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called out-of-plane emission or squeeze-out, 
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years. 
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Y = rapidity  
pt = transverse momentum 
ΦR = reaction plane azimuthal angle

’Elliptic flow’:  cos(2(Φ-ΦR)) mode, competition between ‘in-plane’ (V2>0) and 
‘out-of-plane’ ejection (V2<0).

V1 = ‘side/directed flow’, cos(Φ-ΦR) mode

Flows at high density in heavy-ion collisions
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At lower energies: various experimental groups 
– H. H. Gutbrod et al. Phys. Rev. C 42 (1990) 640. 

– C. Pinkenburg et al. [E895 Collaboration], Phys. Rev.  
Lett. 83 (1999) 1295 [nucl-ex/9903010]. 
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P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298 (2002) 
1592 
that the v2 values are negative at low energies 
because the compressed matter expands 
while the spectator matter is still present and 
blocks the in-plane emission = « shadowing ». 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Minimum of v2 ⟺ maximum nuclear stopping 
with high baryon densities reached.
– W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 
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with high baryon densities reached.
– W. Reisdorf et al. [FOPI Collaboration], Phys. Rev. Lett. 92, 

232301 (2004) 

Contrary to higher beam energies: no 
convincing experimental evidence that  event-
by-event  fluctuations contribute to v2 between 
0.4 and 2 A GeV.
– N. Bastid et al. [FOPI Collaboration], Phys. Rev. C 72, 011901 
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At even lower incident energies: v2 becomes 
positive again: attractive NN forces outweigh 
the repulsive NN collisions.
– J. Lukasik et al., Phys. Lett. B 608 (2005) 223.

– M. Zheng et al., Phys. Rev. Lett. 83 (1999)

– P. K. Sahu et al., Nucl. Phys. A 672 (2000) 376 
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Details of the Quantum Molecular Dynamics (QMD) 
approach have been published in 
– J. Aichelin, Phys. Rept. 202 (1991) 233.

– C. Hartnack et al., Phys. Rept. 510 (2012) 119 

– C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151

Comparisons to experimental bench-mark data measured 
in the incident energy region under consideration are 
published in  

– W. Reisdorf et al. [FOPI Collaboration], Nucl. Phys. A  
876 (2012) 1  

Here, we quote only how this approach allows for an 
exploration of the nuclear EoS  

Nucleons are represented as Gaussian wave functions ->  
single-particle Wigner density:  

The total one-body Wigner density is the sum of the 
Wigner densities of all nucleons 
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Nucleons are represented as Gaussian wave functions ->  
single-particle Wigner density:  

The total one-body Wigner density is the sum of the 
Wigner densities of all nucleons 

The potential consists of several terms:  

Convolution of the distribution functions fi and fj ⇾ single-
particle potential (« mean-field ») = VSkyrme + Vmdi (local 
interactions + momentum dependence)  

In nuclear matter t1, t2, t4, t5 uniquely related α, β, δ, and ε 
ε and δ : given by fits to the optical potential extracted from 
elastic scattering data in pA collisions.  
α, β, γ : 2 are constrained by volume energy has a 
minimum of E/A(ρ0) = −16 MeV at ρ0. 
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K  
=  

compression modulus of nuclear matter 
= 

curvature of the volume energy at ρ = ρ0  (for T=0)  
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the strongest sensitivity to the Nuclear Equation of State 
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A. Le Fèvre et al., Nucl. Phys. A 945 (2016) 112. 
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➜ v2n(Ebeam) varies by a factor 
≈1.6, >> measured uncertainty 
(≈1.1) 
➜ clearly favors a ’soft’ EOS. 
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Survey of the reaction
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Only protons are considered in the 
following, Au+Au with b=6 fm as 
illustration  
z: beam direction 
x: impact parameter direction 
y: perpendicular to reaction plane   
tpass = passing time
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Projectile and target remnants stay connected for 
longer than tpass by a ridge with a quite high particle 
density. This ridge will disintegrate when projectile 
and target remnants separate further. 

Central (participant) matter is highly 
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The choice of the EoS influences the reaction scenario 
predicted by the model ⇨  reflected by the difference (SM-HM) 
of the proton densities projected onto the ij plane,  

∆ρij= ρijSM − ρijHM (event−1fm−2 )
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At 0.6 AGeV: this surplus in the density for a hard EoS is larger 
in x-direction, but it becomes rather isotropic at 1.5 AGeV
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At 0.6 AGeV: this surplus in the density for a hard EoS is larger 
in x-direction, but it becomes rather isotropic at 1.5 AGeV
The excess in x-direction has its origin in the in-plane flow of the 
spectator matter expressed by a finite directed flow (v1):  
v1 (hard) >> v1 (soft)
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The excess in x-direction has its origin in the in-plane flow of the 
spectator matter expressed by a finite directed flow (v1):  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In y-direction the surplus in density of the hard EoS is 
concentrated at around z=0, being less extended but stronger at 
higher energies. The emission of these particles is caused by a 
stronger density gradient (and hence a stronger force) in y-
direction for a hard (HM) EoS as compared to a soft (SM) one. 
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In velocity space we observe a complementary distribution. 
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In the xy plane, the shift of protons in x direction is smaller 
for a soft (SM) than for a hard (HM) EoS
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plane flow and hence a smaller velocity in x-direction
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In velocity space we observe a complementary distribution. 
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In the xy plane, the shift of protons in x direction is smaller 
for a soft (SM) than for a hard (HM) EoS

beam

This is due to a smaller acceleration yielding a weaker in-
plane flow and hence a smaller velocity in x-direction

The soft EoS leads also to less stopping
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We select now fast moving particles in 
the transverse direction at mid-rapidity:  

|y0| < 0.2, ut0 > 0.4 (used by the FOPI 
collaboration for the v2 investigation) in 
color. Compared to all (black contours).
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We select now fast moving particles in 
the transverse direction at mid-rapidity:  

|y0| < 0.2, ut0 > 0.4 (used by the FOPI 
collaboration for the v2 investigation) in 
color. Compared to all (black contours).
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We select now fast moving particles in 
the transverse direction at mid-rapidity:  

|y0| < 0.2, ut0 > 0.4 (used by the FOPI 
collaboration for the v2 investigation) in 
color. Compared to all (black contours).
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• the outermost participants = more 
dilute, extending in-plane, aligned 
with the spectator distribution.
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We select now fast moving particles in 
the transverse direction at mid-rapidity:  

|y0| < 0.2, ut0 > 0.4 (used by the FOPI 
collaboration for the v2 investigation) in 
color. Compared to all (black contours).
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• the innermost participants = a dense 
almond shaped core, out-of-plane 
elongated, compression is highest.

At passing time, the innermost 
(compressed) participants expand in-plane, 
but not with enough pressure to produce a 
positive elliptic flow v2 (seen later), in 
contrast to higher bombarding energies
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• the outermost participants = more 
dilute, extending in-plane, aligned 
with the spectator distribution.
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Formation of an in-plane ridge 
between the bulk of the spectators.  

Incident energy ↗ ⇒ ridge & initial 
almond core density ↗ 
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v2 starts to develop after approximately max. overlap 
and evolves rapidly. 
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v2 starts to develop after approximately max. overlap 
and evolves rapidly. 

After twice the passing time, v2 reaches its final 
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v2 starts to develop after approximately max. overlap 
and evolves rapidly. 

After twice the passing time, v2 reaches its final 
value. 
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With fastest protons (ut0 > 0.4) v2 is higher and 
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The elliptic flow time evolution
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v2 starts to develop after approximately max. overlap 
and evolves rapidly. 

After twice the passing time, v2 reaches its final 
value. 

Negative for most of the collision times and for both 
energies.

But a tendency to be positive in the early stage of the 
collision.

With fastest protons (ut0 > 0.4) v2 is higher and 
always negative 

SM vs HM: v2 at mid-rapidity depends strongly on the 
EoS; effect enhanced for fastest protons.
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The elliptic flow: collisions versus mean field

�15

An observable to quantify their respective 
contribution to it: transverse momentum 
modification induced projected on the 
direction of the final momentum:
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The elliptic flow: collisions versus mean field
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An observable to quantify their respective 
contribution to it: transverse momentum 
modification induced projected on the 
direction of the final momentum:
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From collisions: about an order of magnitude 
larger than from mean field, set fast in the 
overlap zone ⇨ this zone of violent collisions 
expands rapidly keeping its almond shape.

reaction plane
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An observable to quantify their respective 
contribution to it: transverse momentum 
modification induced projected on the 
direction of the final momentum:
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From collisions: about an order of magnitude 
larger than from mean field, set fast in the 
overlap zone ⇨ this zone of violent collisions 
expands rapidly keeping its almond shape.
From mean field: large out-of plane momentum 
transfer at the tips of the almond shape 
because here nucleons are between vacuum 
and the central densest zone ⇨ highest 
density gradient, largest force ⇨ move in y-
direction out of the overlap zone. 

reaction plane



Arnaud Le Fèvre -  IWM-EC  – May 2018 – INFN, Catania, Sicily, Italy

The elliptic flow: collisions versus mean field
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An observable to quantify their respective 
contribution to it: transverse momentum 
modification induced projected on the 
direction of the final momentum:
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From collisions: about an order of magnitude 
larger than from mean field, set fast in the 
overlap zone ⇨ this zone of violent collisions 
expands rapidly keeping its almond shape.
From mean field: large out-of plane momentum 
transfer at the tips of the almond shape 
because here nucleons are between vacuum 
and the central densest zone ⇨ highest 
density gradient, largest force ⇨ move in y-
direction out of the overlap zone. 
Outer blue areas ⇦ attractive potential of the 
remnant, deceleration.  
Inner blue area: inner density decreases and 
attraction by the moving spectators ⇨ 
transverse velocity decreases 

reaction plane
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The elliptic flow: collisions versus mean field
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Little difference between 0.6 AGeV 
and at 1.5 AGeV. 
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The elliptic flow: collisions versus mean field
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v2 directly related to its anisotropy in x 
and y.  

Collision contribution: always much larger 
than that of mean field. 
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The elliptic flow: collisions versus mean field
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Excess in the y- direction: clearly visible for the 
mean field AND the collisions. For the collisions: 
becomes smaller with higher projectile velocity 
until it vanishes at 1.5 AGeV incident energy. 
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Excess in the y- direction: clearly visible for the 
mean field AND the collisions. For the collisions: 
becomes smaller with higher projectile velocity 
until it vanishes at 1.5 AGeV incident energy. 

K0 has no visible influence on the amplitude of 
the collisional out-of-plane momentum excess 
because  the number of collisions is almost 
unchanged by the choice of the EoS.
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Excess in the y- direction: clearly visible for the 
mean field AND the collisions. For the collisions: 
becomes smaller with higher projectile velocity 
until it vanishes at 1.5 AGeV incident energy. 

K0 has no visible influence on the amplitude of 
the collisional out-of-plane momentum excess 
because  the number of collisions is almost 
unchanged by the choice of the EoS.

Pauli blocking:  quenches v2<0 due to collisions, 
from the densest phase of the collisions, 
stronger for SM because larger densities are 
reached.  



Arnaud Le Fèvre -  IWM-EC  – May 2018 – INFN, Catania, Sicily, Italy

The elliptic flow: collisions versus mean field

�18

 (
M

e
V

/c
)

o x,
y

p
∆

0

20

40 a) SM

0.6 A GeV

b) SM

1.5 A GeV

 (
M

e
V

/c
)

o x,
y

p
∆

0

20

40

c) HM d) HM

 (
M

e
V

/c
)

o x
p

∆-
o y

p
∆

0

10

20

e) SM f) SM

 (
M

e
V

/c
)

o x
p

∆-
o y

p
∆

0

10

20

g) HM h) HM

co
ll.

N

0

2

4

6

8 i) j)

20 40 60

 (
M

e
V

/c
)

m
a
x.

F

0

10

20

30

40 k)

20 40 60

l)

time (fm/c)

o

x m.f.
p∆

o

y m.f.
p∆

/10o

x coll.
p∆ /10o

y coll.
p∆

mean field

collisions

id. wo Pauli

SM wo Pauli

HM wo Pauli

0.6 A.GeV                           1.5 A.GeV

 (
M

e
V

/c
)

o x,
y

p
∆

0

20

40 a) SM

0.6 A GeV

b) SM

1.5 A GeV

 (
M

e
V

/c
)

o x,
y

p
∆

0

20

40

c) HM d) HM

 (
M

e
V

/c
)

o x
p

∆-
o y

p
∆

0

10

20

e) SM f) SM

 (
M

e
V

/c
)

o x
p

∆-
o y

p
∆

0

10

20

g) HM h) HM

co
ll.

N

0

2

4

6

8 i) j)

20 40 60

 (
M

e
V

/c
)

m
a
x.

F

0

10

20

30

40 k)

20 40 60

l)

time (fm/c)

o

x m.f.
p∆

o

y m.f.
p∆

/10o

x coll.
p∆ /10o

y coll.
p∆

mean field

collisions

id. wo Pauli

SM wo Pauli

HM wo Pauli

Excess in the y- direction: clearly visible for the 
mean field AND the collisions. For the collisions: 
becomes smaller with higher projectile velocity 
until it vanishes at 1.5 AGeV incident energy. 

K0 has no visible influence on the amplitude of 
the collisional out-of-plane momentum excess 
because  the number of collisions is almost 
unchanged by the choice of the EoS.

Pauli blocking:  quenches v2<0 due to collisions, 
from the densest phase of the collisions, 
stronger for SM because larger densities are 
reached.  

⇨ Without Pauli blocking, there would be a 
collisional contribution to the EoS dependence 
of v2.
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Excess in the y- direction: clearly visible for the 
mean field AND the collisions. For the collisions: 
becomes smaller with higher projectile velocity 
until it vanishes at 1.5 AGeV incident energy. 

K0 has no visible influence on the amplitude of 
the collisional out-of-plane momentum excess 
because  the number of collisions is almost 
unchanged by the choice of the EoS.

Pauli blocking:  quenches v2<0 due to collisions, 
from the densest phase of the collisions, 
stronger for SM because larger densities are 
reached.  

⇨ Without Pauli blocking, there would be a 
collisional contribution to the EoS dependence 
of v2.

Mean field contribution to v2<0: dependent on 
incident energy and K0: moderate at 0.6 AGeV 
with the soft EoS, contributing to only 30% of the 
total ∆Pyo − ∆Pxo , very strong and dominating 
at 1.5 AGeV with the stiffer EoS. 
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of the inner nucleons create a nearly 
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of the inner nucleons create a nearly 
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by the spectators (⇾v2<0) affects only the 
outermost nucleons, whereas the collisions 
of the inner nucleons create a nearly 
azimuthally isotropic distribution (v2 ≈ 0).

* From the mean field: density gradient larger 
at the tips of the overlapping zone 
(outermost nucleons); decreases later due 
to the formation of the in-plane ridge 

* Asymptotically, the mean field =  the main 
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Strong beam energy dependence  
for Einc > 0.4 AGeV

Maximum of  amplitude at around 0.6 
AGeV. 

Strength enhanced with protons with a 
large transverse velocity. 

Comparison with FOPI observations 
(protons with ut0 > 0.8, same impact 
parameter) ⇨ good agreement (amplitude 
and evolution) using the soft (SM) EoS.
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Summary:
❖ The elliptic flow observed in the reactions around Ekin ≈ 1 AGeV for protons at mid-rapidity  
(|y0| < 0.2) has two origins: 

❖ the collisions of participant nucleons with the spectator matter 
❖ the acceleration of participants in the mean field. 

❖ The collisional component of v2 is almost independent of the EoS (due to Pauli blocking), 
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS 
(SM). 
❖ At largest out-of-plane emission (0.6 AGeV⟷ max. stopping), for a soft EoS, collisional and 
mean field contributions are about equal, 
❖ In all other cases the contribution of the mean field dominates. 
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(|y0| < 0.2) has two origins: 

❖ the collisions of participant nucleons with the spectator matter 
❖ the acceleration of participants in the mean field. 

❖ The collisional component of v2 is almost independent of the EoS (due to Pauli blocking), 
❖ The mean field contribution is for a hard EoS (HM) roughly twice as large as that for a soft EoS 
(SM). 
❖ At largest out-of-plane emission (0.6 AGeV⟷ max. stopping), for a soft EoS, collisional and 
mean field contributions are about equal, 
❖ In all other cases the contribution of the mean field dominates. 
❖ Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density 
gradient in y-direction 
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mean field contributions are about equal, 
❖ In all other cases the contribution of the mean field dominates. 
❖ Mean field out-of-plane flow comes from nucleons close to the tips of fireball: strongest density 
gradient in y-direction 
❖ This effect is amplified if one selects particles with a high transverse velocity. 
❖ The calculations with a soft EoS (SM) are in better agreement with the experimental data than 
that with a hard equation of state (HM). 
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Thank you for your attention!
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‣ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident 
energies, system sizes and compositions.  
‣ limited to Ebeam<10 A.GeV ⬅ some kind of a clock is available (sound velocity versus 

participant-spectator interaction).  
‣ KaoS (1990’s), C+C, Au+Au, K+ yields -> ’soft’ EOS. But: 

‣ kaons rare at Ebeam=0.8 A.GeV (max. sensitivity to the EOS). 
‣ all ’bulk’ observables (multiplicities, clusterisation, stopping, flow) under control in 

the transport model ?  
‣ EoS (1996), Au+Au @ 0.25 to 1.15 A.GeV, radial & sideward flow, squeeze-out versus 

QMD -> no strong sensitivity on the nuclear incompressibility K0. 
‣ FOPI (2005), Au+Au @ 0.09-1.5 A.GeV, Z=1 elliptic flow, versus 4 different transport 

codes -> ’no strong constraint on the EOS can be derived at this stage’. 
‣ BEVALAC & AGS accelerators, proton flows versus transport theories -> K0 = 167-200 

MeV (soft) from V1, K0 = 300 MeV (semi-stiff) from V2 -> contradictions.

Introduction

!23
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The elliptic flow
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