Congratulations for 70 th Birthday! KEN

I wish Happy and Active Days Ahead for You

Exact Resurgent Trans-series and Multi-Bion Contributions to All Orders

Norisuke Sakai (Keio University)

In collaboration with **Tatsuhiro Misumi**(Akita U.), **Muneto Nitta**(Keio U.), **Toshiaki Fujimori**(Keio U.), and **Syo Kamata**(Fudan U.) arXiv:1705.10483 [hep-th] to appear in PTEP; Phys.Rev.**D95**, 105001 (2017) [arXiv:1702.00589]; Phys.Rev.**D94**, 105002 (2016) [arXiv:1607.04205]; JHEP 1509, 157 (2015) [arXiv:1507.00408]; PTEP 2015, 033B02 (2015) [arXiv:1409.3444]; J.Phys.Conf.Ser.**597**, 012060 (2015); [arXiv:1412.0861] JHEP 1406, 164 (2014) [arXiv:1404.7225]

Contents

1	Resurgence and Bion		•
	1.1	Borel Sum of Divergent Series and Resurgence	•
	1.2	Instantons and Bions	ļ
2	Exa	act ground-state energy of $\mathbb{C}P^1$ QM	ę
3	Sing	gle-Bion Solutions	11

4	Multi-Bion Solutions	13
5	One-Loop Determinant and Lefschetz Thimble	15
6	Multi-Bion contributions	18
7	Conclusions	20

1 Resurgence and Bion

1.1 Borel Sum of Divergent Series and Resurgence

Perturbation series

Partition function of ϕ^4 field theory in Euclidean d-dimension

$$Z(g^2) = \int D\phi(x) \; e^{-S_E}, \hspace{0.5cm} S_E = \int d^dx \left(rac{1}{2}(\partial_{\mu}\phi)^2 + m^2rac{\phi^2}{2} + g^2rac{\phi^4}{4}
ight).$$

Perturbation series in g^2 (m=1): $Z(g^2)=$ sum of Feynman diagrams

 $d \rightarrow 0$: Number of Feynman diagrams (with weight and sign)

$$Z(g^2) = \int_{-\infty}^{\infty} rac{d\phi}{\sqrt{2\pi}} \ e^{-S_E}, \qquad S_E = rac{1}{2}\phi^2 + g^2rac{\phi^4}{4}.$$

 $Z(g^2)$ is well-defined for $g^2>0,\,(m=1)$

Perturbation: Formal power series defined by

$$egin{align} Z(g^2) &= \int_{-\infty}^{\infty} rac{d\phi}{\sqrt{2\pi}} \, e^{-rac{\phi^2}{2}} e^{-g^2rac{\phi^4}{4}} = \sum_{K=0}^{\infty} (g^2)^K Z_K \ Z_K &= rac{1}{K!} \int_{-\infty}^{\infty} rac{d\phi}{\sqrt{2\pi}} \, e^{-rac{\phi^2}{2}} \left(rac{-\phi^4}{4}
ight)^K \ \end{array}$$

$$=rac{1}{K!}rac{(-1)^K}{\sqrt{\pi}}\Gamma\left(2K+rac{1}{2}
ight)\simrac{(-4)^K}{\sqrt{2}\pi}(K-1)!$$

Perturbation series is Factorially divergent and Alternating

Borel sum:

A method to make sense of the sum of **Factorially divergent series** Factorially divergent series (Gevrey-I) is defined by (constant C, A)

$$P(g^2) = \sum_{K=0}^\infty a_K(g^2)^K, \quad |a_K| \leq CK! \left(rac{1}{A}
ight)^K$$

Def: Borel transform $BP(t) \rightarrow$ finite radius of convergence

$$BP(t) = \sum_{K=0}^{\infty} rac{a_K}{K!} t^K$$

Def: Borel resummation $\mathbb{P}(g^2)$

$$\mathbb{P}(g^2) = \int_0^\infty dt e^{-t} BP(g^2t)$$

If this integral is well-defined, the series is called **Borel-summable**

Alternating factorially divergent series (A > 0)

$$P(g^2) = C \sum_{K=0}^{\infty} K! \left(rac{-g^2}{A}
ight)^K$$

Borel transform becomes

$$BP(t) = C \sum_{K=0}^{\infty} \left(rac{-t}{A}
ight)^K = rac{CA}{A+t},$$

Borel resummation becomes

$$\mathbb{P}(g^2) = \int_0^\infty dt e^{-t} BP(g^2t) = \int_0^\infty dt e^{-t} rac{CA}{A+g^2t}$$

 $BP(g^2t)$ is Borel summable (no singularity on the positive real axis)

1.2 Instantons and Bions

Quantum mechanics with degenerate minima

$$H = rac{p^2}{2} + V(q), \qquad V(q) = rac{q^2}{2}(1-gq)^2$$

Double well potential

Path-integral representation of ground state energy

$$E(g^2) = \lim_{eta o \infty} rac{-1}{eta} \log \mathrm{tr}(e^{-eta H}), \quad \mathrm{tr}(e^{-eta H}) = \int Dq(t) e^{-S}$$

$$S=\int d au \left[rac{1}{2}\left(rac{dq}{d au}
ight)^2+V(q)
ight], \quad V(q)=rac{q^2}{2}-gq^3+g^2rac{q^4}{2}$$

A perturbative vacuum : q = 0

Expansion in powers of g: pertubation series around the q=0 vacuum

$$-gq^3$$
 is more important $((gq^3)^2\gg g^2q^4$ for $|q|\gg 1)$

Large order behavior of perturbation series

$$E_{
m pert}(g^2) = \sum_{K=0}^{\infty} (g^2)^K E_K, \quad E_K \sim -rac{3}{\pi} 3^K K!$$

Borel transform becomes

$$BE_{
m pert}(t) \equiv \sum_{K=0}^{\infty} rac{(t)^K}{K!} E_K \sim -rac{3}{\pi} \sum_{K=0}^{\infty} \left(3t
ight)^K = -rac{3}{\pi} rac{1}{1-3t},$$

Borel resummation is ill-defined for $g^2 > 0$ (Borel non-summable)

$$\mathbb{E}_{\mathrm{pert}}(g^2) = \int_0^\infty dt e^{-t} B E_{\mathrm{pert}}(g^2 t) = -rac{3}{\pi} \int_0^\infty dt e^{-t} rac{1}{1-3g^2 t}$$

a Pole at $t = 1/(3g^2)$ on the positive real axis of Borel plane

Well-defined at $g^2 < 0 \rightarrow \text{Analytic}$ continuation to $g^2 > 0$ gives

 ${
m Im} \mathbb{E}_{
m pert}(g^2) \sim \mp 3e^{rac{-1}{3g^2}} {
m imaginary \ ambiguity} \ {
m (path-dependent)}$

There should be **nonperturbative** contributions cancelling this ambuguity

Nonperturbative saddle points as solutions of Euclidean Action

Instantons as nonperturbative saddle points $S_{\mathrm{I}}=rac{1}{6g^2}$

Bion: A pair of Instanton and Anti-instanton (**not exact solution**)

Separation is a quasi-moduli: integration over the separation is required

Analytic continuation → (nonperturbative) **imaginary ambiguity**

nonperturbative and **perturbative** ambiguities cancel \rightarrow **Resurgence**

2 Exact ground-state energy of $\mathbb{C}P^1$ QM

(Lorentzian) $\mathbb{C}P^1$ QM with fermions : $\mu = m|arphi|^2/(1+|arphi|^2)$

$$L\!=\!rac{1}{g^2}\!\left[G\!\left(|\partial_tarphi|^2-|marphi|^2+iar{\psi}\mathcal{D}_t\psi
ight)-\epsilon\,rac{\partial^2\mu}{\partialarphi\partialar{arphi}}\,\psiar{\psi}
ight]$$

$$G = rac{\partial^2}{\partial arphi \partial ar{arphi}} \log(1 + arphi ar{arphi}), \quad \mathcal{D}_t = \partial_t + \partial_t arphi rac{\partial}{\partial arphi} \log G$$

SUSY for $\epsilon = 1$,

States are classified by Fermion number $F \equiv G\psi \bar{\psi} = 0,1$

Lagangian for $\mathbf{F} = \mathbf{0}$ sector (containing ground state)

$$L = rac{|\partial_t arphi|^2}{g^2 (1 + |arphi|^2)^2} - V \,, \quad V = rac{1}{g^2} rac{m^2 |arphi|^2}{(1 + |arphi|^2)^2} - \epsilon m rac{1 - |arphi|^2}{1 + |arphi|^2} \,.$$

At $\epsilon=1$, SUSY ground state $\Psi_0=\langle \varphi|0\rangle=\exp(-\mu/g^2)$ is obtained

$$H_{\epsilon=1}\Psi_0 = \left[-g^2(1+|arphi|^2)^2rac{\partial}{\partialarphi}rac{\partial}{\partialar{arphi}}+V_{\epsilon=1}
ight]\Psi_0 = 0$$

Expansion around SUSY: nontrivial and calculable resurgence structure

$$E = \delta \epsilon \, E^{(1)} \, + \, \delta \epsilon^2 \, E^{(2)} \, + \, \cdots \, , \quad \Psi = \Psi_0 + \delta \epsilon \, \delta \Psi , \quad \delta \epsilon \equiv \epsilon - 1$$

$$E^{(1)} = rac{\langle 0 | \delta H | 0
angle}{\langle 0 | 0
angle}, \quad E^{(2)} = -rac{\langle \delta \Psi | H_{\epsilon=1} | \delta \Psi
angle}{\langle 0 | 0
angle}, \cdots$$

We obtain **exact results** as

$$E^{(1)}=g^2-m\cothrac{m}{g^2}$$

$$E_0^{(2)} = g^2 - rac{m\cothrac{m}{g^2}}{2\sinh^3rac{m}{g^2}} \left[E_i \left(-rac{2m}{g^2}
ight) + ar{E}_i \left(rac{2m}{g^2}
ight) - 2\gamma - 2\lograc{2m}{g^2}
ight]$$

Exponential integral functions are defined as (x > 0)

$$E_i(-x) = -\int_x^\infty dt e^{-t} rac{1}{t}, \quad ar{E}_i(x) = -\int_{-x}^\infty dt e^{-t} rac{\mathcal{P}}{t}.$$

Power series $E^{(i)} = \sum_{p=0}^{\infty} E_p^{(i)}$ in e^{-2m/g^2} are convergent

Power series in g^2 is asymptotic \rightarrow Borel resummation gives

$$E_0^{(1)} = -m + g^2, \quad E_p^{(1)} = -2me^{-rac{2m}{g^2}}, \; (p \geq 1) \ E_0^{(2)} = g^2 + 2m \int_0^\infty dt rac{e^{-t}}{t - rac{2m}{g^2 \pm i0}}$$

$$E_p^{(2)} = \left[2m \int_0^\infty dt \, e^{-t} \Bigl(rac{(p+1)^2}{t - rac{2m}{g^2 \pm i0}} + rac{(p-1)^2}{t + rac{2m}{g^2}} \Bigr)
ight. \ \left. + 4mp^2 \left(\gamma + \log rac{2m}{g^2} \pm rac{\pi i}{2}
ight)
ight] e^{-rac{2m}{g^2}}, \quad (p \geq 1)$$

3 Single-Bion Solutions

Energy \boldsymbol{E} , angular momentum \boldsymbol{l} conservation

$$E \; \equiv \; rac{1}{g^2} rac{\partial_ au arphi \partial_ au ar{arphi}}{(1 + arphi ar{arphi})^2} - V(arphi ar{arphi}), \quad l \; \equiv \; rac{i}{g^2} rac{\partial_ au arphi ar{arphi} - \partial_ au ar{arphi} arphi}{(1 + arphi ar{arphi})^2}$$

Finite action \rightarrow boundary condition at $\tau \rightarrow \pm \infty$

$$\lim_{ au o\pm\infty}arphi=\lim_{ au o\pm\infty}ar{arphi}=0\ o \ l=0,\ E=E|_{arphi=0}=\epsilon m$$

Exact single **Bion** solution

$$arphi = e^{i\phi_0}\sqrt{rac{\omega^2}{\omega^2-m^2}}rac{1}{i\sinh\omega(au- au_0)}, \;\;\; \omega \equiv m\sqrt{1+rac{2\epsilon g^2}{m}}, \ arphi^{-1} = e^{\omega(au- au_+)-i\phi_+} + e^{-\omega(au- au_-)-i\phi_-}$$

Kink profiles for $\Sigma(\tau) = \frac{m\varphi\tilde{\varphi}}{1+\varphi\tilde{\varphi}}$ for the single bion

$$au_\pm = au_0 \pm rac{1}{2\omega}\lograc{4\omega^2}{\omega^2-m^2}, \hspace{0.5cm} \phi_\pm \ = \ \phi_0\mprac{\pi}{2}$$

 ${f 2}$ real moduli parameters : ${m au_0}$: translational moduli, ${m \phi_0}$: ${m U(1)}$ moduli Value of action ${m S}$ for the single bion solution

$$S = rac{2\omega}{g^2} + 2\epsilon\lograc{\omega+m}{\omega-m}$$

Real bion gives a nonperturbative correction to ground state energy

A.Behtash, G.V.Dunne, T.Schafer, T.Sulejmanpasic and M.Unsal, Phys.Rev.Lett.**116**, 011601 (2016); arXiv:1510.03435 [hep-th]; E.Witten, [arXiv:1001.2933 [hep-th]] · · ·

T.Fujimori, S.Kamata, T.Misumi, M.Nitta and N.Sakai, Phys.Rev.**D94**, 105002 (2016); Phys.Rev.**D95**, 105001 (2017)

4 Multi-Bion Solutions

Complexified theory: $\varphi \equiv \varphi_R^{\mathbb{C}} + i \varphi_I^{\mathbb{C}}$ and $\tilde{\varphi} \equiv \varphi_R^{\mathbb{C}} - i \varphi_I^{\mathbb{C}}$ are independent

$$S_E = \int_0^eta d au \left[rac{\partial_ au arphi \partial_ au ilde{arphi}}{g^2 (1 + arphi ilde{arphi})^2} + V(arphi ilde{arphi})
ight]$$

Contributions from Saddle points in finite interval: $\varphi(\tau + \beta) = \varphi(\tau)$

$$Z(eta) = \int \mathcal{D}arphi \, \exp(-S_E[arphi]) = \sum_{\sigma \in \mathfrak{S}} e^{-S_\sigma} \left[(\det \Delta_\sigma)^{-rac{1}{2}} + \mathcal{O}(g)
ight]$$

Complexified symmetry $(a, b \in \mathbb{C}) \to \text{Conserved charges}$

Time translation $\tau \to \tau + a$, Phase rotation $(\varphi, \tilde{\varphi}) \to (e^{ib}\varphi, e^{-ib}\tilde{\varphi})$

Solutions are given by **elliptic function** cs with complex moduli (τ_c, ϕ_c)

$$arphi = e^{i\phi_c}rac{f(au- au_c)}{\sinlpha}, \;\; ilde{arphi} = e^{-i\phi_c}rac{f(au- au_c)}{\sinlpha}$$

$$f(au)= ext{cs}(\Omega au,k)\equiv ext{cn}(\Omega au,k)/ ext{sn}(\Omega au,k)$$
 cs has periods $2K(k)$ and $4iK'$ $(K'\equiv K(\sqrt{1-k^2}))$ and satisfies $(\partial_ au f)^2=\Omega^2(f^2+1)(f^2+1-k^2)$

The solutions are characterized by two integers (p,q) for the period

$$eta = rac{(2pK + 4iqK')}{\Omega}$$

 (α, Ω, k) are given in terms of β , and asymptotic forms for large β are

$$egin{aligned} k &pprox 1-8\,e^{-rac{\omegaeta-2\pi iq}{p}}, \quad \Omega pprox \omega \left(1+8rac{\omega^2+m^2}{\omega^2-m^2}e^{-rac{\omegaeta-2\pi iq}{p}}
ight) \ &\coslpha pprox rac{m}{\omega}\left(1-rac{8m^2}{\omega^2-m^2}e^{-rac{\omegaeta-2\pi iq}{p}}
ight), \quad 0 \leq q$$

Position of n-th instanton and antiinstaton

$$au_n^\pm = au_c + rac{n-1}{\omega p}(\omegaeta - 2\pi iq) \pm rac{1}{2\omega}\lograc{4\omega^2}{\omega^2 - m^2}$$

5 One-Loop Determinant and Lefschetz Thimble

For $0 \le \epsilon \le 1$, instanton-antiinstanton separation becomes large: we have normalizable quasi-moduli (almost flat direction)

One-Loop Determinant for non-zero modes $\det'' \Delta$

 \approx product of determinant of constituent (anti-)instantons

Relative position au_r and relative phase ϕ_r

$$Z_{
m bion}pprox \int d au_0 d\phi_0\, \int d au_r d\phi_r \det^{\prime\prime}\!\Delta \exp\left(-V_{
m eff}
ight)$$

Deform au_r, ϕ_r in complex plane

Determine integration paths (**thimbles**) and their weight (by intersection of **dual thimbles** with the original path)

Gradient Flow and Lefschetz Thimble

Prototype of Quasi-Moduli integral

$$I \ = \ \int_{\mathcal{C}} dy \, \exp\left[-V(y)
ight], \quad V(y) \equiv ae^{-y} + by, \;\; \mathrm{Re}\, b > 0$$

Instanton-instanton : a > 0, Instanton-Antiinstanton : a < 0

Gradient flow equation

$$rac{\partial y}{\partial t} = \overline{rac{\partial V}{\partial y}} = -ar{a}e^{-ar{y}} + ar{b}$$

 $\partial y/\partial t=0$: Saddle point y_s

Thimble y(t) (steepest descent contour): $\lim_{t\to -\infty} y(t) = y_s$

Dual Thimble y(t) (deformable direction): $\lim_{t\to+\infty} y(t) = y_s$

If the dual thimble intersects with the original contour

→ integration contour can be deformed to the thimble

The Lefschetz thimles \mathcal{J}_q and their duals \mathcal{K}_q . No Stokes phenomenon at $\arg a = 0$.

a > 0 case:

$$I \ = \ \int_{\mathcal{J}_0} dy \, \exp\left[-V(y)
ight] \ = \ a^{-b}\Gamma(b)$$

a < 0 case requires $\theta \equiv -\pi - \arg a = \pm 0 \neq 0$ (Stokes phenomenon)

$$I \;=\; \left\{ egin{array}{l} \int_{\mathcal{J}_0} dy \, \exp\left[-V(y)
ight] \ \int_{\mathcal{J}_0} dy \, \exp\left[-V(y)
ight] \end{array}
ight. = \; |a|^{-b} \exp(\mp\pi i b) \, \Gamma(b)$$

Stokes phenomenon at $\arg a = -\pi \ (\theta = -\pi - \arg a)$. The original integration contour \mathcal{C} intersects with $\mathcal{K}_1 \ (\mathcal{K}_0)$ for $\theta > 0 \ (\theta < 0)$ and hence \mathcal{C} is deformed to $\mathcal{J}_1 \ (\mathcal{J}_0)$.

6 Multi-Bion contributions

Effective potential for well-separated kinks

$$S_E ~
ightarrow ~V_{ ext{eff}} = -m\epsiloneta + \sum_{i=1}^{2p} (rac{m}{g^2} + V_i)$$

$$rac{V_i}{m} = \epsilon_i (au_i - au_{i-1}) - rac{4}{g^2} e^{-m(au_i - au_{i-1})} \cos(\phi_i - \phi_{i-1})$$

$$au_{2n-1} = au_i^-, \, au_{2n} = au_i^+, \, au_0 = au_{2p} - eta, \, \phi_0 = \phi_{2p} \; (ext{mod } 2\pi), \ \epsilon_{2n-1} = 0 \; ext{and} \; \epsilon_{2n} = 2\epsilon$$

For $0 \le \epsilon \le 1$, large separation of instanton and anti-instanton \rightarrow

 $\det'' \Delta \approx$ product of determinant of constituent (anti-)instantons

Complexify τ_r , ϕ_r and determine integration paths (thimbles) and their weight (by intersection of dual thimbles with the original path)

Lagrange multiplier σ to impose periodicity

$$2\pi\delta\left(\sum_i au_i-eta
ight)=m\int_{-\infty}^\infty d\sigma\exp\left[im\sigma(\sum_i au_i-eta)
ight]$$

$$egin{aligned} rac{Z_p}{Z_0} &= rac{1}{p} \int \prod_{i=1}^{2p} \left[d au_i \wedge d\phi_i \, rac{2m^2}{\pi g^2} \exp\left(-rac{m}{g^2} - V_i
ight)
ight] \ E &= E_0 - \lim_{eta o \infty} rac{1}{eta} \log\left(1 + \sum_{p=1}^\infty rac{Z_p}{Z_0}
ight) \ E_p^{(1)} &= -e^{rac{2pm}{g^2}} \lim_{\epsilon o 1} \lim_{eta o \infty} rac{1}{eta} rac{\partial}{\partial \epsilon} rac{Z_p}{Z_0} = -2m \ E_p^{(2)} &= -rac{e^{rac{2pm}{g^2}}}{2} \lim_{\epsilon o 1} \lim_{eta o \infty} rac{1}{eta} \left[\partial_\epsilon^2 rac{Z_p}{Z_0} - \sum_{i=1}^{p-1} \partial_\epsilon rac{Z_{p-i}}{Z_0} \partial_\epsilon rac{Z_i}{Z_0}
ight] \ &= 4mp^2 \left(\gamma + \log rac{2m}{g^2} \pm rac{\pi i}{2}
ight) \end{aligned}$$

7 Conclusions

- 1. **Factorially divergent** perturbation series can be summed by using **Borel resummation**. In some cases, imaginary ambiguities arise from the Borel resummed perturbative contributions, which are cancelled by nonperturbative contributions, leading to **resurgence**: intimate relation between perturbative and nonperturbative contributions.
- 2. We obtained exact results for near SUSY $\mathbb{C}P^1$ quantum mechanics revealing resurgence to infinitely many powers of nonperturbative exponentials.
- 3. We have found an infinite tower of **exact multi-bion solutions** for **finite time interval** in the complexified theory with fermions.
- 4. Semi-classical contributions of arbitrary numbers of bions give **nonper-turbative contributions** in $\mathbb{C}P^1$ quantum mechanics **exactly**.
- 5. By using dispersion relations (resurgence), we can recover the exact results completely from bion amplitudes in the case of near SUSY $\mathbb{C}P^1$ quantum mechanics.
- 6. We have explicitly the evaluated the **quasi-moduli** integral and the **1-loop determinant** for multi-bion saddle points.

- 7. The integration path and weight for the quasi-moduli are determined by computing the **Lefschetz thimbles** and **dual thimbles**.
- 8. Our results can be generalized to other cases such as sine-Gordon quantum mechanics, $\mathbb{C}P^{N-1}$ quantum mechanics, and more general nonlinear target spaces, such as squashed $\mathbb{C}P^1$.
- 9. Near SUSY situation can be generalized to quasi-exactly-solvable (QES) cases, such as particular excited states of the sine-Gordon quantum mechanics.
- 10. Extending our analysis to quantum field theories such as $2d \mathbb{C}P^{N-1}$ nonlineaer sigma models are interesting. Hopefully it will eventually lead to the understanding of nonperturbative effects in asymptotically free gauge theories in 4 dimensions.