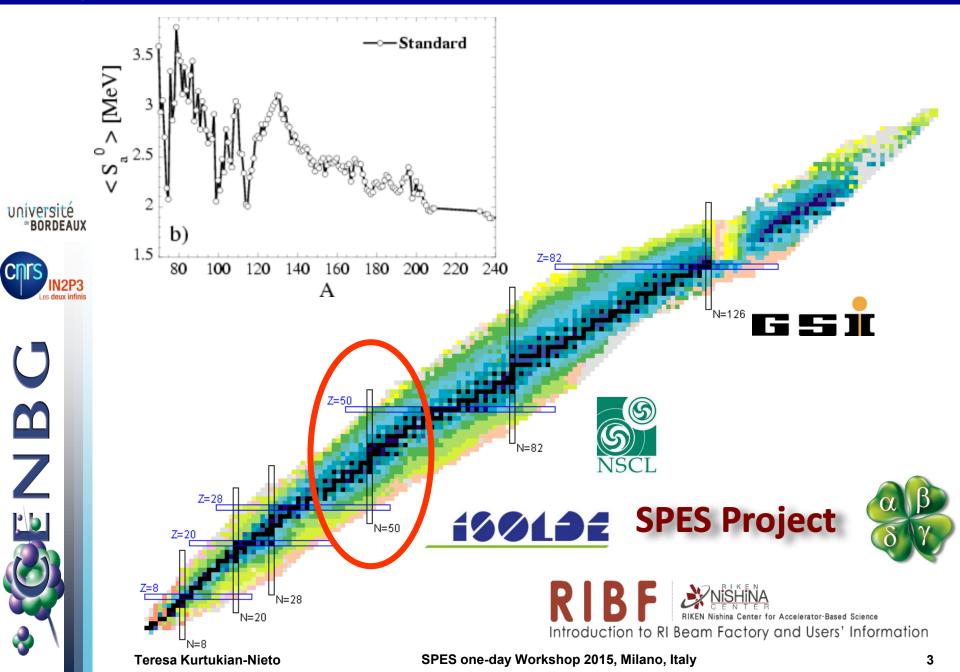
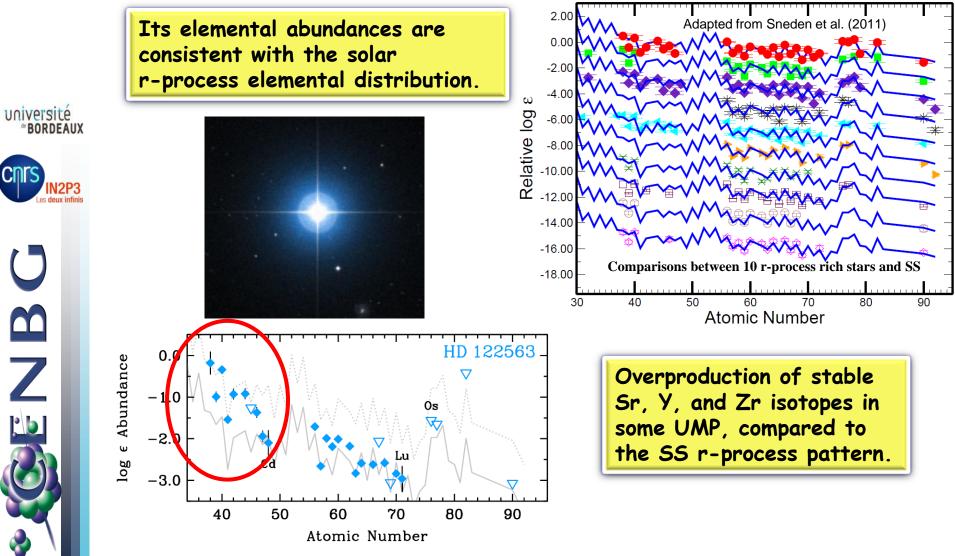

Beta-decay studies of nuclei near the 1st r-process peak at SPES: challenges and opportunities

Teresa Kurtukian-Nieto
CEN Bordeaux-Gradignan


SPES one-day Workshop on the Physics at SPES with non reaccelerated beams

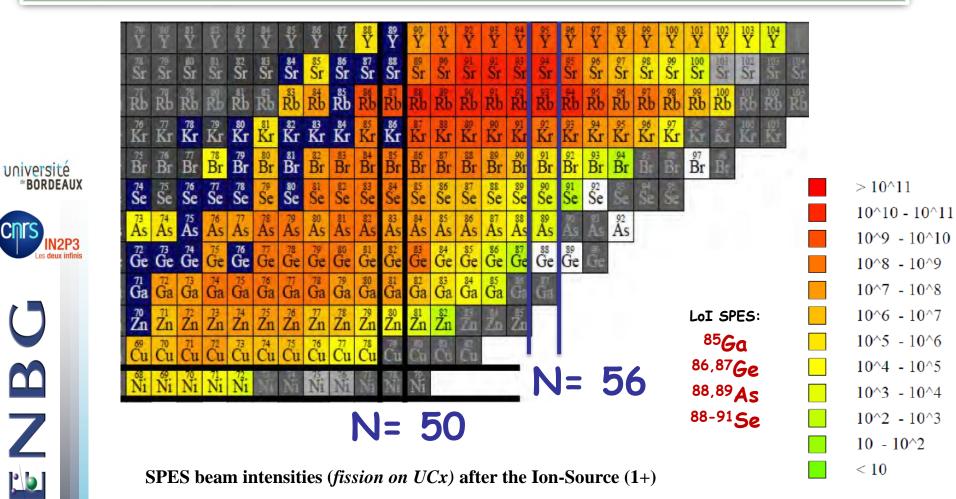
Milan, 20th – 21th April, 2015

Stellar nucleosynthesis r- process



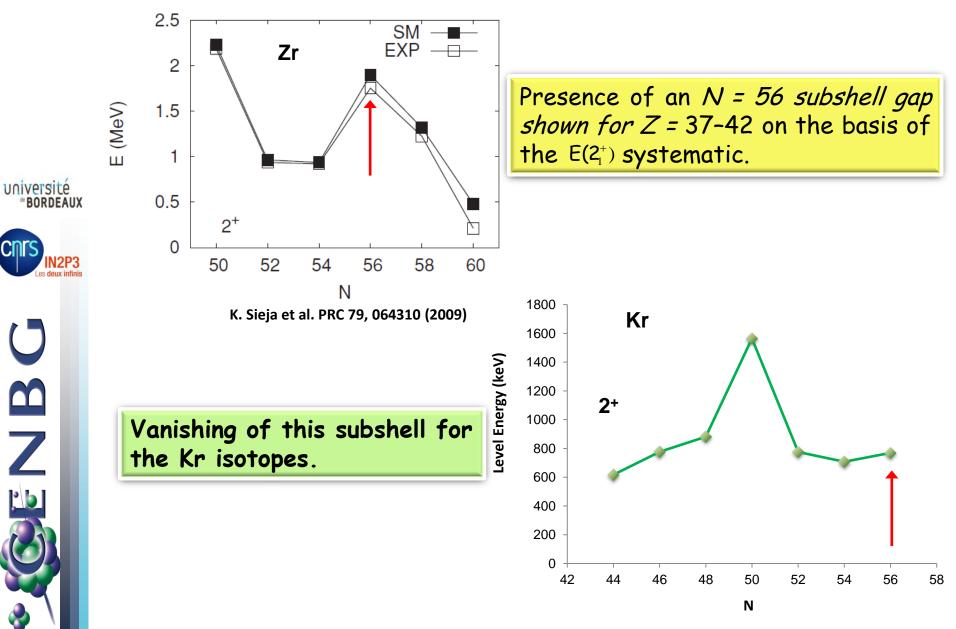
Progress on r- process nuclei

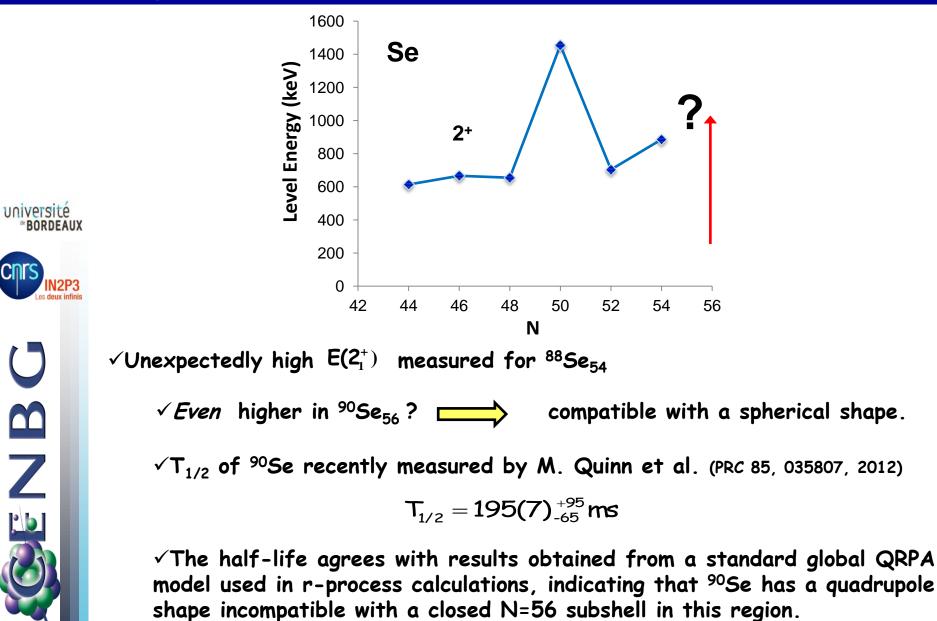
r-process and abundances in ultra metal-poor stars


UMP giants stars provide crucial constraints to the stellar nucleosynthesis.

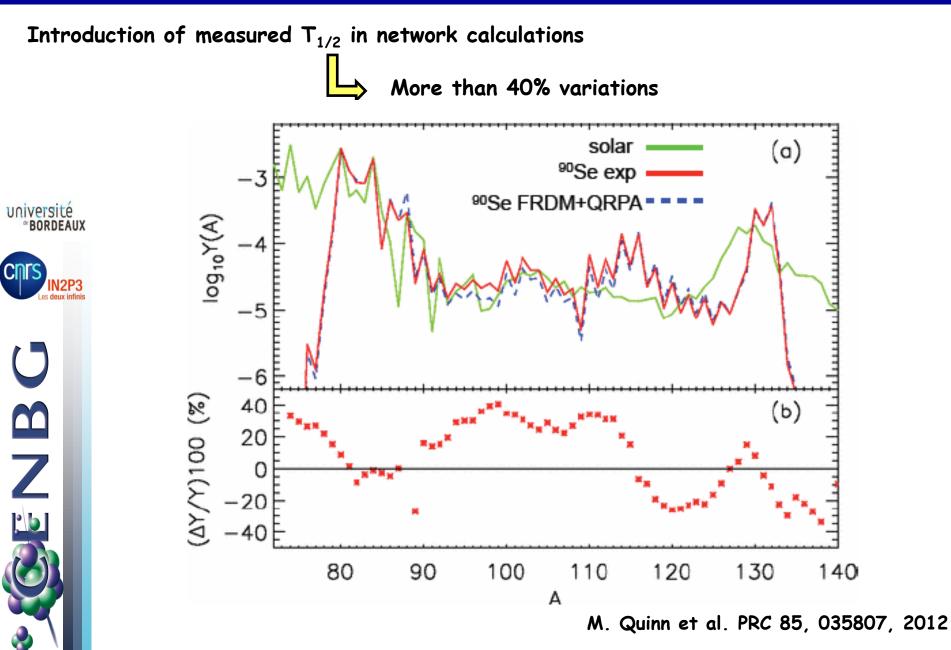
Teresa Kurtukian-Nieto

r-process and abundances in ultra metal-poor stars


One explanation suggested would be the possible existence of a new N = 56 subshell.


In an hypothetical N = 56 "ladder" the β decay of ⁸⁸Ge, ⁸⁹As, and ⁹⁰Se would immediately translate into an enhanced production of Sr, Y, and Zr.

Teresa Kurtukian-Nieto


Signatures of a *N* = 56 subshell closure ?

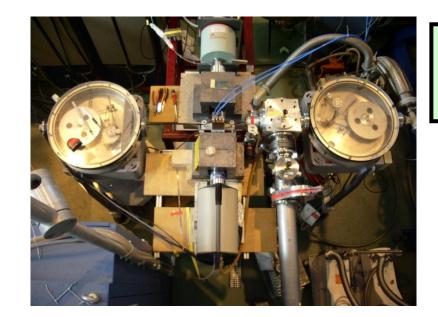
Signatures of a *N* = 56 subshell closure ?

⁹⁰Se and the r-process

Experimental challenge: background from daughters

90 35^{Br}55

université *BORDEAUX


According to SPES Beam Intensity Tables ⁹⁰Br is produced 50times more than ⁹⁰Se.

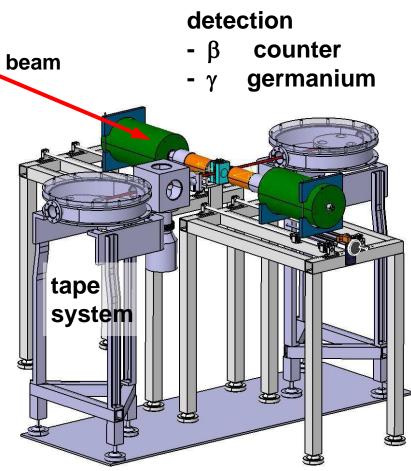
S B C

If ⁹⁰Br directly produced in fission is not removed, even if the half-life of ⁹⁰Se is 10 times shorter than ⁹⁰Br one would get, even for very short time-cycles, in every bin 5x more counts from ⁹⁰Br than from ⁹⁰Se and for the neutrons it is even worse, since the daughter is an odd-odd nucleus and it has therefore usually a much (about order of magnitude) higher Pn value.

Solution: remove the direct production of ^{90}Br by using beam purification stage \rightarrow SPES-HRMS

Measurement of the decay characteristics

Université *BORDEAU



S B C

Can be coupled with a neutron-detector

- \checkmark Pn of the nuclei of interest.
- ✓ neutron-gated γ -ray spectra

 \rightarrow very sensitive tool to obtain detailed information on the nuclear structure of daughter nuclei and to reveal fine structure in the β -delayed neutron emission process. Tape transport systemBeam-on/off time sequenceβ-γ, γ-γ coincidence for β decay studies

Future and present ISOL facilities in Europe

>10¹⁵ fissions/second

M Z

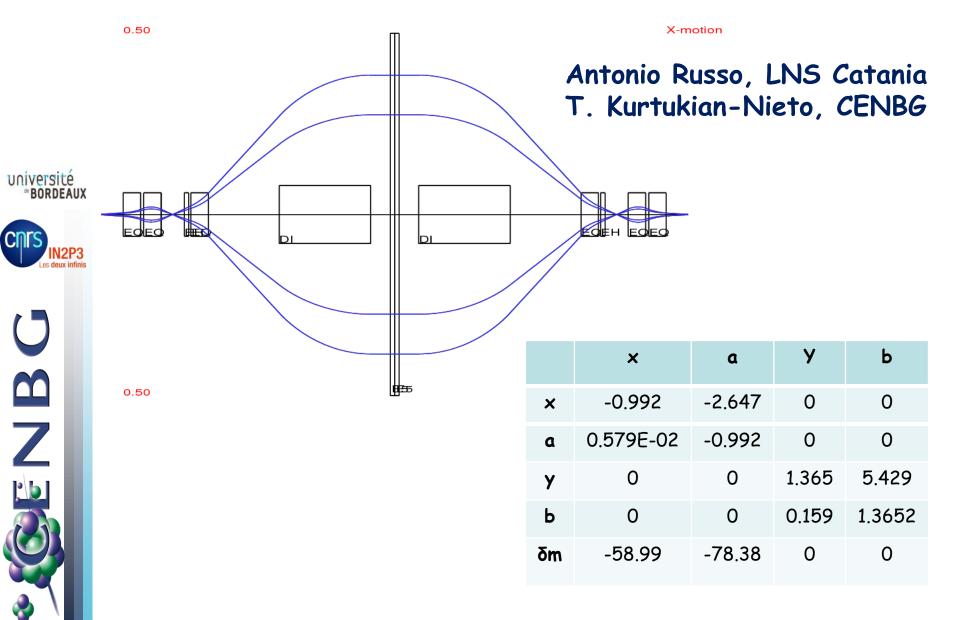
SPES Project

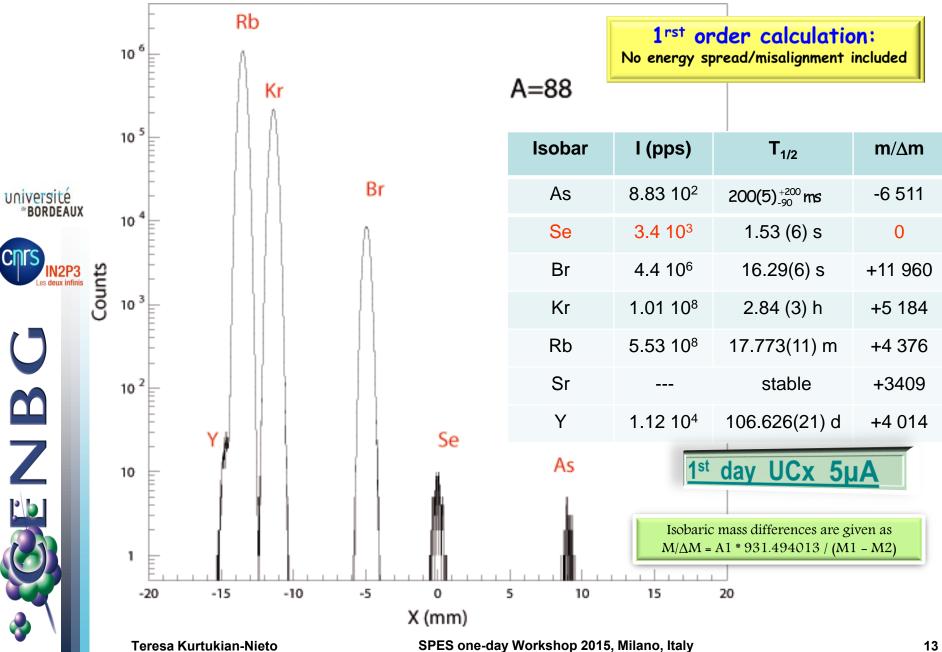
5 10^{13} to 10^{14} fissions/second

10¹³ fissions/second

10¹² (10¹³) fissions/second

10¹² fissions/second


10¹¹ fissions/second



Teresa Kurtukian-Nieto

SPES HRMS: COSY Infinity calculation

A= 90	Isobar	l (pps)	T _{1/2}	m/∆m	0+
	As	(1)	> 300 ns	- 5 791	90 34 ^{Se} 56
	Se	4.60 10 ¹	195(7) ₋₆₅ ms	0	
	Br	1.08 10 ⁵	1.91 (1) s	+ 9 644	0 1.91 S β- : 100 %, β-n : 25.2 % 9
université	Kr	1.09 10 ⁸	32.32 (9) s	+ 4 402	90 35 ^{Br} 55
*BORDEAUX	Rb	2.41 10 ⁹	158 (5) s	+ 3 577	33 33
CITS IN2P3 Les deux infinis	Sr	1.04 10 ⁸	28.90 (3) y	+ 2 793	
Les deux infinis	Y	1.28 10 ⁶	64.053(20) h	+ 2 743	

H. Sakai's talk

A= 96

S B C

Isobar	l (pps)	T _{1/2}	m/∆m
Rb	2.47 10 ⁷	203 (3) ms	- 5 223
Sr	3.93 10 ⁵	1.07 (1) s	-16 536
Y	1.12 10 ⁷	5.34 (5) s	0

A= 86		Isobar	l (pps)	T _{1/2}	m/∆m
		Ga	(1)	> 150 ns	- 5 171
	$0 +0 > 150 \text{ NS } \beta - :? \% \beta - n:? \%$	Ge	1.30 10 ²	226(21) ms	0
	86 32 ^{Ge} 54	As	3.85 10 ⁴	0.945(8) s	+ 8 608
université		Se	1.67 10 ⁵	14.3(3) s	+ 3 871
*BORDEAUX		Br	1.93 10 ⁷	55.1(4) s	+ 3 106
	86 ₃₃ As ₅₃	Kr		Stable	+ 2 397
	C. Gross's talk ⁸⁶ Br	Rb	4.75 10 ⁷	18.642(18) d	+ 2 435

A= 72

U

Isobar	l (pps)	T _{1/2}	m/∆m
Ni	9.11 10 ³	1.57 (5) s	0
Co	1.39 10 ⁷	6.63 (3)s	11 479
Zn	1.83 10 ⁷	46.5 h 1	4 726
Ga	1.07 10 ⁷	14.10 h 2	4 578

Anabel Morales-López 's talk

Teresa Kurtukian-Nieto

A= 85				
	Isobar	l (pps)	T _{1/2}	m/∆m
	Ga	9.05 10 ¹	92(4) ms	- 6 084
	Ge	2.78 10 ³	503(18) ms	0
	As	1.46 10 ⁵	2.021(12) s	+ 7 720
université *BORDEAUX	Se	5.40 10 ⁵	32.9(3) s	+ 4 089
	Br	2.46 10 ⁷	2.90(6) m	+ 3 100
IN2P3 Les deux infinis	Kr	1.48 10 ⁷	10.752(25) y	+ 2 787
	A= 89			
U	Isobar	l (pps)	T _{1/2}	m/∆m
	As	8.18 10 ¹	> 300 ns	0.070
		0.10 10	> 300 115	- 6 878
	Se	3.78 10 ²	> 300 Hs 0.43(5) s	- 6 878 0
Z				
	Se	3.78 10 ²	0.43(5) s	0
	Se Br	3.78 10 ² 5.58 10 ⁵	0.43(5) s 4.357(22) s	0 + 8 842

=	87	
	Isobar	I (j

Isobar	l (pps)	T _{1/2}	m/∆m
Ge	1.75 10 ⁶	~0.14 s	- 6 899
As	5.18 10 ³	0.56(8) s	0
Se	2.88 10 ⁴	5.50(12) s	+ 7 646
Br	1.67 10 ⁷	55.65(13) s	+ 4 534
Kr	7.43 10 ⁷	73.3(5) m	+ 3 277
Rb	2.00 10 ⁸	4.81 10 ¹⁰ y	+ 2 832

A= 91

Isobar	l (pps)	T _{1/2}	m/∆m
As	(1)	> 150 ns	- 6 289
Se	1.20 10 ¹	0.27(5) s	0
Br	7.2810 ³	0.543(4) s	+ 7 589
Kr	5.30 10 ⁷	8.57(4) s	+ 4 042
Rb	2.41 10 ⁹	58.2(3) s	+ 3 093
Sr	2.53 10 ⁸	9.65(6) h	+ 2 545
Y	6.83 10 ⁶	58.51(6) d	+ 2 354

Teresa Kurtukian-Nieto

Thank you for your attention