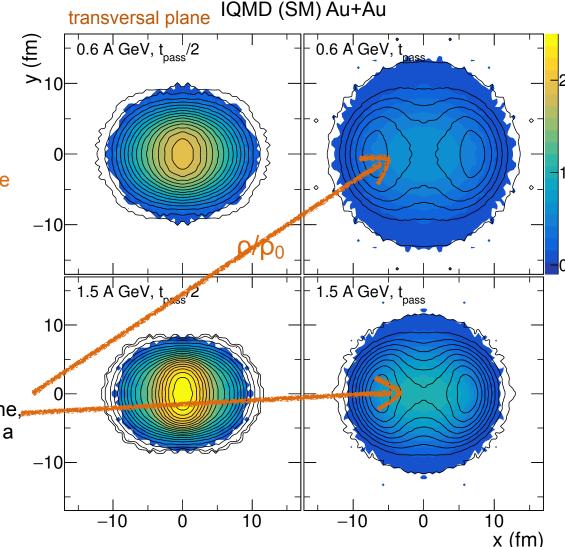
|y0| < 0.2, ut0 > 0.4 (used by the FOPI collaboration for the v2 investigation) in color. Compared to all (black contours). At full overlap:

- the innermost participants = a dense almond shaped core, <u>out-of-plane</u> elongated, compression is highest.
- the outermost participants = more dilute, extending <u>in-plan</u>e, aligned with the spectator distribution.

At passing time, the <u>innermost</u> (compressed) participants expand in-plane, but not with enough pressure to produce a positive elliptic flow v2 (seen later), in contrast to higher bombarding energies

HELMHOLTZ

ASSOCIATION



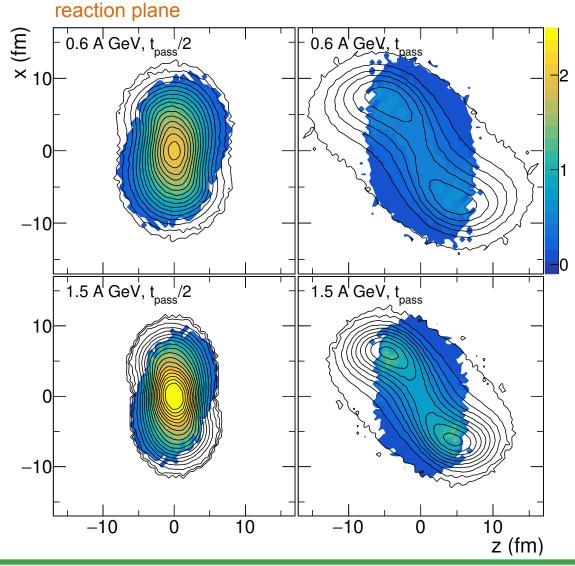
Formation of an in-plane ridge between the bulk of the spectators.

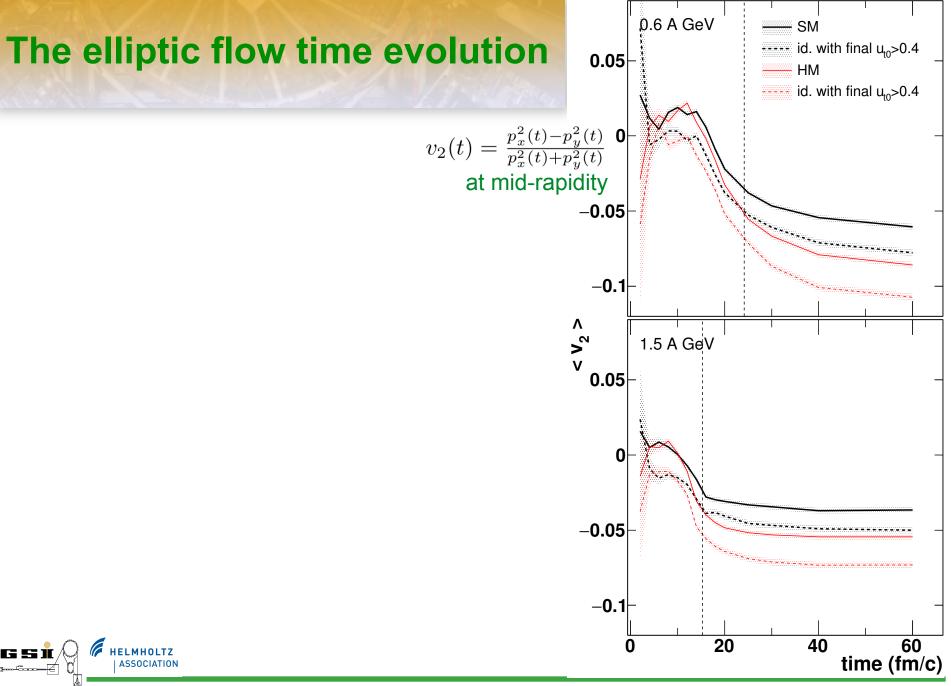
Incident energy \nearrow \Rightarrow ridge & initial almond core density \nearrow

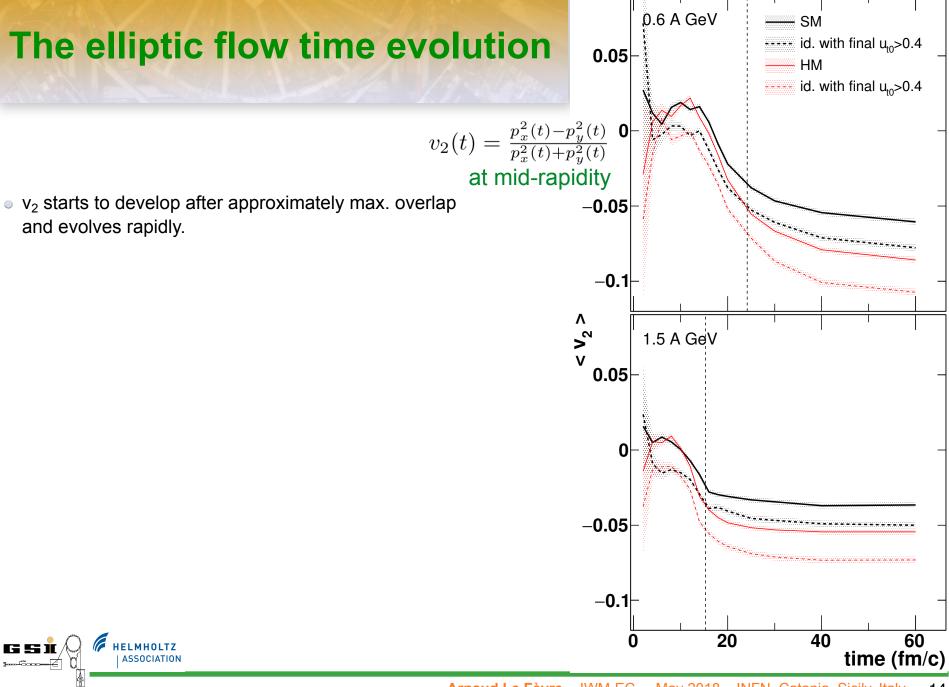
HELMHOLTZ

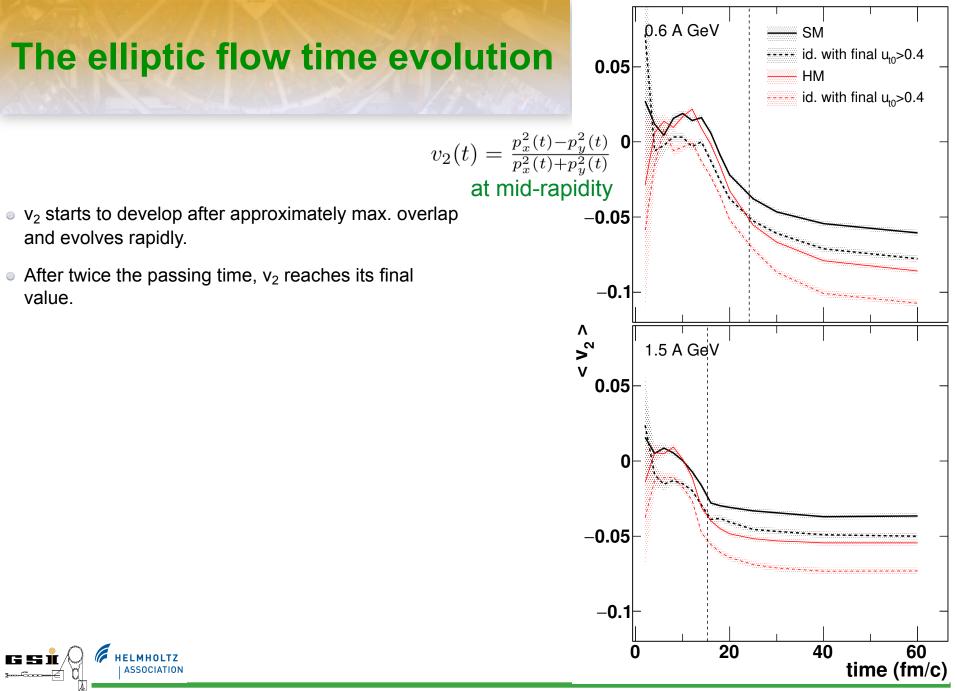
ASSOCIATION

rs s ř

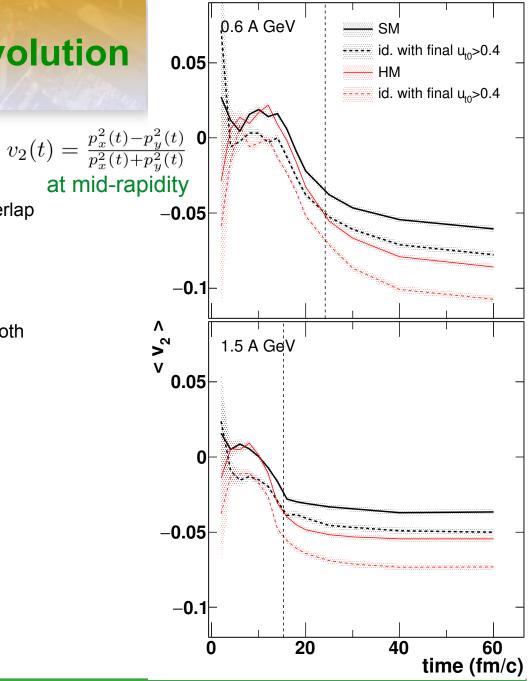




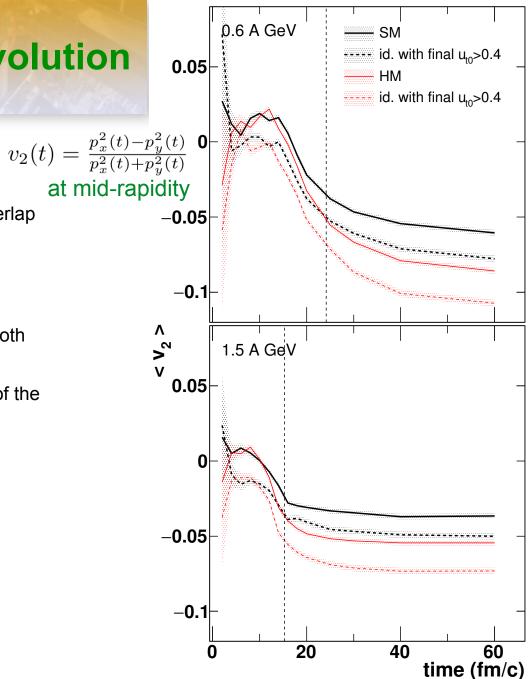




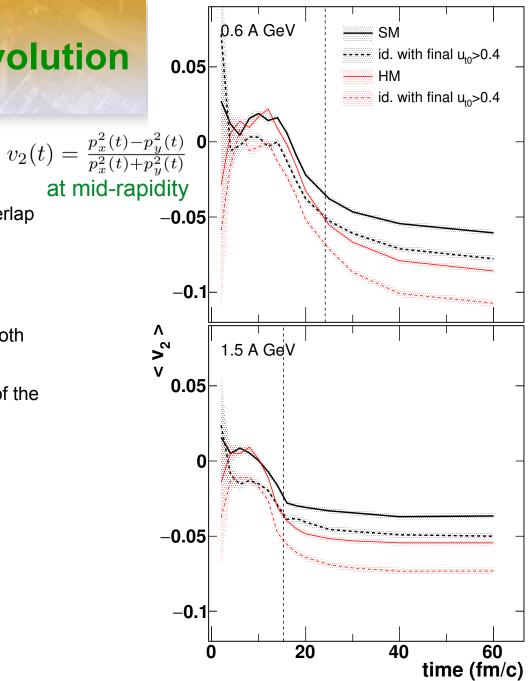
- v₂ starts to develop after approximately max. overlap and evolves rapidly.
- After twice the passing time, v₂ reaches its final value.
- Negative for most of the collision times and for both energies.



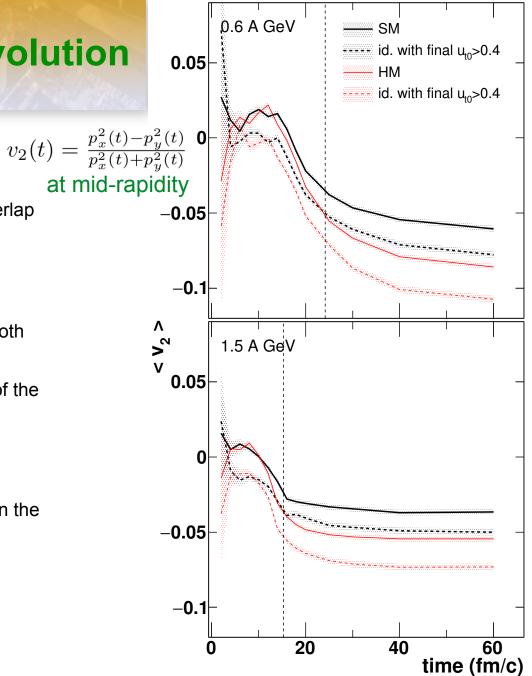
- v₂ starts to develop after approximately max. overlap and evolves rapidly.
- After twice the passing time, v₂ reaches its final value.
- Negative for most of the collision times and for both energies.
- But a tendency to be positive in the early stage of the collision.



- v₂ starts to develop after approximately max. overlap and evolves rapidly.
- After twice the passing time, v₂ reaches its final value.
- Negative for most of the collision times and for both energies.
- But a tendency to be positive in the early stage of the collision.
- With fastest protons (ut0 > 0.4) v₂ is higher and always negative

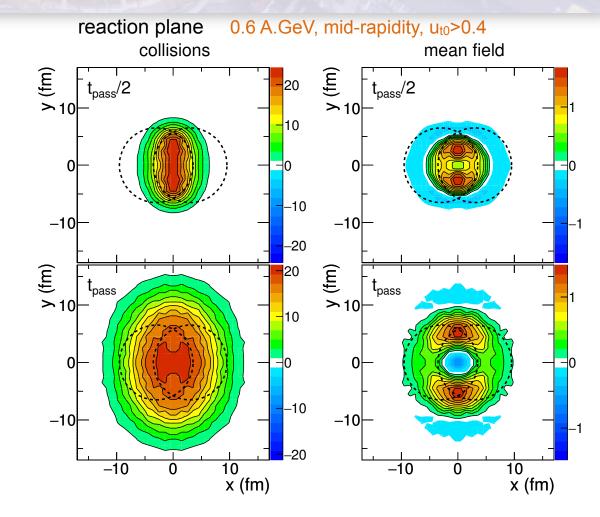


- v₂ starts to develop after approximately max. overlap and evolves rapidly.
- After twice the passing time, v₂ reaches its final value.
- Negative for most of the collision times and for both energies.
- But a tendency to be positive in the early stage of the collision.
- With fastest protons (ut0 > 0.4) v₂ is higher and always negative
- SM vs HM: v₂ at mid-rapidity depends strongly on the EoS; effect enhanced for fastest protons.



An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

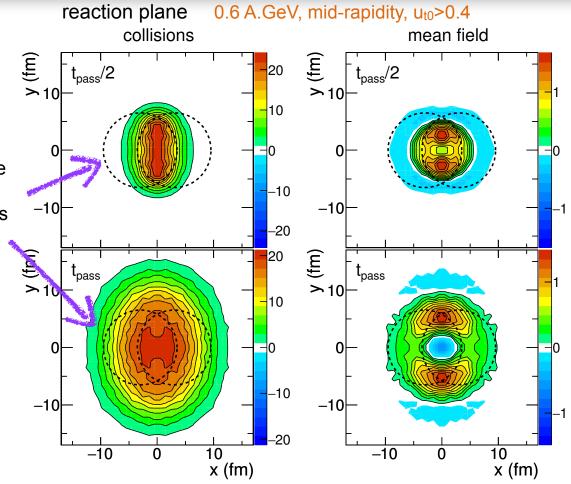
$$\langle \Delta P_t^o(t)
angle = \langle \boldsymbol{\Delta} \boldsymbol{P_t}(t) \cdot \frac{\boldsymbol{p_{final}}}{|\boldsymbol{p_{final}}|}$$



An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

$$\langle \Delta P_t^o(t) \rangle = \langle \Delta P_t(t) \cdot \frac{p_{final}}{|p_{final}|} \rangle$$

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone ⇒ this zone of violent collisions expands rapidly keeping its almond shape.

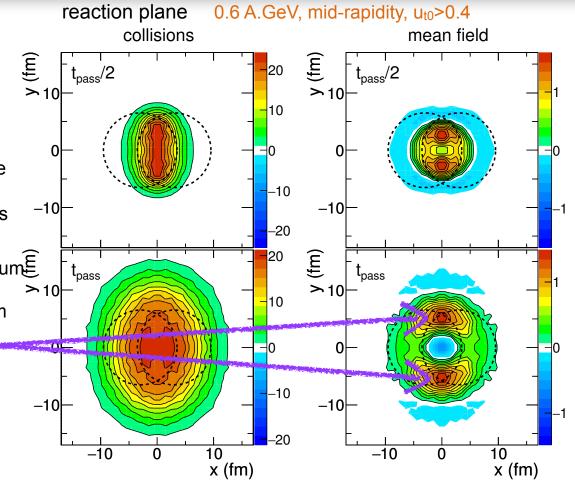


An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

$$\langle \Delta P_t^o(t) \rangle = \langle \boldsymbol{\Delta P_t}(t) \cdot \frac{\boldsymbol{p_{final}}}{|\boldsymbol{p_{final}}|} \rangle$$

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone \Rightarrow this zone of violent collisions expands rapidly keeping its almond shape.

From mean field: large out-of plane momentum transfer at the tips of the almond shape because here nucleons are between vacuum and the central densest zone \Rightarrow highest density gradient, largest force \Rightarrow move in y-direction out of the overlap zone.



An observable to quantify their respective contribution to it: transverse momentum modification induced projected on the direction of the final momentum:

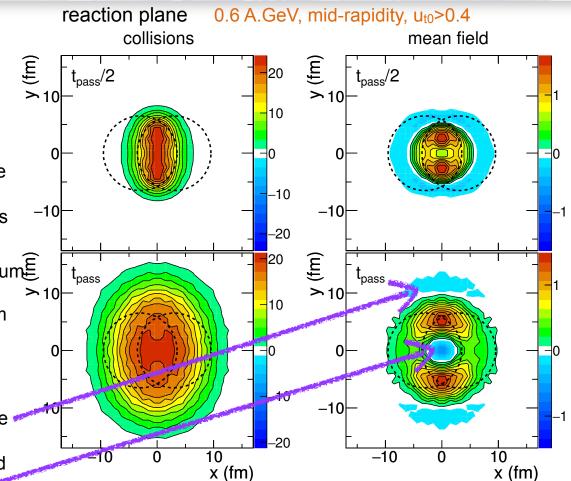
$$\langle \Delta P_t^o(t) \rangle = \langle \boldsymbol{\Delta P_t}(t) \cdot \frac{\boldsymbol{p}_{final}}{|\boldsymbol{p}_{final}|} \rangle$$

From collisions: about an order of magnitude larger than from mean field, set fast in the overlap zone \Rightarrow this zone of violent collisions expands rapidly keeping its almond shape.

From mean field: large out-of plane momentum transfer at the tips of the almond shape because here nucleons are between vacuum and the central densest zone \Rightarrow highest density gradient, largest force \Rightarrow move in y-direction out of the overlap zone.

Outer blue areas < attractive potential of the </

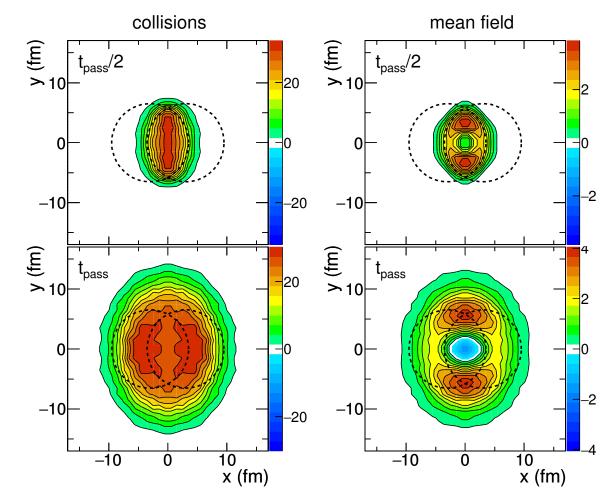
Inner blue area: inner density decreases and attraction by the moving spectators ⇒ fransverse velocity decreases



1.5 A.GeV, mid-rapidity, ut0>0.4

Little difference between 0.6 AGeV and at 1.5 AGeV.

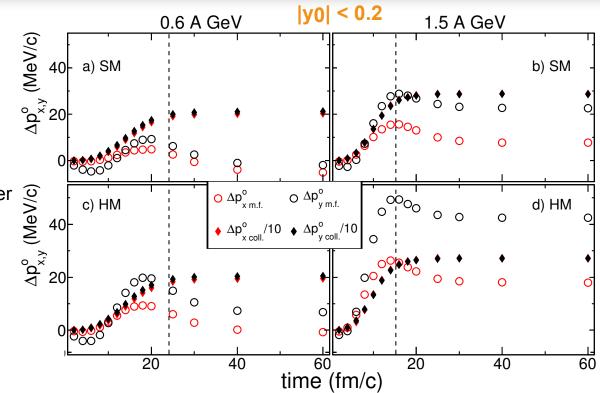
rs si ii

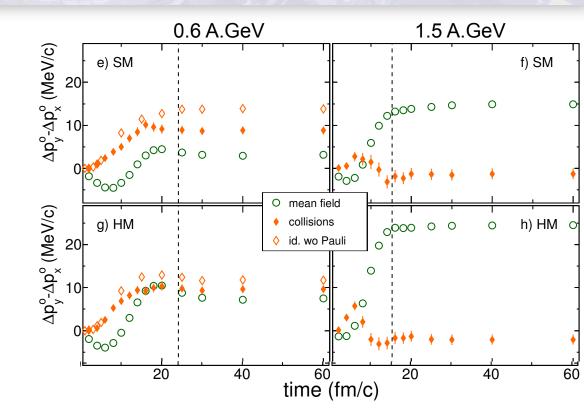


v2 directly related to its anisotropy in x and y.

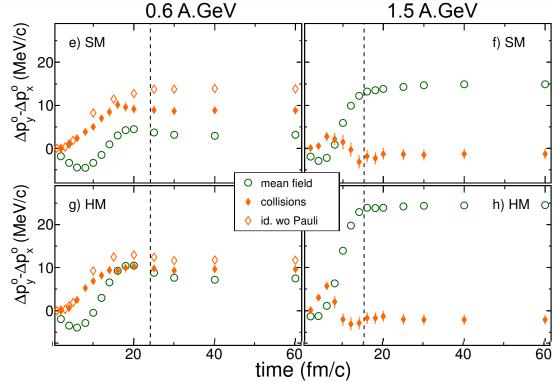
$$\langle \Delta P_i^o(t) \rangle = \langle \Delta P_i(t) \cdot \frac{p_{i,final}}{|p_{i,final}|} \rangle$$

Collision contribution: always much larger than that of mean field.





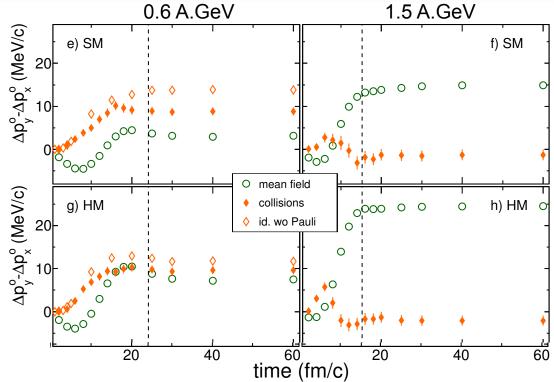
Excess in the y- direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.



Excess in the y- direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

K₀ has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.

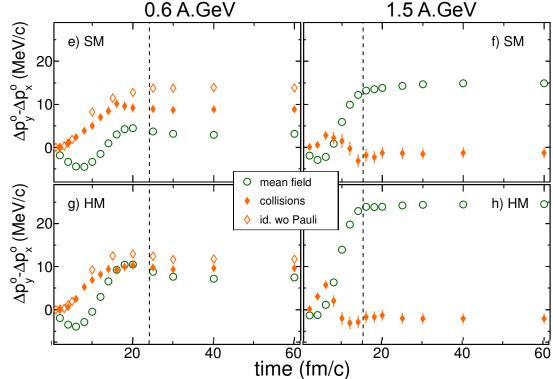
HELMHOLTZ



Excess in the y- direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

 K_0 has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.

Pauli blocking: quenches v₂<0 due to collisions, from the densest phase of the collisions, stronger for SM because larger densities are reached.



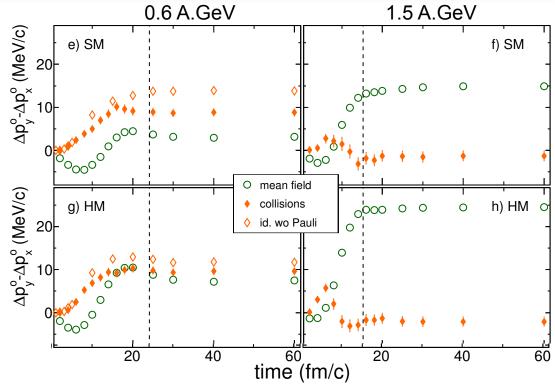
Excess in the y- direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

 K_0 has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.

Pauli blocking: quenches v₂<0 due to collisions, from the densest phase of the collisions, stronger for SM because larger densities are reached.

 \Rightarrow Without Pauli blocking, there would be a collisional contribution to the EoS dependence of v_{2} .

HELMHOLTZ



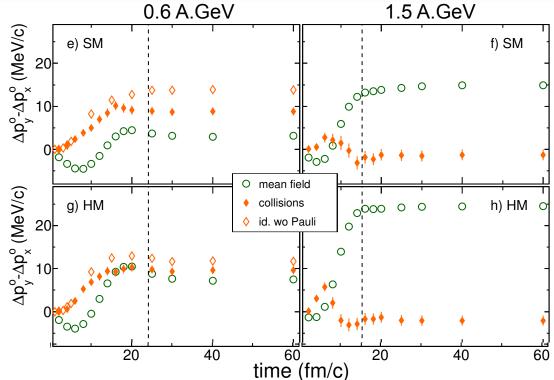
Excess in the y- direction: clearly visible for the mean field AND the collisions. For the collisions: becomes smaller with higher projectile velocity until it vanishes at 1.5 AGeV incident energy.

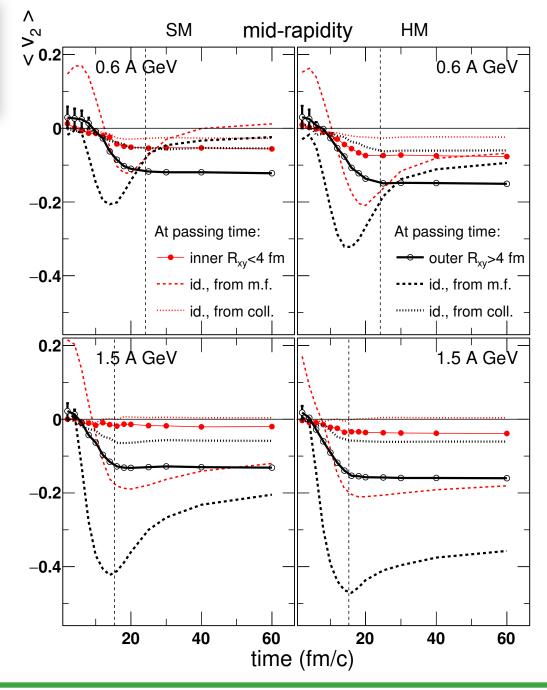
K₀ has no visible influence on the amplitude of the collisional out-of-plane momentum excess because the number of collisions is almost unchanged by the choice of the EoS.

Pauli blocking: quenches v₂<0 due to collisions, from the densest phase of the collisions, stronger for SM because larger densities are reached.

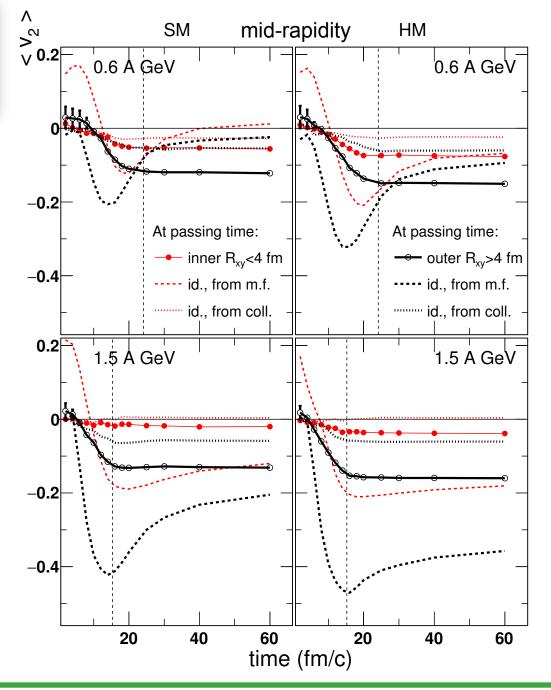
 \Rightarrow Without Pauli blocking, there would be a collisional contribution to the EoS dependence of v_2 .

Mean field contribution to $v_2 < 0$: dependent on incident energy and K₀: moderate at 0.6 AGeV with the soft EoS, contributing to only 30% of the total $\Delta P_y^0 - \Delta P_x^0$, very strong and dominating at 1.5 AGeV with the stiffer EoS.



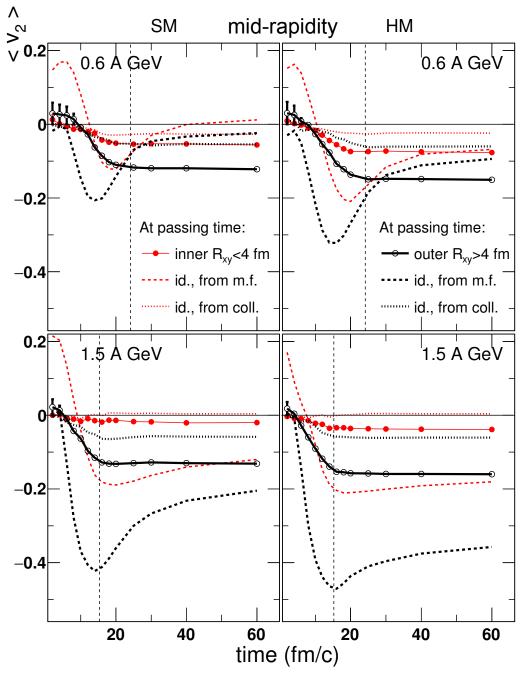


Outermost nucleons ($R_{XY} > 4 \text{ fm}$) = the main source of the overall negative v_2 :



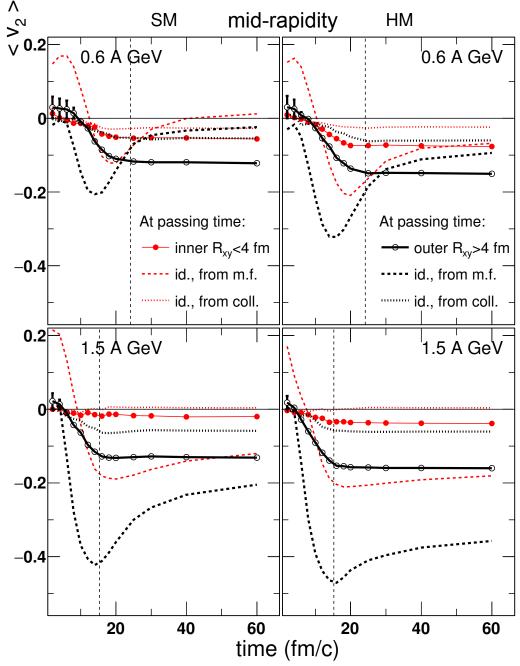
Outermost nucleons ($R_{XY} > 4 \text{ fm}$) = the main source of the overall negative v_2 :

* From collisions: the early in-plane screening by the spectators ($\rightarrow v_2 < 0$) affects only the outermost nucleons, whereas the collisions of the inner nucleons create a nearly azimuthally isotropic distribution ($v_2 \approx 0$).



Outermost nucleons ($R_{XY} > 4 \text{ fm}$) = the main source of the overall negative v_2 :

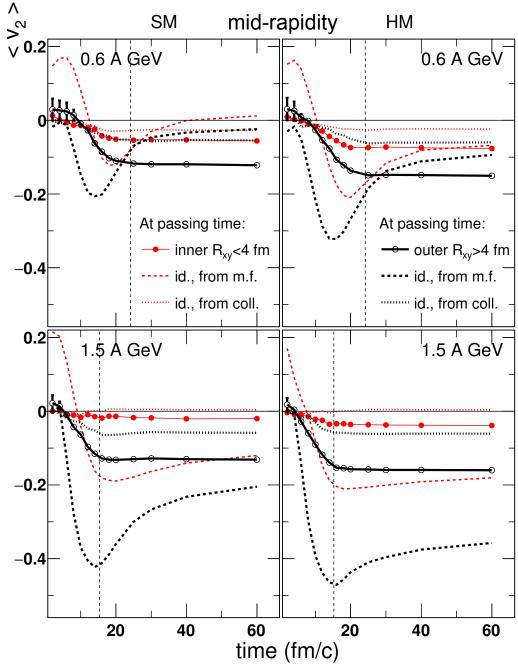
- * From collisions: the early in-plane screening by the spectators (\rightarrow v₂<0) affects only the outermost nucleons, whereas the collisions of the inner nucleons create a nearly azimuthally isotropic distribution (v₂ ≈ 0).
- * From the mean field: density gradient larger at the tips of the overlapping zone (outermost nucleons); decreases later due to the formation of the in-plane ridge

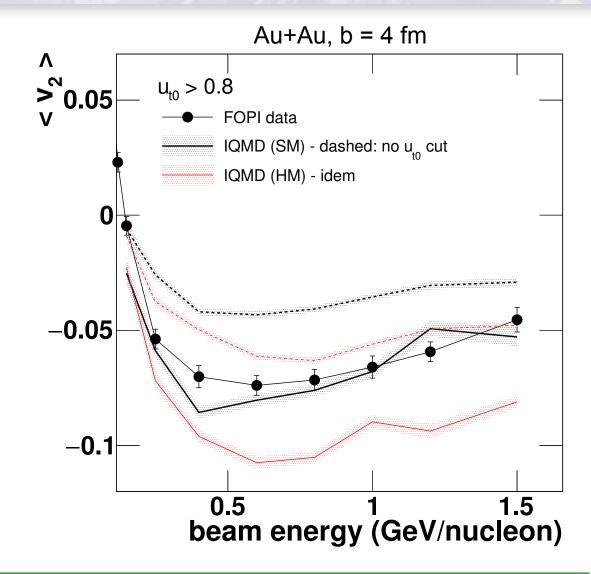


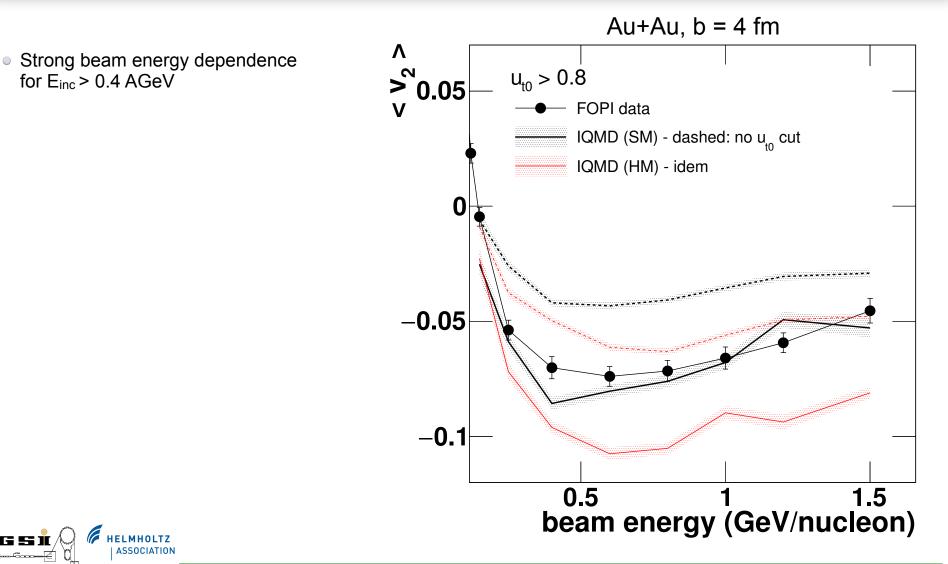
Outermost nucleons ($R_{XY} > 4 \text{ fm}$) = the main source of the overall negative v_2 :

- * From collisions: the early in-plane screening by the spectators (\rightarrow v₂<0) affects only the outermost nucleons, whereas the collisions of the inner nucleons create a nearly azimuthally isotropic distribution (v₂ ≈ 0).
- * From the mean field: density gradient larger at the tips of the overlapping zone (outermost nucleons); decreases later due to the formation of the in-plane ridge
- * Asymptotically, the mean field = the main origin of the overall out-of-plane v_2 , apart from reactions at energies below 1 AGeV where the collisions contribute equally when the nuclear matter EoS is soft, i.e. the number of collisions is large.

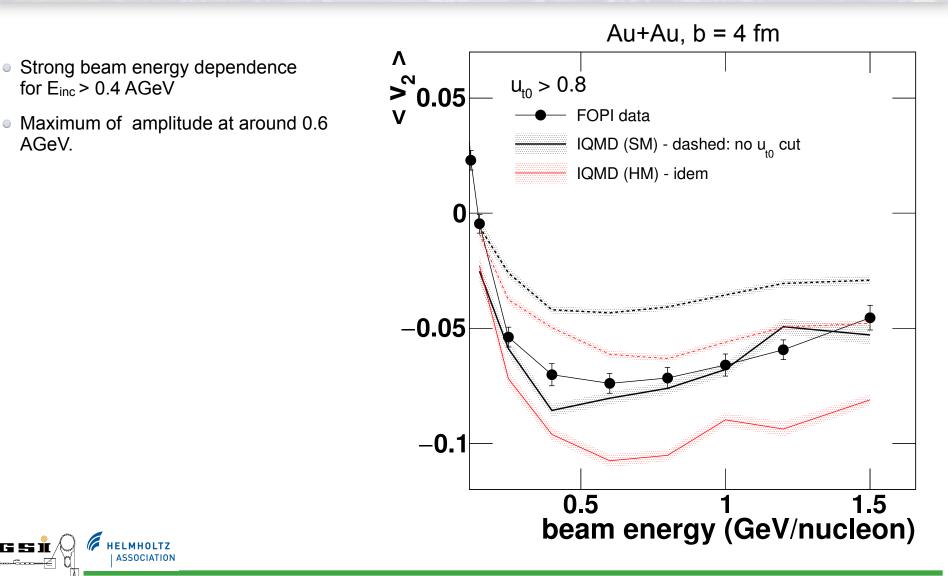
HELMHOLTZ





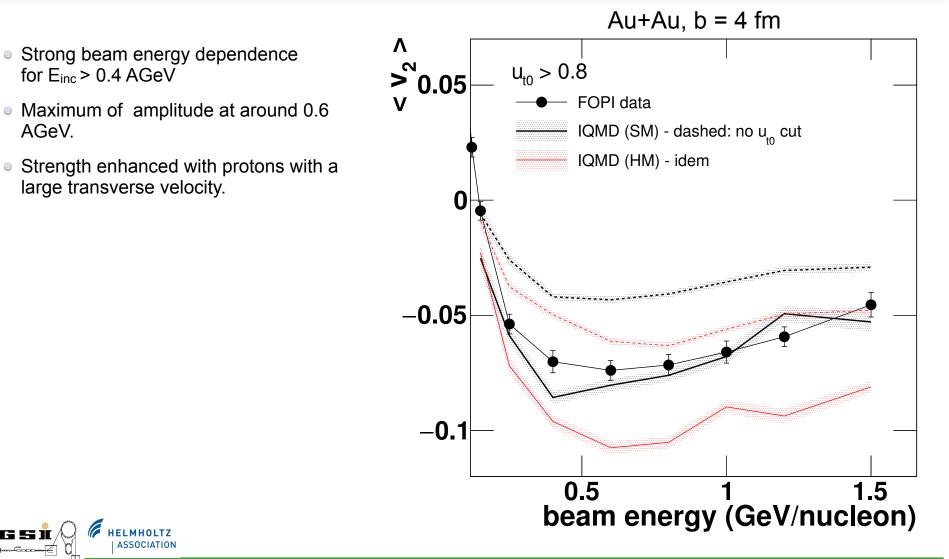


Arnaud Le Fèvre - IWM-EC – May 2018 – INFN, Catania, Sicily, Italy 20



Arnaud Le Fèvre - IWM-EC – May 2018 – INFN, Catania, Sicily, Italy 20

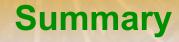
AGeV.



Arnaud Le Fèvre - IWM-EC – May 2018 – INFN, Catania, Sicily, Italy

- Au+Au, b = 4 fmΛ **>**0.05 $u_{t0} > 0.8$ FOPI data IQMD (SM) - dashed: no u, cut IQMD (HM) - idem 0 -0.05 -0.1 0.5 1.5 beam energy (GeV/nucleon)
- Strong beam energy dependence for E_{inc} > 0.4 AGeV
- Maximum of amplitude at around 0.6 AGeV.
- Strength enhanced with protons with a large transverse velocity.
- Comparison with FOPI observations (protons with ut₀ > 0.8, same impact parameter) ⇒ good agreement (amplitude and evolution) using the soft (SM) EoS.

ELMHOLTZ



Summary:

★ The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

Summary:

★ The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

* the collisions of participant nucleons with the spectator matter

Summary:

★ The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- the acceleration of participants in the mean field.

Summary:

* The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- * the acceleration of participants in the mean field.

* The collisional component of v₂ is almost independent of the EoS (due to Pauli blocking),

Summary:

* The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- the acceleration of participants in the mean field.
- * The collisional component of v2 is almost independent of the EoS (due to Pauli blocking),
- The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).

Summary:

* The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- the acceleration of participants in the mean field.
- * The collisional component of v2 is almost independent of the EoS (due to Pauli blocking),
- The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).

* At largest out-of-plane emission (0.6 AGeV \leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,

Summary:

* The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- the acceleration of participants in the mean field.
- * The collisional component of v2 is almost independent of the EoS (due to Pauli blocking),
- The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
- * At largest out-of-plane emission (0.6 AGeV \leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
- * In all other cases the contribution of the mean field dominates.

Summary:

* The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- the acceleration of participants in the mean field.
- * The collisional component of v2 is almost independent of the EoS (due to Pauli blocking),
- The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
- * At largest out-of-plane emission (0.6 AGeV \leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
- In all other cases the contribution of the mean field dominates.

Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density gradient in y-direction

Summary:

* The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- the acceleration of participants in the mean field.
- * The collisional component of v2 is almost independent of the EoS (due to Pauli blocking),
- The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
- * At largest out-of-plane emission (0.6 AGeV \leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
- In all other cases the contribution of the mean field dominates.
- Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density gradient in y-direction
- * This effect is amplified if one selects particles with a high transverse velocity.

Summary:

* The elliptic flow observed in the reactions around $E_{kin} \approx 1$ AGeV for protons at mid-rapidity ($|y_0| < 0.2$) has two origins:

- * the collisions of participant nucleons with the spectator matter
- the acceleration of participants in the mean field.
- * The collisional component of v2 is almost independent of the EoS (due to Pauli blocking),
- The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS (SM).
- * At largest out-of-plane emission (0.6 AGeV \leftrightarrow max. stopping), for a soft EoS, collisional and mean field contributions are about equal,
- In all other cases the contribution of the mean field dominates.
- Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density gradient in y-direction
- * This effect is amplified if one selects particles with a high transverse velocity.
- The calculations with a soft EoS (SM) are in better agreement with the experimental data than that with a hard equation of state (HM).

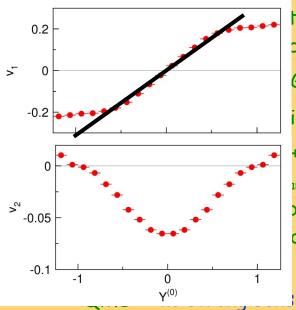
Thank you for your attention!

Introduction

- Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

 - KaoS (1990's), C+C, Au+Au, K⁺ yields -> 'soft' EOS. But:
 - kaons rare at Ebeam=0.8 A.GeV (max. sensitivity to the EOS).
 - all 'bulk' observables (multiplicities, clusterisation, stopping, flow) under control in the transport model ?
 - EoS (1996), Au+Au @ 0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus QMD -> no strong sensitivity on the nuclear incompressibility K₀.
 - FOPI (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport codes -> 'no strong constraint on the EOS can be derived at this stage'.
 - BEVALAC & AGS accelerators, proton flows versus transport theories -> K₀ = 167-200 MeV (soft) from V₁, K₀ = 300 MeV (semi-stiff) from V₂ -> contradictions.

Introduction



- th laboratories, heavy ion collisions over a wide range of incident compositions.
- GeV 🗲 some kind of a clock is available (sound velocity versus interaction).
- +Au, K⁺ yields -> 'soft' EOS. But: m=0.8 A.GeV (max. sensitivity to the EOS). ples (multiplicities, clusterisation, stopping, flow) under control in del ?

0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus litivity on the nuclear incompressibility K₀.

- FOPI (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport codes -> 'no strong constraint on the EOS can be derived at this stage'.
- BEVALAC & AGS accelerators, proton flows versus transport theories -> K₀ = 167-200 MeV (soft) from V₁, K₀ = 300 MeV (semi-stiff) from V₂ -> contradictions.

The elliptic flow

