

JENNIFER - WP3 - Task 3.1: neutrino interactions and cross-sections

S.Bolognesi (CEA, Saclay) for the JENNIFER collaborators

JENNIFER Consortium General Meeting

- Rome, June 2015 -

Oscillations at T2K

Neutrino mixing :
$$v_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} v_{i}$$
 $U_{\alpha i} = \sum_{i=1}^{3} U_{\alpha i} v_{i}$ $U_{\alpha i} = \sum_{i=1}^{3} U_{\alpha i} v_{i}$ 3 angles + 1 phase

3 angles + 1 phase

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - f(\theta_{13}, \theta_{23}) \sin^2(k \Delta m^2 L/E)$$

Near detector (ND280):

measurement of $\nu_{_{\!\scriptscriptstyle L}}$ flux (off-axis, E~600MeV)

dependance on neutrino interactions: need to disentangle flux and nu xsec

measurement of oscillated neutrinos : v_{μ} , v_{e}

measurement of e/μ kinematics \rightarrow need neutrino interaction modeling to translate into neutrino energy

Near detector constraints

Extrapolation of number of neutrinos (xsec x flux) from Near Detector to Far Detector:

- different acceptance (SK is $\sim 4\pi$ while ND280 has fwd-bwd geometry)
- \rightarrow need measurements as a function of e/ μ kinematics and extrapolation based on models
- different targets: SK is water while ND contains water and carbon
- \rightarrow need measurements of xsec on different targets and scaling of v interactions with number of nucleons (importance to understand nuclear effects)
- even if ND and FD were identical they would still see different fluxes (due to oscillation)
 - → need to go from lepton kinematics to neutrino energy to measure oscillations

Systematics on oscillation analysis:

Source of uncertainty	ν_{μ} CC	ν_e CC
Flux and common cross sections		
(w/o ND280 constraint)	21.7%	26.0%
(w ND280 constraint)	2.7%	3.2%
Independent cross sections	5.0%	4.7%
SK	4.0%	2.7%
FSI+SI(+PN)	3.0%	2.5%
Total		
(w/o ND280 constraint)	23.5%	26.8%
(w ND280 constraint)	7.7%	6.8%

Neutrino interactions

Charged Current Quasi-Elastic

Charged Current with Δ Resonance p,n CC RES π

Deep Inelastic Scattering

Final State Interaction: interaction of outgoing nucleons and pions with nucleus may change the actual final state

(pion and proton absorption, production or charge exchange)

CCQE → CC0 π , CCRes → CC1 π , DIS → CCOther (multipions)

From bubble chamber to T2K

 Parametrization of cross-section as a function of nucleon 'form factors' (analogue to EM electron-proton scattering) → effective cut-off parameters : vector and axial mass

Vector term from EM e-p , axial mass from measurements in bubble-chambers (deuterium)

- 2007 measurement from MiniBoone shows large discrepancy with this model!
 - → in modern experiments interaction of neutrino with heavier nuclei (C, O) and not with free nucleon : nuclear effects!
 - Rich recent theoretical development : long range correlation between nucleons (aka RPA)

possibility of **interactions with n-p pairs** (aka 2p2h or MEC effects)

$CC0\pi$ activities in JENNIFER

Measurement of cross-section on Carbon (same measurement on water on-going)

 Identification of variables sensitive to 2p2h effects: eg p-μ angle

problem: dependence on 2p2h models and FSI

 Study of the recent models and reconsider uncertainty on xsec

$CC1\pi$ measurements in JENNIFER

Process most affected by FSI uncertainty: big background from DIS with pion reabsorption

First measurement on water!

Measurement on Carbon is ongoing

1000 2000 3000 4000 5000 6000 7000 8000 900010000

Muon momentum (MeV/c)

Importance of antineutrino analysis

If CP phase in PMNS matrix not $0 \rightarrow$ difference between v and anti-v oscillations

<u>CP-violation in leptonic sector may be the key to understand matter-antimatter asymmetry in the universe</u>

Muon momentum (MeV/c)

Anti-v cross-section in JENNIFER

For CP phase measurement from comparison of v VS anti-v oscillation the knowledge of the v VS anti-v cross-section is a crucial systematics :

• Anti-v Inclusive Charged Current cross-section ongoing

 MEC effects in CC0π are very different between v and anti-v : joined measurement may univoquely identify the existance of MEC

$$\frac{d\sigma^{\nu n}_{CC}}{dQ^2} - \frac{d\sigma^{\bar{\nu}p}_{CC}}{dQ^2} = \frac{G_F^2|V_{ud}|^2(s-u)Q^2}{4\pi(p_{\nu}\cdot p_{N_i})^2}G_A(F_1+F_2)$$

INFN, Padova

Cross-fertilization from JENNIFER

■ First set of meetings between JENNIFER groups (+ other T2K collaborators) just ended : very fruitful discussions!

Presented here the measurements where JENNIFER groups are main drivers \rightarrow 2 papers (CC0 π , CC1 π) being written! More to come!

- Discussions about comparison of tools and strategies between different JENNIFER groups to design future analyses:
 - CC0π xsec vs MEC measurement
 - uncertainties on the theoretical modeling \rightarrow how to design a model-independent MEC search
 - scaling $C \to O$: systematics studied in $CC1\pi$ analysis to be re-used in $CC0\pi$ water analysis
 - first discussions through a joined CC0π v VS anti-v cross-section measurement

Conclusions

- Neutrino cross-section measurements are very interesting for (nuclear) physics and a crucial systematics for measurement of v oscillation (eg. CP phase)
- Future experiments (DUNE, HK) claim 1 % uncertainty on signal normalization : current knowledge from models ~10 %

Only T2K can make the jump 10 $\% \rightarrow$ 1 % possible !!!

■ JENNIFER groups are the most active in this field and are producing world leading measurements. JENNIFER funding is allowing to setup common projects/strategy through future analyses

Expected delivrables:

report on antinu analysis (EDM:24)

report on MEC searches (EDM:48)