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The elliptic flow (v2) at midrapidity, originally
called out-of-plane emission or squeeze-out,
has attracted a lot of attention during the last
years.
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A Introduction

The elliptic flow (v2) at midrapidity, originally

called out-of-plane emission or squeeze-out, 0.1
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m Introduction

The elliptic flow (v2) at midrapidity, originally

called out-of-plane emission or squeeze-out,
has attracted a lot of attention during the last
years.

It has been predicted in hydrodynamical

simulations of heavy ion reactions
— H. Stoecker et al., Phys. Rev. C 25 (1982) 1873.

— G. Buchwald et al., Phys. Rev. C 28 (1983) 2349.

— H. Stoecker and W. Greiner, Phys. Rept. 137 (1986) 277.
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Introduction

The elliptic flow (v2) at midrapidity, originally

called out-of-plane emission or squeeze-out, 01—
has attracted a _ o
years. Flows at high density in heavy-ion collisions
It has been pre
dN N,
simulations of | —(yapt)=—°(1+22"n COS"(‘P‘%)\% Vv e L
d((l) _¢R) 2n n=1 } Squeeze-out 2
— H. Stoecker et al., P! _
Y = rapidity RN y .
— G. Buchwald et al., p, = fransverse momentum Reaction pIane/
— H. Stoecker and W.' &g = reaction plane azimuthal angle / copl
.................. j /J/..-..-.. EOS

and has later b v, = ‘side/directed flow’, cos(®-3r) mode i Z Esgos
the Plastic Ball — E877
— H.H. Gutbrod et al V(0 p) = p,—p, / ﬁEEQES
At ultra-relativis =~ P X/ STAR

: Phenix
C(.entrallty depet ‘Elliptic flow": cos(2(®-&r)) mode, competition between ‘in-plane’ (V,>0) and Phobos
highly compre§ ‘out-of-plane’ ejection (V<0). TR
v2 > 0 as predic = 3 4
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At lower energies: various experimental groups 0.1
— H. H. Gutbrod et al. Phys. Rev. C 42 (1990) 640. .

— C. Pinkenburg et al. [E895 Collaboration], Phys. Rev. - *
Lett. 83 (1999) 1295 [nucl-ex/9903010].
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At lower energies: various experimental groups
— H. H. Gutbrod et al. Phys. Rev. C 42 (1990) 640.

— C. Pinkenburg et al. [E895 Collaboration], Phys. Rev.
Lett. 83 (1999) 1295 [nucl-ex/9903010].

and later the FOPI collaboration

— W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A
876 (2012) 1

= a negative v2 coefficient up to Einc = 6 AGeV
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At lower energies: various experimental groups 0.1
— H. H. Gutbrod et al. Phys. Rev. C 42 (1990) 640. .

— C. Pinkenburg et al. [E895 Collaboration], Phys. Rev. LV
Lett. 83 (1999) 1295 [nucl-ex/9903010].

and later the FOPI collaboration 0.05 - i ]

¢
— W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A v ¢ u
876 (2012) 1 .

_ - N A in-plane
= a negative v2 coefficient up to Enc*6AGevV > OfF_
: - Y out-of- v FOPI
= with a minimum at around 0.4-0.6 AGeV i | ® EOS
— A. Andronic et al. [FOPI Collaboration], Phys. Lett. B plane a E5%
612 (2005) 173.
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. | [ ]
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= The elliptic flow has to be of different origin
at these energies.
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= The elliptic flow has to be of different origin

at these energies. 0.1
It has been suggested in
P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) O O 5
1592 '
= 0
-0.05
-0.1
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= The elliptic flow has to be of different origin

at these energies. 0.1
It has been suggested in
P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) O O 5

1592
that the v, values are negative at low energies
because the compressed matter expands

while the spectator matter is still presentand &N
blocks the in-plane emission = « shadowing ».
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A Introduction

= The elliptic flow has to be of different origin

at these energies. 0.1
It has been suggested in
P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 0.05

1592
that the v, values are negative at low energies
because the compressed matter expands

while the spectator matter is still presentand &

. o . >
blocks the in-plane emission = « shadowing ».

At higher incident energies: the expansion
takes place after the spectator matter has -0.05

passed the compressed zone = vz is
determined by the shape of the overlap region
only = v2 > 0. -0.1
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= The elliptic flow has to be of different origin

at these energies. 0.1
It has beer |Before the collision after the collision
P. Danielewicz, t #
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that the v\ Spectators
because th . ¢
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..... u --.............a. ......I zone S
At higher ir @ 7E S
takes place * 3
passed the Spectator B
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Minimum of v2 & maximum nuclear stopping

with high baryon densities reached.
— W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92,
232301 (2004) 0.1
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A Introduction

Minimum of v2 & maximum nuclear stopping

with high baryon densities reached.
— W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92,

232301 (2004) 0.1
Contrary to higher beam energies: no - Y
convincing experimental evidence that event-
by-event fluctuations contribute to vz between  0.05 [~ . ) 4
0.4 and 2 A GeV. v *
— N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72,011901 B u .
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A Introduction

Minimum of v2 & maximum nuclear stopping

with high baryon densities reached.
— W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92,
232301 (2004)

Contrary to higher beam energies: no
convincing experimental evidence that event-
by-event fluctuations contribute to v2 between

0.4 and 2 A GeV.

— N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72,011901
(2005)

Most probable reasons:
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Minimum of v2 & maximum nuclear stopping

with high baryon densities reached.
— W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92,
232301 (2004)

Contrary to higher beam energies: no
convincing experimental evidence that event-
by-event fluctuations contribute to v2 between
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— N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72,011901
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Most probable reasons:
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Minimum of v2 & maximum nuclear stopping

with high baryon densities reached.
— W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92,
232301 (2004)

Contrary to higher beam energies: no
convincing experimental evidence that event-
by-event fluctuations contribute to v2 between

0.4 and 2 A GeV.

— N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72,011901
(2005)

Most probable reasons:
. interactions with spectator matter
. much longer collision times.
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Minimum of v2 & maximum nuclear stopping

with high baryon densities reached.
— W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92,

232301 (2004) 0.1
Contrary to higher beam energies: no - Y
convincing experimental evidence that event-
by-event fluctuations contribute to vz between  0.05 [~ ) 4
0.4 and 2 A GeV. y °?
— N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72,011901 B .

(2005) ~ A in-plane
Most probable reasons: > Y out-of- Y FOPI

« interactions with spectator matter L plane 1 ES

. much longer collision times. I m E877
At even lower incident energies: v2 becomes -0.05 - Jl . CI\J]ELTSI)ES
positive again: attractive NN forces outweigh v *# * STAR
the repulsive NN collisions. -y o phenx
—J. Lukasik et al., Phys. Lett. B 608 (2005) 223.

_O 1 ll 1 1 lllllll 1 1 lllllll 1 1 lllllll 1 1 lllllll 1 1 lllllll 1 11

— M. Zheng et al., Phys. Rev. Lett. 83 (1999)
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A The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD)
approach have been published in
— J. Aichelin, Phys. Rept. 202 (1991) 233.

— C. Hartnack et al., Phys. Rept. 510 (2012) 119
— C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured
in the incident energy region under consideration are

published in

— W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A
876 (2012) 1

Here, we quote only how this approach allows for an
exploration of the nuclear EoS

Nucleons are represented as Gaussian wave functions ->
single-particle Wigner density:

fi(r,p,t) = 31713 e~ 7 (r—ri(t))? o~ sz (P—pi(1))?
-

The total one-body Wigner density is the sum of the
Wigner densities of all nucleons
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The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) The potential consists of several terms:

approach have been published in V(ri,rj, pi, Pj) = G + Voou
— J. Aichelin, Phys. Rept. 202 (1991) 233. _ VSkyrmc T Varuk + Vindi + +Vsym + Vooul
— C. Hartnack et al., Phys. Rept. 510 (2012) 119 =110(r; — I'j) + t20(r; — rj),(ﬂ_l(ri) +
_ C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151 s exp{—|ri —rj|/p} n
) ry —ri|/p
Comparisons to experimental bench-mark data measured 5 i sl 9
in the incident energy region under consideration are t4ln®(1 + t5(ps — p3)°)o(ri — 15) +
published in 1 i Z:7.:e>
t(;)—Tngjé(rl — I‘j) + |r' _Jr.| .
— W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A Qo ! J
876 (2012) 1 Convolution of the distribution functions fi and f; — single-
_ particle potential (« mean-field ») = Vgyyrme + Vi (local
Here, we quote only how this approach allows for an interactions + momentum dependence)
exploration of the nuclear EoS : : py :
Pint Pint 2 2 Pint
. . i(ri,t) = Pint ) 451 ( A 1) Pint
Nucleons are represented as Gaussian wave functions Uilrs,t) = « < £0 >+ﬁ ( Po ) ol (e (Ap)+ ( £0 )
single-particle Wigner density: In nuclear matter t1, to, t4, ts uniquely related a, B, 8, and €
€ and © : given by fits to the optical potential extracted from
filr,p,t) = 1 o 1 (r=ri(t)? - sz (P—pi(1))? elastic scattering data in pA collisions.
LA 13 h3 a, B, vy : 2 are constrained by volume energy has a
minimum of E/A(py) = —-16 MeV at p.
The total one-body Wigner density is the sum of the M , ( o2 ) Y
Wigner densities of all nucleons a (MeV) §(MeV) v 0 (MeV) e (mer ) K (MeV)

SM -390 320  1.14 1.57 500 200

Gsn% é LT, HM  -130 59 2.09 157 500 376
6
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The Quantum Molecular Dynamics approach

Details of the Quantum Molecular Dynamics (QMD) The potential consists of several terms:

approach have been published in V(ri,rj, pi, Pj) = G + Voou
— J. Aichelin, Phys. Rept. 202 (1991) 233. _| VSkyrmc - Vas -+ Vindi + +Vsym + Veoul
— C. Hartnack et al., Phys. Rept. 510 (2012) 119 =t16(r; — I'j) + t20(r; — rj),(ﬂ_l(ri) -
_ C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151 s exp{—|ri —rj|/p} n
) ri —Tr;|/p
Comparisons to experimental bench-mark data measured 5 =i/ o
in the incident energy region under consideration are t4ln®(1 + t5(ps — p3)°)o(ri — 15) +
published in ¢ 1 TiTjé( )+ ZZ-Z].62
64313 ry — I‘j —
— W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A o T rJ|
876 (2012) 1 Convolution of the distribution functions fi and f; — single-
Here, we quote only how this approach allows for an particle potential (« mean-field ») = Vsiyme * Vma (local
» We g y PP interactions + momentum dependence)
exploration of the nuclear EoS : ) ~ ,
Pint Pint 2 2 Pint
| | i(ri,t) = Pint ) 461n? (= (A 1) (2
Nucleons are represented as Gaussian wave functions Uilri, ) = & < Po >+ﬁ ( Po ) oln” (e (Ap)”+ ( Po )
single-particle Wigner density: In nuclear matter t1, to, t4, ts uniquely related a, B, §, and ¢
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ion of State

Complete shape of va(yo):
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Elliptic flow at mid-rapidity:
“the strongest sensitivity to the Nuclear Equation of State
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A. Le Fevre et al., Nucl. Phys. A 945 (2016) 112.
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Survey of the reaction
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Survey of the reaction

Only protons are considered in the
following, Au+Au with b=6 fm as
illustration

z: beam direction

X: impact parameter direction

y: perpendicular to reaction plane
tpass = passing time

Central (participant) matter is highly
compressed at max. overlap (t = 0.5tpass).

Projectile and target remnants stay connected for

longer than tpass by a ridge with a quite high particle

density. This ridge will disintegrate when projectile
and target remnants separate further.

The importance of this ridge can be seen in the zy,
plane at max. overlap — the highest density at
z=0, in the ridge.
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AQsM-HM

at tpass

Survey of the reaction
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AQsM-HM
Survey of the reaction

The choice of the EoS influences the reaction scenario

0.6 A GeV

1.5AGeV

at tpass 10

predicted by the model = reflected by the difference (SM-HM)
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of the proton densities projected onto the ij plane,
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Density of protons in the geometrical overlap region of projectile
and target: higher for a soft EoS.
At larger distances from the reaction center: higher density for a

hard EoS ©oF

At 0.6 AGeV: this surplus in the density for a hard EoS is Iarger//:z

in x-direction, but it becomes rather isotropic at 1.5 AGeV
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AQsM-HM

at tpass

Survey of the reaction

The choice of the EoS influences the reaction scenario
predicted by the model = reflected by the difference (SM-HM)
of the proton densities projected onto the ij plane,

Api= pijSM - pinM (even’[_1fm_2 )

Density of protons in the geometrical overlap region of projectile
and target: higher for a soft EoS.

At larger distances from the reaction center: higher density for a
hard EoS

At 0.6 AGeV: this surplus in the density for a hard EoS is larger
in x-direction, but it becomes rather isotropic at 1.5 AGeV

The excess in x-direction has its origin in the in-plane flow of the

spectator matter expressed by a finite directed flow (v1):
v1 (hard) >> v1 (soft)
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Survey of the reaction

AQsM-HM

at tpass

The choice of the EoS influences the reaction scenario
predicted by the model = reflected by the difference (SM-HM)
of the proton densities projected onto the ij plane,

Density of protons in the geometrical overlap region of projectile

Api= Pi

and target: higher for a soft EoS.
At larger distances from the reaction center: higher density for a

hard EoS

SM

_ p,HM

(event_1fm_2 )

At 0.6 AGeV: this surplus in the density for a hard EoS is larger
in x-direction, but it becomes rather isotropic at 1.5 AGeV

The excess in x-direction has its origin in the in-plane flow of the

spectator matter expressed by a finite directed flow (v1):
v1 (hard) >> v1 (soft)

In y-direction the surplus in density of the hard EoS is
concentrated at around z=0, being less extended but stronger at
higher energies. The emission of these particles is caused by a
stronger density gradient (and hence a stronger force) in y-
direction for a hard (HM) EoS as compared to a soft (SM) one.
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Survey of the reaction

AQsM-HM

at tpass

In velocity space we observe a complementary distribution.
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AQSM-HM L 0.6 A GeV 1.5 A GeV

Survey of the reaction T~ el
(@

0.1

o

> 4

In velocity space we observe a complementary distribution. 1

In the xy plane, the shift of protons in x direction is smaller
for a soft (SM) than for a hard (HM) EoS

(=]
S
S

1

This is due to a smaller acceleration yielding a weaker in- -l
plane flow and hence a smaller velocity in x-direction
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AQsM-HM

>

Survey of the reaction

at tpass

In velocity space we observe a complementary distribution.

In the xy plane, the shift of protons in x direction is smaller
for a soft (SM) than for a hard (HM) EoS

This is due to a smaller acceleration yielding a weaker in-
plane flow and hence a smaller velocity in x-direction

The soft EoS leads also to less stopping ™™
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We select now fast moving particles in
the transverse direction at mid-rapidity:

lyo| < 0.2, ut0 > 0.4 (used by the FOPI

collaboration for the v2 investigation) in
color. Compared to all (black contours).
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We select now fast moving particles in
the transverse direction at mid-rapidity:

—

£
lyo| < 0.2, ut0 > 0.4 (used by the FOPI “'i
collaboration for the v2 investigation) in 10
color. Compared to all (black contours).

At full overlap: 0

* the innermost participants = a densw et

almond shaped core, out-of-plane
elongated, compression is highest:™,

transversal plane
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M

We select now fast moving particles in
the transverse direction at mid-rapidity:

lyo| < 0.2, ut0 > 0.4 (used by the FOPI
collaboration for the v2 investigation) in
color. Compared to all (black contours).

At full overlap:

 the innermost participants = a dense
almond shaped core, out-of-plane
elongated, compression is highest.

e the outermost participants = more
dilute, extending in-plane, aligned
with the spectator distribution.
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A Survey of the reaction

We select now fast moving particles in
the transverse direction at mid-rapidity:

—

£
lyo| < 0.2, ut0 > 0.4 (used by the FOPI ":;
collaboration for the v2 investigation) in 10
color. Compared to all (black contours).

At full overlap:

0
 the innermost participants = a dense
almond shaped core, out-of-plane
elongated, compression is highest. -10

e the outermost participants = more

transversal plane IQMD (SM) Au+Au

L06AGeV.t 2 osAGeVT ' i
pass ~ -

(o

dilute, extending in-plane, aligned
with the spectator distribution.

At passing time, the innermost /’5 )
(compressed) participants expand iN-plane ety

but not with enough pressure to produce a
positive elliptic flow v2 (seen later), in 10

contrast to higher bombarding energies
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Formation of an in-plane ridge
between the bulk of the spectators.

Survey of the reaction

E
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Incident energy ./ = ridge & initial

almond core density
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The elliptic flow time evolution 005 e il yp04

—— HM
----- id. with final u,,>0.4

2(t)—p2(t) 0
t2(t) = Horerto
at mid-rapidity
. Vv, starts to develop after approximately max. overlap —-0.05
and evolves rapidly.
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The elliptic flow time evolution ! e B yp0s
y id. with final u,>0.4

2(t)—p2(t) 0
t2(t) = Horerto
at mid-rapidity
. Vv, starts to develop after approximately max. overlap —-0.05
and evolves rapidly.
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The elliptic flow time evolution e 04
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t2(t) = st
at mid-rapidity
. Vv, starts to develop after approximately max. overlap —-0.05
and evolves rapidly.
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The elliptic flow time evolution

_ pa)-pi(t) O

v2(t) = O
at mid-rapidity

© V, starts to develop after approximately max. overlap
and evolves rapidly.

- After twice the passing time, v, reaches its final
value.

- Negative for most of the collision times and for both
energies.

But a tendency to be positive in the early stage of the
collision.
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The elliptic flow time evolution

_ pa)-pi(t) O

v2(t) = O
at mid-rapidity

.V, starts to develop after approximately max. overlap
and evolves rapidly.

- After twice the passing time, v, reaches its final
value.

- Negative for most of the collision times and for both
energies.

But a tendency to be positive in the early stage of the
collision.

- With fastest protons (utQ > 0.4) vz is higher and
always negative
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The elliptic flow time evolution ! e B yp0s
y id. with final ug>0.4

2(t)—p2(t) O
va(t) = ii&ﬁ%ét;
at mid-rapidity |
.V, starts to develop after approximately max. overlap _0.05-
and evolves rapidly. |

Ry
RS
=
R
S
.....
.......

- After twice the passing time, v, reaches its final

value. —0.1|— | | ________________ | -
| | |
- Negative for most of the collision times and for both A Lo ! | ! |
energies. > 1.5A Ge:v
\V} |

But a tendency to be positive in the early stage of the

0.05- | -
collision. '

- With fastest protons (utQ > 0.4) vz is higher and
always negative

SM vs HM: v, at mid-rapidity depends strongly on the
EoS; effect enhanced for fastest protons.
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An observable to quantify their respective reaction plane 0.6 A.GeV, mid-rapidity, uw>0.4
contribution to it: transverse momentum collisions mean field
modification induced projected on the €
) . : 20
direction of the final momentum: "i 0
(APY()) = (APy(t) - S Limely 10
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0 0
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An observable to quantify their respective
contribution to it: transverse momentum
modification induced projected on the
direction of the final momentum:

(AP? (1)) = (APy(t) - f;;‘—lp

From collisions: about an order of magnitude
larger than from mean field, set fast in the

overlap zone = this zone of violent collisions
expands rapidly keeping its almond shape.
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‘I\ he elliptic flow: collisions versus mean field

An observable to quantify their respective
contribution to it: transverse momentum
modification induced projected on the c
direction of the final momentum: =

o) Pfinal
(AP(1)) = (AP(t) - 1)
|pf’i'n,u,l |

>10

From collisions: about an order of magnitude
larger than from mean field, set fast in the

overlap zone = this zone of violent collisions
expands rapidly keeping its almond shape.
From mean field: large out-of plane momentumg,

transfer at the tips of the almond shape >10
because here nucleons are between vacuum

and the central densest zone = highest

density gradient, largest force = move iny- |

direction out of the overlap zone.
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/ " he elliptic flow: collisions versus mean field

An observable to quantify their respective
contribution to it: transverse momentum
modification induced projected on the c
direction of the final momentum: =

o) Pfinal
(AP(1)) = (AP(t) - 1)
Ipf’i,'n,u,l |

>

From collisions: about an order of magnitude
larger than from mean field, set fast in the

overlap zone = this zone of violent collisions
expands rapidly keeping its almond shape.
From mean field: large out-of plane momentumg,

transfer at the tips of the almond shape >
because here nucleons are between vacuum

and the central densest zone = highest

density gradient, largest force © move in y-
direction out of the overlap zone.

Outer blue areas <= attractive potential of the # O

remnant, deceleration.

reaction plane
collisions

10

10—

10—

Inner blue area: inner density decreases and ="

attraction by the moving spectators =
transverse velocity decreases

20

10

E

>10

0.6 A.GeV, mid-rapidity, uw>0.4

mean field
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'7“ 1€ el Tiow: collisions versus mean tielc

-

1.5 A.GeV, mid-rapidity, uw>0.4

Little difference between 0.6 AGeV collisions mean field
and at 1.5 AGeV.
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v2 directly related to its anisotropy in x
andy.

Pi, final

(AP?(t)) = (APi(1)

. |p'i,fz'nal|

Collision contribution: always much larger ©
than that of mean field.
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Excess in the y- direction: clearly visible for the
mean field AND the collisions. For the collisions:
becomes smaller with higher projectile velocity
until it vanishes at 1.5 AGeV incident energy.

(MeV/c)

0 (o]
y_Apx

Ap

(MeV/c)

0 (o]
y_Apx

Ap

T [ I T I 1 I I ' I
e) SM ! : i) SM
o | i | |
, o o o o OIbOO oo © o
| O’ 1 .l O' 7
0 O’Q ” :‘ A :
. | o
I ” ooo (o] (@) O . !
o o ° A RACATI ' ]
o000” : [P0 Tyet b0 !
: : : L : O mean field : : : ' : ' :
g) HM : + collisions 5000 O O o hyHM o
ok ! 0 id.woPauli | 4 .
o 0 0 |
o+ P ! 2 2" | ]
s Q?’go :6 $ © °l o ]
o . . !
: N o# : .
ogfooo : G0 hmbt 4 4 ¢
20 40 .60 20 40 60
time (fm/c)

S ﬁHELMHOLTz
| ASSOCIATION

Arnaud Le Févre - IWM-EC — May 2018 — INFN, Catania, Sicily, Italy 18



Excess in the y- direction: clearly visible for the
mean field AND the collisions. For the collisions:
becomes smaller with higher projectile velocity
until it vanishes at 1.5 AGeV incident energy.

Ko has no visible influence on the amplitude of
the collisional out-of-plane momentum excess
because the number of collisions is almost
unchanged by the choice of the EoS.

he elliptic flow: collisions versus mean field
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/ " he elliptic flow: collisions versus mean field

reached.

== ﬁHELMHOLTZ
| ASSOCIATION

Excess in the y- direction: clearly visible for the 0.6 A.GeV 1.5A.GeV
mean field AND the collisions. For the collisions: 2 | g " ' gl B YV
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‘I\ he elliptic flow: collisions versus mean field

reached.

of Vo,
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Excess in the y- direction: clearly visible for the 0.6 A.GeV 1.5A.GeV
mean field AND the collisions. For the collisions: 2 | g " ' Ji B YV
becomes smaller with higher projectile velocity 2 20 ! i ! ]
until it vanishes at 1.5 AGeV incident energy. = 6o o o
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/ " he elliptic flow: collisions versus mean field

reached.

of Vo,
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Excess in the y- direction: clearly visible for the | 0.6IA.GeV 1.5 A.GeV |
mean field AND the collisions. For the collisions: 2 | ¢ g T ' g L YV
becomes smaller with higher projectile velocity 2 20 i ! |
until it vanishes at 1.5 AGeV incident energy. = | oo o o
OQ_>< I (}. 0 :<> O ¢ <>__ OOIOOO |
Ko has no visible influence on the amplitude of om0 044 14 ¥ ¢ T 0
isi S 7 ¢ o 0o i :
the collisional out-of-plane momentum excess < %f’ L Qo o OlL oo, ]
because the number of collisions is almost 0_ 000" [Poo "ypet ¢ ¢4 J
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Mean field contribution to v2<0: dependent on
incident energy and Ko: moderate at 0.6 AGeV
with the soft EoS, contributing to only 30% of the
total APy© — APx? , very strong and dominating
at 1.5 AGeV with the stiffer EoS.
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The elliptic flow:
collisions vs mean field
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The elliptic flow:
collisions vs mean field

Outermost nucleons (Rxy > 4 fm) = the main
source of the overall negative v, :

g SM mid-ra

pidity

I0.6 A (;ael\/ |

.
R

i At passing time: S At passing time:
: —e— inner R,y<4 fm T —e—outer R,y>4 fm
—0.4— TR id., fromm.f. || [ id., from m.f. |
L R id., from coll. 4} R id., from coll. -
l | l | M | l |
T = T | T —]
5 1.5A Ge\/
) e |
S -
_0.4_ “‘o‘p". — ““ i ------------- —1
“.E‘o"
L | | | | L | | | |
20 40 60 20 40 60

time (fm/c)

== ﬁHELMHOLTZ
| ASSOCIATION

Arnaud Le Févre - IWM-EC — May 2018 — INFN, Catania, Sicily, Italy

19



N

The elliptic flow: = SM_ mid-rapidty  AM

. . 7 VO.Z—'“I ' | ' |—_ | T | T -
collisions vs mean field : “.“0-6)‘?6" | 0.6 A GeV

Outermost nucleons (Rxy > 4 fm) = the main
source of the overall negative v, :

* From collisions: the early in-plane screening

by the spectators (—v2<0) affects only the 2 | Atpassingtime: L % 7 @ Atpassing time:
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The elliptic flow:
collisions vs mean field

Outermost nucleons (Rxy > 4 fm) = the main
source of the overall negative v, :

* From collisions: the early in-plane screening
by the spectators (—Vv2<0) affects only the
outermost nucleons, whereas the collisions
of the inner nucleons create a nearly
azimuthally isotropic distribution (v2 = 0).

* From the mean field: density gradient larger
at the tips of the overlapping zone
(outermost nucleons); decreases later due
to the formation of the in-plane ridge
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The elliptic flow:
collisions vs mean field

Outermost nucleons (Rxy > 4 fm) = the main
source of the overall negative v, :

* From collisions: the early in-plane screening
by the spectators (—Vv2<0) affects only the
outermost nucleons, whereas the collisions
of the inner nucleons create a nearly
azimuthally isotropic distribution (v2 = 0).

* From the mean field: density gradient larger
at the tips of the overlapping zone
(outermost nucleons); decreases later due
to the formation of the in-plane ridge

* Asymptotically, the mean field = the main
origin of the overall out-of-plane v,, apart
from reactions at energies below 1 AGeV
where the collisions contribute equally when
the nuclear matter EoS is soft, i.e. the
number of collisions is large.
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Ahe elliptic flow: incident energy dependance
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| he elliptic flow: incident energy dependance

Strong beam energy dependence
for Einc> 0.4 AGeV

Maximum of amplitude at around 0.6
AGeV.

Strength enhanced with protons with a
large transverse velocity.

Comparison with FOPI observations
(protons with utQ > 0.8, same impact

parameter) & good agreement (amplitude
and evolution) using the soft (SM) EoS.
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Summary:
< The elliptic flow observed in the reactions around Exin = 1 AGeV for protons at mid-rapidity
(Jyo| < 0.2) has two origins:
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Summary:
< The elliptic flow observed in the reactions around Exin = 1 AGeV for protons at mid-rapidity
(lyo| < 0.2) has two origins:
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 the acceleration of participants in the mean field.
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< The elliptic flow observed in the reactions around Exin = 1 AGeV for protons at mid-rapidity
(lyo| < 0.2) has two origins:
< the collisions of participant nucleons with the spectator matter
 the acceleration of participants in the mean field.
< The collisional component of v» is almost independent of the EoS (due to Pauli blocking),
< The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS

(SM).
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< The elliptic flow observed in the reactions around Exin = 1 AGeV for protons at mid-rapidity
(lyo| < 0.2) has two origins:

< the collisions of participant nucleons with the spectator matter

 the acceleration of participants in the mean field.
< The collisional component of v» is almost independent of the EoS (due to Pauli blocking),
< The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS
(SM).
< At largest out-of-plane emission (0.6 AGeV <« max. stopping), for a soft EoS, collisional and
mean field contributions are about equal,
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< the collisions of participant nucleons with the spectator matter

 the acceleration of participants in the mean field.
< The collisional component of v» is almost independent of the EoS (due to Pauli blocking),
< The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS
(SM).
< At largest out-of-plane emission (0.6 AGeV <« max. stopping), for a soft EoS, collisional and
mean field contributions are about equal,
< In all other cases the contribution of the mean field dominates.
< Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density
gradient in y-direction
< This effect is amplified if one selects particles with a high transverse velocity.
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Summary

Summary:
< The elliptic flow observed in the reactions around Exin = 1 AGeV for protons at mid-rapidity
(lyo| < 0.2) has two origins:

< the collisions of participant nucleons with the spectator matter

 the acceleration of participants in the mean field.
< The collisional component of v» is almost independent of the EoS (due to Pauli blocking),
< The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS
(SM).
< At largest out-of-plane emission (0.6 AGeV <« max. stopping), for a soft EoS, collisional and
mean field contributions are about equal,
< In all other cases the contribution of the mean field dominates.
< Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density
gradient in y-direction
< This effect is amplified if one selects particles with a high transverse velocity.
< The calculations with a soft EoS (SM) are in better agreement with the experimental data than
that with a hard equation of state (HM).
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Thank you for your attention!
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A Introduction

» Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident
energies, system sizes and compositions.

» limited to Epeam<l0 A.GeV 4= some kind of a clock is available (sound velocity versus

participant-spectator interaction).

» KaoS (1990's), C+C, Au+Au, K* yields -> 'soft' EOS. But:
» kaons rare at Epean=0.8 A.GeV (max. sensitivity to the EOS).
» all 'bulk’ observables (multiplicities, clusterisation, stopping, flow) under control in
the transport model ?

» EoS (1996), Au+rAu @ 0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus
QMD -> no strong sensitivity on the nuclear incompressibility Ko.

» FOPT (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport
codes -> 'no strong constraint on the EOS can be derived at this stage'.

» BEVALAC & AGS accelerators, proton flows versus transport theories -> Ko = 167-200
MeV (soft) from Vi, Ko = 300 MeV (semi-stiff) from V2 -> contradictions.
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Introduction

th laboratories, heavy ion collisions over a wide range of incident
compositions.

GeV €= some kind of a clock is available (sound velocity versus
interaction).

+Au, K* yields -> 'soft' EOS. But:

m=0.8 A.GeV (max. sensitivity fo the EOS).

dles (multiplicities, clusterisation, stopping, flow) under control in
del ?

0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus

., __ itivity on the nuclear incompressibility Ko.

» FOPI (2005) Au+rAu @ 0.09-15 A.GeV, Z-=1 elliptic flow, versus 4 different transport
codes -> 'no strong constraint on the EOS can be derived at this stage'.

» BEVALAC & AGS accelerators, proton flows versus transport theories -> Ko = 167-200
MeV (soft) from Vi, Ko = 300 MeV (semi-stiff) from V2 -> contradictions.
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