Rare α and β decays

V.I. Tretyak

Institute for Nuclear Research, Kyiv, Ukraine

- 1. Introduction
- 2. Recent searches and discoveries of rare α decays (¹⁵¹Eu, ¹⁸⁰W, ^{178m2}Hf^{*}, ¹⁹⁰Pt^{*}, ^{204,206,207,208}Pb, ²⁰⁹Bi, ²⁰⁹Bi^{*})
- 3. Investigations of rare β decays (⁴⁸Ca, ⁵⁰V, ⁹⁶Zr, ¹¹³Cd, ¹¹⁵In^{*}, ¹²³Te, ^{180m}Ta, ²²²Rn)
- 4. Observation of emission of e⁺e⁻ pairs in α decay of ²⁴¹Am
- **5.** Conclusions

1. Introduction

Classification of radioactive decays:

Old known α , β , γ **decays**

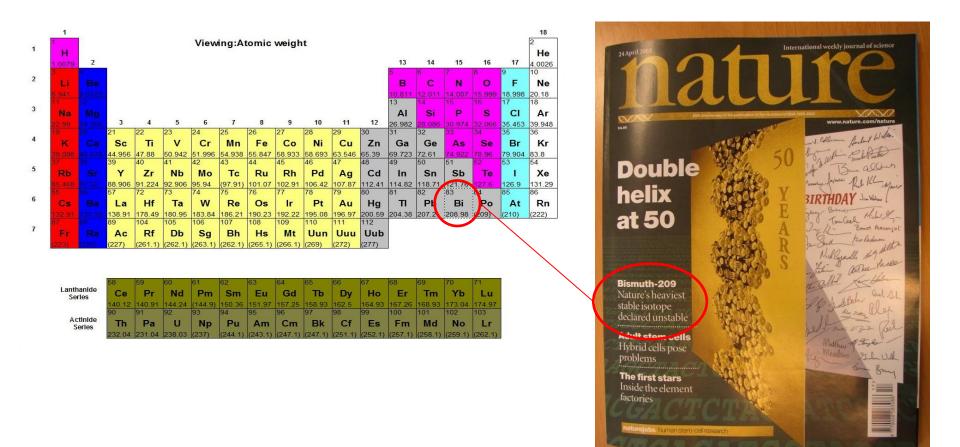
- α : (A,Z) → (A–4,Z–2), starting from ¹⁰⁶Te to superheavy;
 - T_{1/2} from 10⁻⁸ s (²¹⁷Ac) to 10¹⁹ y (²⁰⁹Bi)
- β: (A,Z) → (A,Z±1), from ³H; from 10⁻² s (¹¹Li) to 10¹⁶ y (¹¹³Cd)
- γ : (A,Z)^{*} → (A,Z), from 10⁻¹² s to 10⁵ y (^{186m}Re)

Cluster decays: emission of nuclides heavier than α particle, from ¹⁴C to ³⁴Si (~40 mothers from ²²¹Fr to ²⁴²Cm, residue close to double magic ²⁰⁸Pb – "lead radioactivity"), 10³ – 10²⁰ y; predicted in 1980 (or earlier?), observed in 1984

2 β decays: allowed in SM 2 β 2 ν in 13 nuclei (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U + ⁷⁸Kr, ¹³⁰Ba), 10¹⁸ – 10²⁴ y; forbidden in SM 2 β 0 ν T_{1/2}>10²⁵ y (in best cases of ⁷⁶Ge, ¹³⁶Xe; claim for observation in ⁷⁶Ge)

Spontaneous fission: heavy nuclei from 232 Th; T_{1/2} from 10⁻³ s (264 Hs) to 10¹⁹ y (235 U)

p, 2p, 3p, 2n, ...: in short living isotopes (~40 mothers); from ps to s

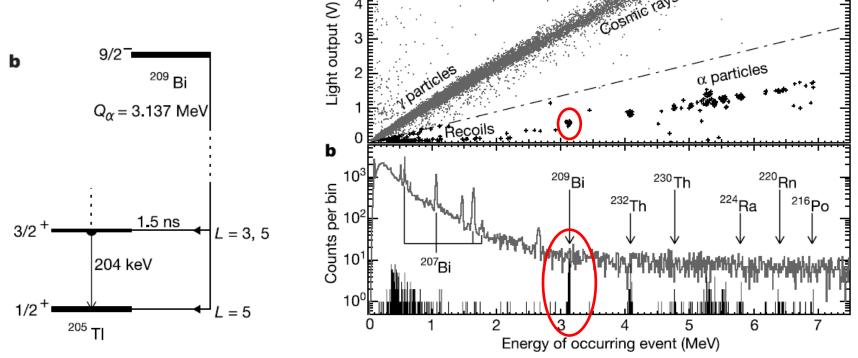

2. Recent searches and discoveries of rare α decays

Recently discovered α decays:

 $\begin{array}{l} 2003-{}^{209}\text{Bi}\\ 2003-{}^{180}\text{W}\\ 2007-{}^{151}\text{Eu}\\ 2007-{}^{178\text{m}2}\text{Hf}^*\\ 2011-{}^{190}\text{Pt}^*\\ 2012-{}^{209}\text{Bi}^*\\ \end{array}$

Limits: 2012 – ¹⁵¹Eu^{*} 2013 – ^{204,206,207,208}Pb Until 2003, ²⁰⁹Bi was considered as the heaviest stable isotope. However, in 2003 its alpha decay was discovered by P. De Marcillac et al., Nature 422 (2003) 876.

To-date, it has the longest $T_{1/2}^{\alpha} \approx 10^{19}$ y (for g.s. to g.s. transition).

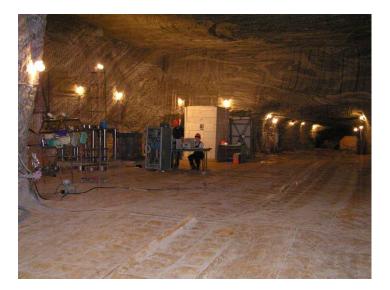


²⁰⁹Bi

Bi₄Ge₃O₁₂ scintillating bolometer 46 g, 20 mK (for ²⁰⁹Bi - δ =100%) Heat and light signals – discrimination of α and β/γ events by ratio of light/heat

Measurements (at Earth level) – 5 days, 128 observed events at Q_{α} = 3.137 MeV

 $T_{1/2} = (1.9\pm0.2) \times 10^{19} \text{ y} - \text{the biggest half life ever measured for } \alpha \text{ decays}$ (g.s. to g.s.) a = 5

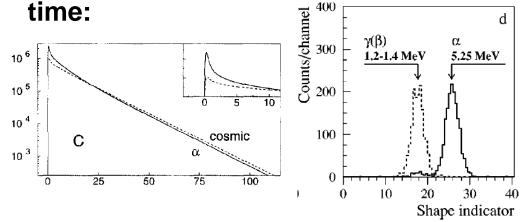


180W

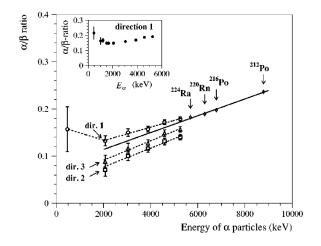
F.A. Danevich et al., Phys. Rev. C 67(2003)014310

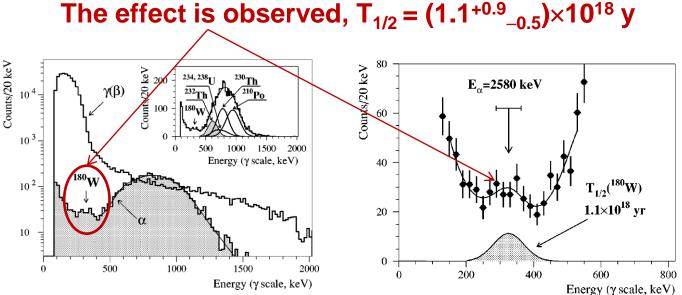
CdWO₄ scintillator, 330 g

Solotvina underground laboratory (Ukraine, 1000 m w.e.) 2975 h of measurements in low background set-up



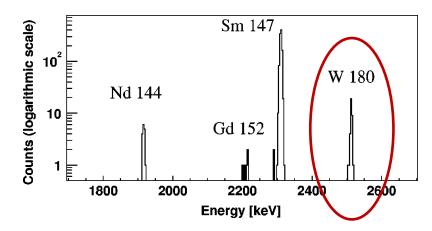
 Q_{α} = 2.516 MeV ¹⁸⁰W (δ = 0.12%)




CdWO₄ crystals, Lviv, Ukraine, 2002

Pulse shape discrimination between α and β/γ events thanks to different evolution of scintillating signal in

Quenching of scintillation signals from alpha particles (observed energy of α 's is ~0.14 of their real energy):



(1) Peak belongs to α particles (thanks to pulse-shape discrimination) (2) Correct energy (3) $T_{1/2}$ in agreement with theoretical expectations 9

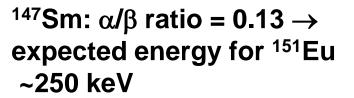
Confirmation: C. Cozzini et al., Phys. Rev. C 70(2004)064606

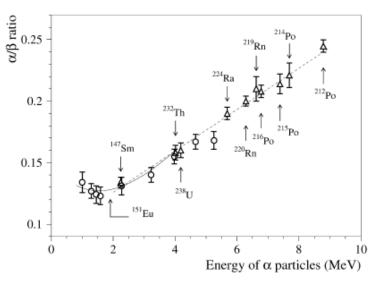
CRESST, CaWO₄ scintillating bolometer 300 g, ~15 mK, FWHM = ~18 keV, ~2300 h of measurements, low background set-up at LNGS (3600 m w.e. underground)

 $T_{1/2}$ = (1.8±0.2)×10¹⁸ y Measured Q_α = 2516.4 ± 1.1(stat) ± 1.2(syst) keV

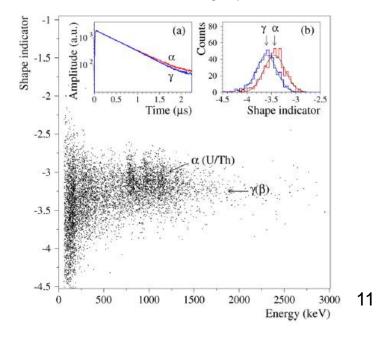
Further observations:

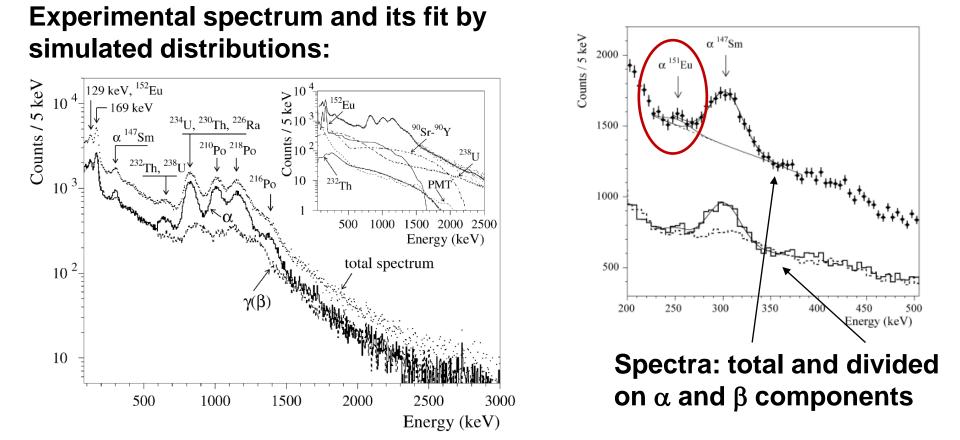
 $T_{1/2} = (1.0^{+0.7}_{-0.3}) \times 10^{18} \text{ y} - \text{CaWO}_4, \text{ Yu.G. Zdesenko et al., NIMA 538(2005)657} \\ (1.3^{+0.6}_{-0.5}) \times 10^{18} \text{ y} - \text{ZnWO}_4, \text{ P. Belli et al., NIMA 626-627(2010)31}$


Now it is routine observation in many rare events' experiments. ¹⁰

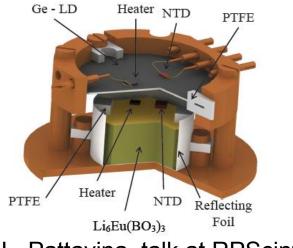

P. Belli et al., Nucl. Phys. A 789(2007)15

 α decay ¹⁵¹Eu (5/2⁺) \rightarrow ¹⁴⁷Pm (7/2⁺), δ = 47.81%, Q_α = 1.964 MeV

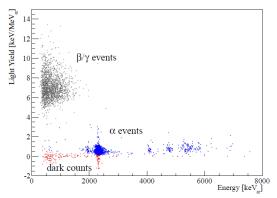

Our theoretical estimations with few models: $T_{1/2} = 3.0 \times 10^{17} - 3.6 \times 10^{18}$ y The effect could be observed with $CaF_2(Eu)$ scintillator with 0.4% Eu.


LNGS (3600 m w.e.), low background set-up, 7426 h, CaF₂(Eu) 370 g

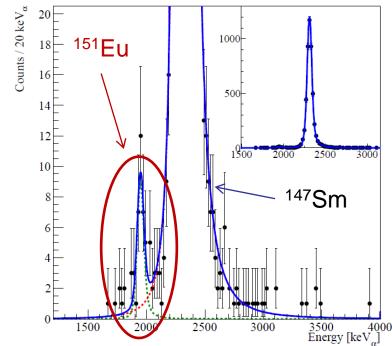
Pulse shape discrimination between α and β/γ events:



Peak's energy: $255\pm7 \text{ keV} \rightarrow E_{\alpha}=1.98\pm0.04 \text{ MeV}$ (expected $E_{\alpha}=1.912$) Number of ¹⁵¹Eu nuclei (ICP-MS): $(2.8\pm0.7)\times10^{21}$; S = 302 ± 232 counts $T_{1/2} = 5^{+11}_{-3}\times10^{18} \text{ y}$

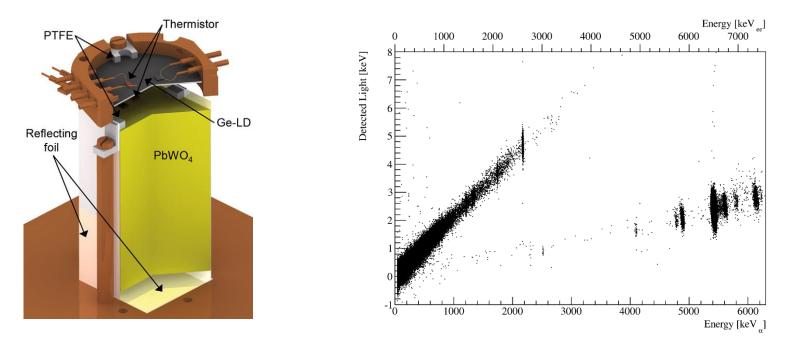

Later calculations: $8.5 \times 10^{18} \text{ y} - \text{O.A.P.}$ Tavares et al., Phys. Scr. 76(2007)C163 $1.3 \times 10^{18} \text{ y} - \text{Y.B.}$ Qian et al., Phys. Rev. C 84(2011)064307 $1.0 \times 10^{19} \text{ y} - \text{Y.B.}$ Qian et al., Phys. Rev. C 85(2012)027306 $8.0 \times 10^{17} \text{ y} - \text{K.P.}$ Santhosh et al., Int. J. Mod. Phys. E 22(2013)1350081 **Confirmation:**

LUCIFER, $Li_6Eu(BO_3)_3$ scintillating bolometer 6.15 g, FWHM = 65 keV, 462 h of measurements, low background set-up at LNGS (3600 m w.e. underground)



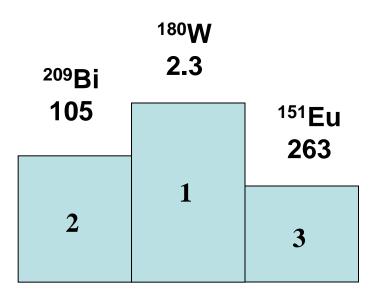
L. Pattavina, talk at RPScint'2013 workshop, Kyiv, 17-20.09.2013

Excellent discrimination of β/γ events from α events


S = 38 ± 8 , T_{1/2} = (4.6±1.2)×10¹⁸ y Measured Q_a = 1948.9±8.6 keV

All naturally occuring Pb isotopes are potentially α decaying, $Q_{\alpha} = 0.392 - 1.970$ MeV. Theoretical expectations: $T_{1/2} = 10^{35} - 10^{189}$ y.

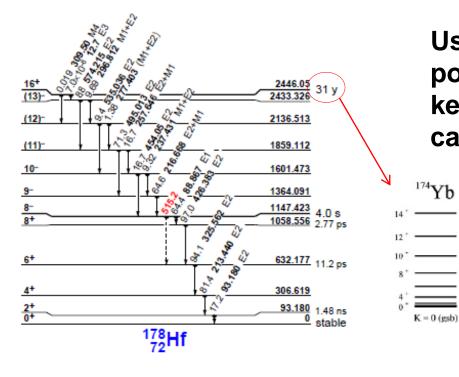
LUCIFER, PbWO₄ scintillating bolometer (with ancient Roman lead: activity of 210 Pb < 4 mBq/kg, while for usual Pb it is ~ $10^2 - 10^3$ Bq/kg), 454 g, LNGS (3600 m w.e.), low background set-up, 586 h


Only limits are derived: $T_{1/2} > 1.4 \times 10^{20} - 2.6 \times 10^{21}$ y (for ²⁰⁴Pb - 3 orders of magnitude better than previous exp. limit)

Observations of rare g.s. to g.s. α decays (in sports terminology):

Half life, y 209Bi 1.9×10^{19} 5×10^{18} 180W 1.2×10^{18} 1 3

KINR ROSE- KINR & DAMA BUD Activity, decays in 1 g of element (of natural isotopic composition) during 1 year



ROSE- KINR KINR BUD & DAMA

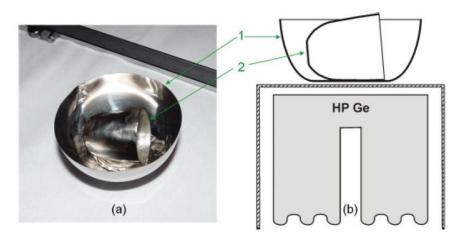
> $δ(^{209}Bi) = 100\%$ $δ(^{151}Eu) = 47.81\%$ $δ(^{180}W) = 0.12\%$

 178m2 Hf $\rightarrow ^{174}$ Yb^{*}

^{178m2}Hf – extremely interesting nucleus: $E_{exc} = 2446$ keV but $T_{1/2} = 31$ y

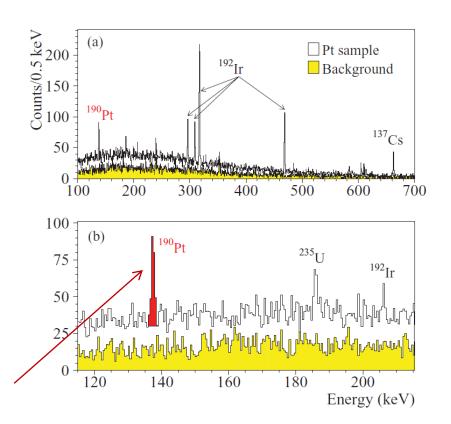
Usually it decays through IT, but potentially it is α decaying, Q=4526 keV; several excited levels of ¹⁷⁴Yb can be populated.

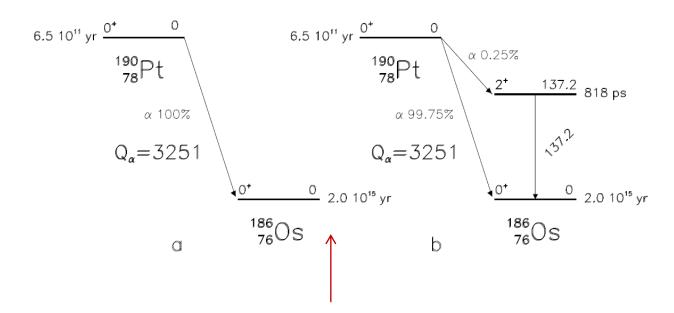
TABLE I. Estimated partial half-lives for α decay of the ¹⁷⁸Hf^{m2} isomer to levels in the ground-state band of ¹⁷⁴Yb. The calculations are discussed in the text.


Transition $I_i \rightarrow I_f$	E_{α} [MeV]	$T_{1/2}^{\alpha,f}$ [yr]	
$16^+ \rightarrow 0^+$	4.43	8.6×10^{10}	
$16^+ \rightarrow 2^+$	4.35	3.0×10^{9}	mont
$16^+ \rightarrow 4^+$	4.18	3.4×10^{8}	most
$16^+ \rightarrow 6^+$	3.91	1.2×10^{8}	prob
$16^+ \rightarrow 8^+$	3.56	2.8×10^{8}	-
$16^+ \rightarrow 10^+$	3.12	2.7×10^{9}	able
$16^+ \rightarrow 12^+$	2.61	7.2×10^{10}	
$16^+ \rightarrow 14^+$	2.03	5.5×10^{13}	

First observed in 2007: source with 3.5×10^{13} nuclei of 178m2 Hf (176 Yb target exposed to 36 MeV He ion beam) deposited on thin Be foil between 2 CR-39 foils, ~1 y exposure, observation of α tracks after CR-39 etching. Result: 307 (±25?) α events in excess, $T_{1/2}^{*} = (2.5 \pm 0.5) \times 10^{10}$ y $^{190}Pt \rightarrow ^{186}Os^{*}$ (E_{exc}=137.2 keV) P. Belli et al., PRC 83(2011)034603

G.s. to g.s. decay ¹⁹⁰Pt \rightarrow ¹⁸⁶Os is known since 1921: Q=3251 keV, T_{1/2}=(6.5±0.3)×10¹¹ y;

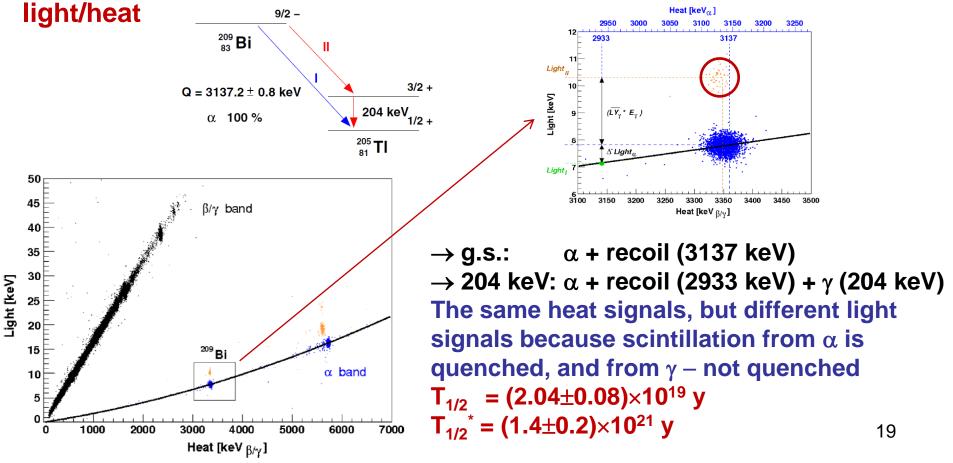

Transition to the 1st excited level was observed only in 2011


LNGS (3600 m w.e.), HPGe 468 cm³, low background set-up, 1815 h, 42.5 g of natural Pt (¹⁹⁰Pt: δ =0.014%; new value (2011) δ =0.012%)

Measured energy = 137.1±0.1 keV Peak =132±17 counts (8σ effect) The peak is absent in background

T_{1/2}^{*} = 2.6^{+0.4}_{-0.3}(stat)±0.6(syst)×10¹⁴ y

Old and new schemes of ¹⁹⁰Pt decay

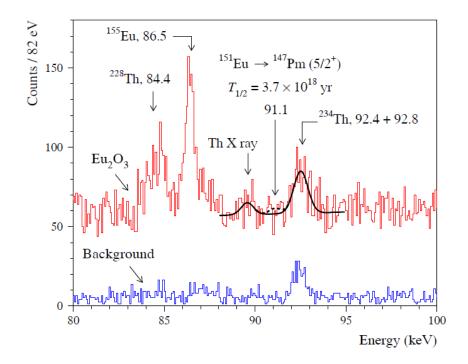

 $T_{1/2}$ limits for other Pt isotopes were also set at the level of $10^{16} - 10^{20}$ y

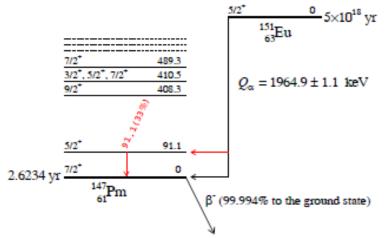
It would be nice to remeasure with different detector and Pt sample

 $^{209}\text{Bi} \rightarrow ^{205}\text{TI}^*$ (E_{exc}=204 keV) J.W. Beeman et al., PRL 108(2012)062501

G.s. to g.s. decay ²⁰⁹Bi \rightarrow ²⁰⁵TI – 2003: Q=3137 keV, T_{1/2}=(1.9±0.2)e18 y Transition to the 1st excited level was observed in 2012

LNGS (3600 m w.e.), $Bi_4Ge_3O_{12}$ bolometer 889 g, few tens mK, 375 h Heat and light signals – discrimination of α and β/γ events by ratio of

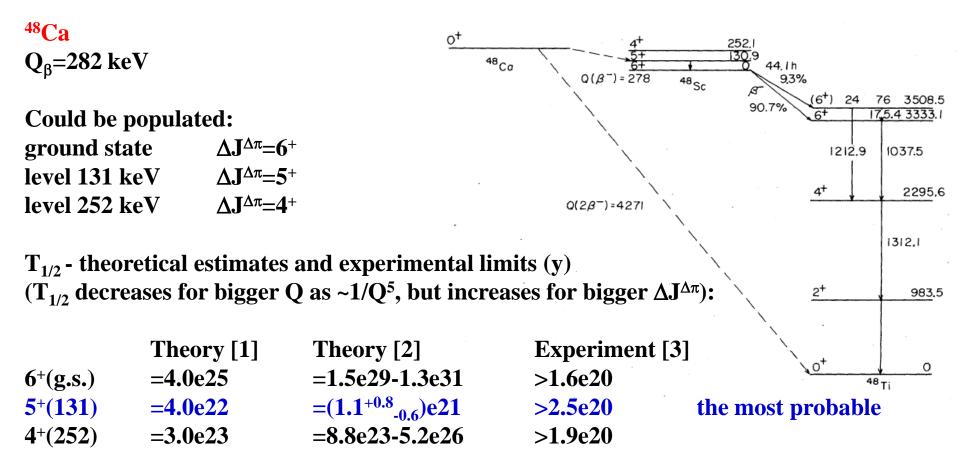



¹⁵¹Eu \rightarrow ¹⁴⁷Pm^{*} (E_{exc}=91 keV) F.A. Danevich et al., EPJA 48(2012)157

G.s. to g.s. decay: T_{1/2} ~ 5×10¹⁸ y

Decays to excited levels are also possible, the most probable to 1^{st} level, E_{exc} =91 keV

HADES (500 m w.e.), high purity Eu₂O₃ 303 g, 2233 h in low-background set-up with HPGe 40 cm³


The effect is absent, only limit: $T_{1/2} > 3.7 \times 10^{18} \text{ y}$

~1 order of magnitude better than previous exp. limits

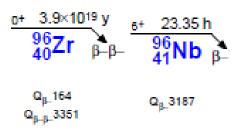
Not far from theor. estimates 10¹⁹–10²⁰ y

3. Investigations of rare β decays

⁴⁸Ca ⁵⁰V ⁹⁶Zr ¹¹³Cd ¹¹⁵In^{*} ¹²³Te ^{180m}Ta ²²²Rn

- [1] R.K. Bardin et al., NPA 158 (1970) 337
- [2] M. Aunola et al., Europhys. Lett. 46 (1999) 577
- [3] A. Bakalyarov et al., JETP Lett. 76 (2002) 545
 - (search for deexcitation γ 's of ⁴⁸Sc, ⁴⁸Ti with Ge detector; however δ (⁴⁸Ca)=0.187%)

At the same time, ⁴⁸Ca can decay also through 2 β decay to ⁴⁸Ti (2nd order process); already observed in few experiments: T_{1/2}(2 β 2 ν , g.s.) = 4.3e19 y. 22 Thus single β decay occurs even with lower probability than 2 β decay - due to big Δ J ^{96}Zr Q_{β} =161 keV


Could be populated:				
ground state	$\Delta J^{\Delta\pi}=6^+$			
level 44 keV	$\Delta J^{\Delta\pi}=5^+$			
level 146 keV	$\Delta J^{\Delta\pi}=4^+$			

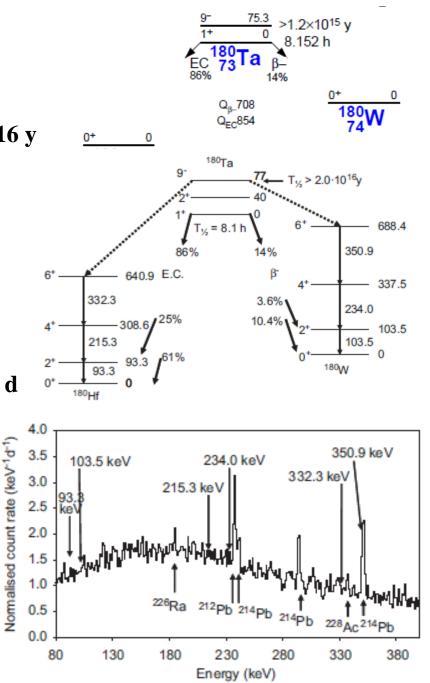
 $T_{1/2}$ - theoretical estimates and experimental limits (y):

	Theory [1]	Experiment [2]	
6+(g.s.)	=1.2e29	>3.8e19	
5+(44)	=2.4e20	>3.8e19 the most probable	
4+(146)	= 4.9e22	>3.8e19	

- [1] H. Heiskanen et al., J. Phys. G 34 (2007) 837
- [2] M. Arpesella et al., Europhys. Lett. 27 (1994) 29 (search for deexcitation γ 's of ⁹⁶Mo with Ge detector; δ (⁹⁶Zr)=2.80% - much higher than that for ⁴⁸Ca; worth to remeasure with higher sensitivity?)

2β decay of ⁹⁶Zr to ⁹⁶Mo: $T_{1/2}(2\beta 2\nu, g.s.) = (2.3\pm0.4)e19$ y (NEMO-3'2008). Geochemical 2β $T_{1/2}$: =(3.9±0.9)e19 Kawashima'1993 and =(0.9±0.3)e19 Wieser'2001. Contribution of single β decay to geochemical $T_{1/2}$? 23

180mTa


Extremely interesting case: g.s. state quickly decays ($T_{1/2}$ ~8 h); isomeric state (E_{exc} =77 keV) has very big $T_{1/2}$ >2e16 y $\delta(^{180m}Ta)=0.012\%$

EC
$$\Delta J^{\Delta \pi} = 3^{-1}$$

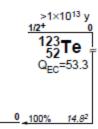
β⁻ $\Delta J^{\Delta \pi} = 3^{-1}$

Last experimental search:

M. Hult et al., Appl. Rad. Isot. 67 (2009) 918 1500 g of natural Ta, sandwich HP Ge, underground HADES laboratory (500 m w.e.), 68 d $T_{1/2}(EC) > 4.5e16$ y $T_{1/2}(\beta^{-}) > 3.7e16$ y

$\begin{array}{ll} \mbox{Theoretical $T_{1/2}$ estimations:} \\ IT > 1e27 \ y & E.B. \ Norman, PRC \ 24(1981)2334 \\ EC, \ \beta^- & calculations \ are \ absent \end{array}$

¹²³Te $\delta(^{123}\text{Te})=0.89\%$

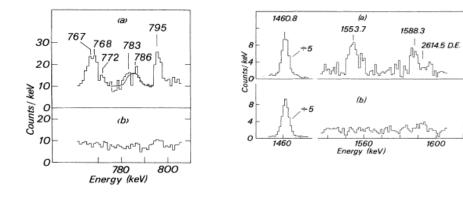

Many puzzling experimental situations (only K EC was searched for):

1. D.N. Watt et al., Philos. Mag. 7 (1962) 105 Detection of Sb X rays $E_X = 26.1$ keV after EC with prop. counter, $T_{1/2} = (1.24 \pm 0.10)e13$ y This result was present in all nuclear tables many years

2. A. Alessandrello et al., PRL 77 (1996) 3319 Four 340 g TeO₂ bolometers, underground measurements (LNGS, 3600 m w.e.), 1548 h Peak at total energy release of 30.5 keV (E_K of Sb) is observed, $T_{1/2}^{K}$ =(2.4±0.9)e19 y - 6 orders of magnitude higher! Result of Watt'1962 was explained by excitation of Te atoms by cosmic rays and nat. radioactivity that gives E_X =27.3 keV, and by not enough good resolution of prop. counter

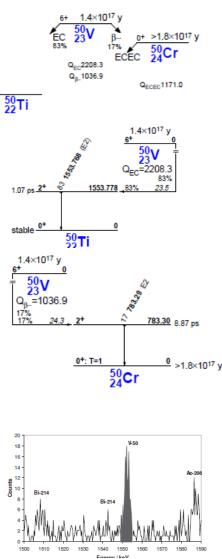
3. A. Alessandrello et al., PRC 67 (2003) 014323 Twenty 340 g TeO₂ bolometers, LNGS (3600 m w.e.), peak at 30.5 keV is not present, $T_{1/2}^{K}$ >5.0e19 y !

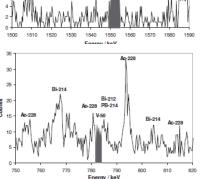
However, this peak appeared once more after all crystals were dismounted for surface cleaning at the sea level for ~2 months period and reinstalled underground. Explanation of Alessandrello'1996: peak at 30.5 keV is due to EC of ¹²¹Te (Q=1036 keV, $T_{1/2}$ =16.78 d); ¹²¹Te is produced by neutron capture on ¹²⁰Te (δ =0.09%) ! 25



⁵⁰V δ=0.250%

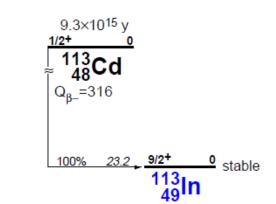
One of only 3 nuclei where β processes with $\Delta J^{\Delta \pi} = 4^+$ were observed (other two are ¹¹³Cd and ¹¹⁵In)

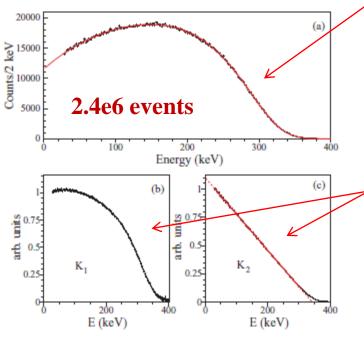

Low natural abundance (δ =0.250%), big T_{1/2} (difficult to study)


Experiment 1989: J.J. Simpson et al., PRC 39 (1989) 2367 3 Ge detectors, 337.5 g of natural V, salt mine, 1109 h Search for γ 's of 1554 keV (EC) and 783 keV (β^- decay)

Experiment 2011: H. Dombrowski et al., PRC 83 (2011) 054322 Ge detector, 255.8 g of natural V, Asse salt mine (1200 m w.e.), 2347 h Peak 783 keV is not observed: $T_{1/2}(EC)=(2.3\pm0.3)e17$ y, $T_{1/2}(\beta^-)>1.7e18$ y

Only γ 's are detected; T_{1/2} is measured but not shape of β spectrum



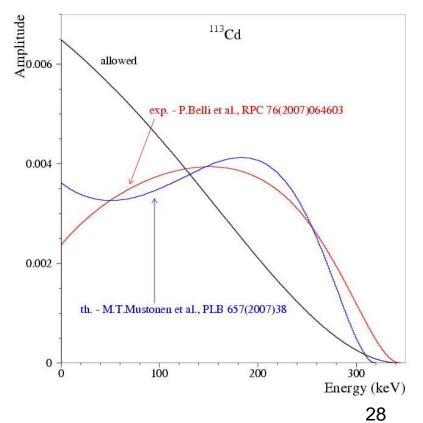

¹¹³Cd $\delta = 12.22\%$

 $1/2^+ \rightarrow 9/2^+ \quad \Delta J^{\Delta \pi} = 4^+ \text{ classified as 4 FNU}$

Was searched for since 1940, first observed in 1970, first measurement of β shape in 1988 with CdTe detector

One of the last experiments: P. Belli et al., PRC 76 (2007) 064603 CdWO₄ scintillator 434 g, LNGS (3600 m w.e.), 2758 h

Experimental spectrum (S/B ratio = 1/50) and its fit by: $f(E) = \int_{0}^{Q_{\beta}} \rho(E')R(E, E')dE', \qquad \rho(E) = wpF(E, Z)(Q_{\beta} - E)^{2} \cdot C(w)$ $C(w) = p^{6} + 7a_{1}p^{4}q^{2} + 7a_{2}p^{2}q^{4} + a_{3}q^{6}, \qquad R(E, E') = \frac{1}{\sqrt{2\pi}\sigma(E')} \exp\left(-\frac{(E - E')^{2}}{2\sigma^{2}(E')}\right)$


Kurie plots not accounting and accounting for correction factor C(w)

Big statistics, purity of crystal lead to determination of $T_{1/2}$ with small uncertainty: $T_{1/2}$ =(8.04±0.05)e15 y 27

Experimental spectrum is excellently described as 3 FU ($\Delta J^{\Delta \pi} = 4^{-}$): C(E) = P⁶+c₁P⁴Q²+c₂P²Q⁴+c₃Q⁶ with c₁ = 7.112, c₂ = 10.493, c₃ = 3.034 (small puzzle ...)

Recent theoretical description as 4 FNU: M.T. Mustonen et al., PRC 73 (2006) 054301 + PRC 76 (2007) 019901(E) M.T. Mustonen et al., PLB 657 (2007) 38 (shape different from the experimental one)

Last experimental work: J.V. Dawson et al., NPA 818 (2009) 264 16 CdZnTe detectors, LNGS, 6.58 kg×d Confirmed $T_{1/2}$ and shape of spectrum, but gave different Q_{β} value (322 keV instead of 345 keV in Belli'2007) (another small puzzle ...)

¹¹⁵In δ=95.71%

 $9/2^+ \rightarrow 1/2^+ \quad \Delta J^{\Delta \pi} = 4^+ \text{ classified as 4 FNU}$

On contrary to ¹¹³Cd, spectrum shape was measured only in one work: L. Pfeiffer et al., PRC 19 (1979) 1035

Liquid scintillator loaded by In at 51.2 g/l, measurements at the sea level What could be improved:

- (1) Background, in particular n capture by ¹¹⁵In (and ¹¹⁶In is β ⁻ unstable, Q=3275 keV)
- (2) Strong quenching of low-energy electrons in liquid scintillator (was not discussed)
- (3) Response function (resolution) "is not known and is not readily measurable"
- (4) Q value was obtained as 492.7(13.6) keV and 470.6(5.2) keV; today value is 499(4) keV
- (5) $T_{1/2}=(4.41\pm0.24)e14$ y (since 1979 in all tables), but in some disagreement with previous results (f.e. G.B. Beard et al., PR 122 (1961) 1576: $T_{1/2}=(6.9\pm1.5)e14$ y)
- (6) Energy threshold around 50 keV
- (7) Shape is described as polynomial in E

Remeasuring in low background conditions would be very interesting!

Recent theoretical description as 4 FNU: M.T. Mustonen et al., PRC 73 (2006) 054301 + PRC 76 (2007) 019901(E) M.T. Mustonen et al., PLB 657 (2007) 38

$^{115}\text{In} \rightarrow ^{115}\text{Sn}^*$

First observation of β decay of ¹¹⁵In to the first excited level (E_{exc}=497.4 keV) of ¹¹⁵Sn: C.M. Cattadori et al., NPA 748 (2005) 333 + Phys. At. Nucl. 70 (2007) 127 LNGS, ~1 kg In, 4 HP Ge detectors 225 cm³ each, 2762 h In + 1601 h background

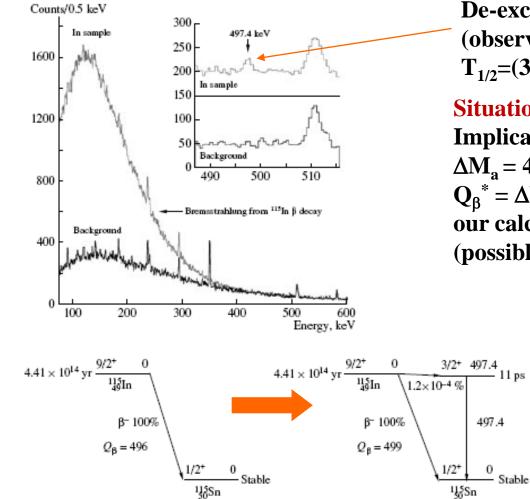


Fig. 2. Old (a) and new (b) schemes of $^{115}In \rightarrow ^{115}Sn \beta$ decay (energy in keV).

De-excitation γ 's give peak at 497.4 keV (observation with 4σ 's), (1.18 \pm 0.31)e-6 yield, T_{1/2}=(3.7 \pm 1.0)e20 y

Situation in 2005:

Implications for neutrino mass: $\Delta M_a = 499 \pm 4 \text{ keV}$ (Audi et al., 2003) $Q_{\beta}^* = \Delta M_a - E_{exc} = 1.6 \pm 4 \text{ keV}$ our calculation: $Q_{\beta}^* = 460 \text{ eV}$ (possibly the lowest known measured Q_{β} value)

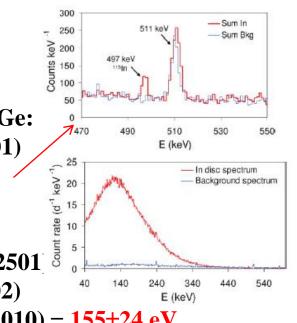
> Evidently: $m_{\nu} < Q_{\beta}$ Could be $Q_{\beta} \sim 1 \text{ eV}$?

Need to re-measure ΔM_a (¹¹⁵In-¹¹⁵Sn, δ =4 keV) and E_{exc} (δ =22 eV) with greater accuracy

E.G. Myers, Florida St. Un.: M_a with δ~10 eV for A=100

Subsequent events:

1. Confirmation of observation of ¹¹⁵In \rightarrow ¹¹⁵Sn^{*} decay HADES underground laboratory (500 m w.e.), 2566 g of In, 3 Ge: T_{1/2}=(4.1±0.6)e20 y (E. Wieslander et al., PRL 103(2009)122501) T_{1/2}=(4.3±0.5)e20 y (E. Andreotti et al., PRC 84(2011)044605)


2. New measurements of difference Δ of ¹¹⁵In–¹¹⁵Sn masses $\Delta = 497.680 \pm 0.170$ keV (E. Wieslander et al., PRL 103(2009)122501) $\Delta = 497.489 \pm 0.010$ keV (B.J. Mount et al., PRL 103(2009)122502) Thus, Q* value is: Q* = $\Delta - E_{exc} = (497.334 \pm 0.022) - (497.489 \pm 0.010) = 155 \pm 24$ eV

Really the lowest Q value of a known β decay (¹⁶³Ho – 2.555 keV, ¹⁸⁷Re – 2.469 keV) (and highest (partial) T_{1/2})

Paradoxical situation: masses of the nuclei (~100 GeV) are known with precision 10 eV while E_{exc} (~500 keV) – with precision 22 eV (needs to be remeasured)

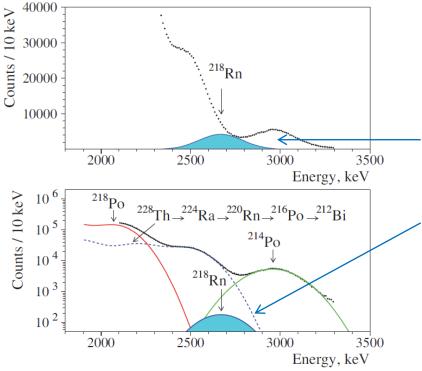
3. Influence of different chemical environment on $T_{1/2}$ (In, InCl₃, etc.). If to use dependence $T_{1/2} \sim 1/Q^5$ and change Q on 1 eV only, we will obtain $(155/154)^5 = 1.03 - 3\%$ change in $T_{1/2}$. Difficult but maybe possible to see (current accuracy – 12%).

4. Deviations from theoretical spectrum due to non-zero v mass? Theoretical spectrum $(\Delta J^{\Delta \pi} = 3^+ - \text{classified as 2 FU})$ was calculated in R. Dvornicky, F. Simkovic, AIP Conf. Proc. 1417(2011)33. Very difficult experimentally.

²²²**Rn**

BaF_2 scintillator, 1.714 kg, LNGS (3600 m w.e.), 101 h. High contamination by $^{226}Ra-7.8$ Bq/kg.

In all nuclear tables, ²²²Rn (in chain of ²³⁸U) is 100% α decaying. Usual chain:


However, β decay of ²²²Rn also is energetically allowed with Q=24±21 keV. In this case:

²²²Rn(0⁺) \rightarrow ²²²Fr(2⁻), $\Delta J^{\Delta \pi}$ =2⁻; T_{1/2} can be estimated using average (for 216 known 1 FU β decays) log ft = 9.5 and LOGFT tool at NNDC as T_{1/2} = 4.8×10⁵ y (for Q=24 keV; 6.7×10⁴ y for Q=45 keV and 2.4×10⁸ y for Q=3 keV).

Expected E and Δt are known, and it is possible to distinguish between α and β events in BaF₂ scintillator because of difference in their time shapes.

The following sequence of events was searched for $(^{222}Fr \rightarrow ^{222}Ra \rightarrow ^{218}Rn \rightarrow ^{214}Po)$: (1) event at 30 – 2207 keV $(^{222}Fr Q_{\beta} + FWHM_{\beta})$ and with β time shape;

- (2) next event at 2109 2623 keV (222 Ra E_{α} + FWHM_{α} in γ scale), with α time shape and in time interval [1.65 ms, 1.65 ms + 5×38.0 s];
- (3) last event at 2398 2946 keV (²¹⁸Rn E_{α} + FWHM_{α} in γ scale), with α time shape and in time interval [1.65 ms, 1.65 ms + 5×35 ms].

7.0×10⁵ selected potential ²¹⁸Rn events.

Maximal effect consistent with exp. data, $T_{1/2}^{\beta} > 122 d$ (too conservative limit)

Limit from fit by model (known α peaks from contamination), $T_{1/2}^{\beta} > 8.0$ y.

4. Observation of emission of e^+e^- pairs in α decay of ²⁴¹Am

R. Bernabei et al., EPJA 49 (2013) 64

β decay - internal bremsstrahlung (IB) and internal pair production (IPP) are known effects α decay - IB is known; what about IPP?

In fact, it was observed previously in 3 experiments (1973, 1986, 1990):

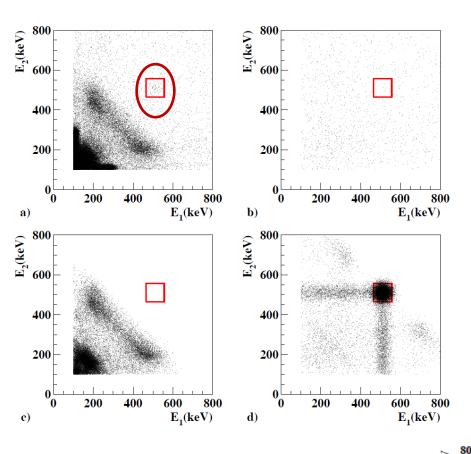
Source	Experiment			Th	eory		-	
	$\lambda \; (\times 10^{-9})$	Detectors	Year	Ref.	$\lambda (\times 10^{-9})$	Year	Ref.	-
²¹⁰ Po	5.3 ± 1.7	NaI(Tl)+Ge(Li)	1986	[10]	4.4	1978	[6]	λ
²³⁹ Pu	7 ± 9	NaI(Tl)+Ge(Li)	1986	[10]	2.2	1978	[6]	-
$^{241}\mathrm{Am}$	3.1 ± 0.6	NaI(Tl)+Ge(Li)	1973	[2]	1.2	1973	[2]	-
	2.15 ± 0.25	NaI(Tl)+Ge(Li)	1986	[10]	2.3	1978	[6]	
	$1.8 \pm 0.7^{(a)}$	Plastics+Ge	1990	[16]				
	4.70 ± 0.63	NaI(Tl) pairs	2013	This work				

 $\lambda = \frac{A_{e^+e^-}}{A}$

[2] A. Ljubicic, B.A. Logan, Phys. Rev. C 7 (1973) 1541
[6] K. Pisk et al., Phys. Rev. C 17 (1978) 739
[10] J. Stanicek et al., Nucl. Instrum. Meth. B 17 (1986) 462
[16] T. Asanuma et al., Phys. Lett. B 237 (1990) 588

Theory, which describes the effect as creation of bremsstrahlung γ during α acceleration with E_{γ} > 1.022 MeV which borns e⁺e⁻, gives λ value of a correct order of magnitude. ³⁵

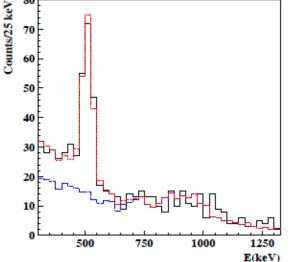
In the DAMA experiment [R. Bernabei et al., Int. J. Mod. Phys. A 28 (2013) 1330022], ²⁴¹Am sources are used for weekly calibrations. So, an idea appeared to check the old α -IPP results, at the first time deep underground (avoiding influence of cosmic rays) and in low-background high-pure set-up (suppressing presence of β^+ contaminations).


DAMA/LIBRA: 25 Nal(TI) scintilaltors, 9.70 kg each, 10.2×10.2×25.4 cm.

1st run: 6 ²⁴¹Am sources and 6 Nal(TI) pairs (all other Nal(TI)'s – as anticoincidence); 1.29 d with ²⁴¹Am and 24.6 d background; total ²⁴¹Am activity 200.8 kBq; result: excess rate of double coincidences in 465-557 keV ($\pm 2\sigma$ region) s = 4.87 \pm 0.87 counts/d/Nal(TI)pair

2nd run: 3 ²⁴¹Am sources and 3 Nal(TI) pairs, 2.63 d (²⁴¹Am) + 24.6 d (bkg), 98.9 kBq, s = 5.23±0.90 counts/d/Nal(TI)pair

Exp. spectrum with ²⁴¹Am



Exp. background

Simulated e⁺ annihilation

Analysis of data: presence of ²⁴³Am, ²³³Pa, ¹⁵⁴Eu Spectrum of one Nal(TI) when energy of second is 465-557 keV

S=220±30 counts λ=(4.70±0.63)×10⁻⁹

Many possible mimicking contributions were analyzed and excluded:

- β^+ emitters in chain ²⁴¹Am $\rightarrow ... \rightarrow {}^{209}Bi$;
- high energy γ rays in chain ²⁴¹Am $\rightarrow ... \rightarrow ^{209}$ Bi;
- α decays of ²⁴¹Am to high energy levels of ²³⁷Np;
- (α ,n) and (α ,p) reactions on isotopes of C, N, O, Cu in surrounding materials which lead to creation of β^+ emitters;
- (α ,n γ) and (α , γ) reactions leading to high energy γ 's;
- ²⁴¹Am fission and cluster decays.

The observed excess cannot be explained by any side process.

It would be interesting to repeat such studies with HPGe detectors with high energy resolution.

5. Conclusions

There was a little interest in investigations of rare α and β decays since ~1970's – no T_{1/2} were measured with higher precision, no shapes of β spectra.

However, development of experimental technique lead to improvement in sensitivity, and new decays were observed with extreme characteristics (α with longest T_{1/2} of 10¹⁹ y for ²⁰⁹Bi; β with lowest Q of 155 eV for ¹¹⁵In^{*}; ...). Traditional (HPGe, Nal(TI),...) but also new types of detectors (Li₆Eu(BO₃)₃,...) are used in these investigations.

Interest to β shapes also is growing, in particular for nuclides which create background in rare events' searches.

Many theoretical works also appeared last time (especially in α decay: tens of articles per year).

It could be concluded that investigations of rare β and α decays experience revival now.

Thank you for attention!