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1. Introduction 
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Classification of radioactive decays: 

 

Old known , ,  decays 

     :  (A,Z)  (A4,Z2), starting from 106Te to superheavy;  

          T1/2 from 108 s (217Ac) to 1019 y (209Bi) 

     :  (A,Z)  (A,Z1), from 3H; from 102 s (11Li) to 1016 y (113Cd)  

     :   (A,Z)*  (A,Z), from 1012 s to 105 y (186mRe)  
 

Cluster decays: emission of nuclides heavier than  particle, from  
14C to 34Si (~40 mothers from 221Fr to 242Cm, residue close to double 

magic 208Pb – “lead radioactivity”), 103  1020 y; predicted in 1980 (or 

earlier?), observed in 1984 
 

2 decays: allowed in SM 22 in 13 nuclei (48Ca, 76Ge, 82Se, 96Zr, 
100Mo, 116Cd, 128Te, 130Te, 136Xe, 150Nd, 238U + 78Kr, 130Ba), 1018  1024 y; 

forbidden in SM 20 T1/2>1025 y (in best cases of 76Ge, 136Xe; claim 

for observation in 76Ge) 
 

Spontaneous fission: heavy nuclei from 232Th; T1/2 from 103 s (264Hs) 

to 1019 y (235U) 
 

p, 2p, 3p, 2n, …: in short living isotopes (~40 mothers); from ps to s 
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2. Recent searches and discoveries  

of rare  decays 

Recently discovered  decays: 

   2003 – 209Bi 

   2003 – 180W 

   2007 – 151Eu  

   2007 – 178m2Hf* 

   2011 – 190Pt* 

   2012 – 209Bi* 

 

Limits: 

   2012 – 151Eu* 

   2013 – 204,206,207,208Pb 
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 decays 

Until 2003, 209Bi was considered as the heaviest stable isotope. 

However, in 2003 its alpha decay was discovered by  

P. De Marcillac et al., Nature 422 (2003) 876.   
 

To-date, it has the longest T1/2
  1019 y (for g.s. to g.s. transition). 
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209Bi                           P. De Marcillac et al., Nature 422(2003)876 

 

Bi4Ge3O12 scintillating bolometer 46 g, 20 mK (for 209Bi - =100%)  

Heat and light signals – discrimination of  and / events by ratio of 

light/heat 

Measurements (at Earth level) – 5 days, 128 observed events at Q = 

3.137 MeV 
 

T1/2 = (1.90.2)×1019 y – the biggest half life ever measured for  decays 

(g.s. to g.s.) 
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CdWO4 scintillator, 330 g 
  

Solotvina underground laboratory  

(Ukraine, 1000 m w.e.)  

2975 h of measurements in  

low background set-up 

 

 

 

 

 

 

 

 

 

 

Q = 2.516 MeV 
180W ( = 0.12%) 

180W              F.A. Danevich et al., Phys. Rev. C 67(2003)014310 

Pulse shape discrimination 

between  and / events 

thanks to different evolution 

of scintillating signal in 

time: 

CdWO4 crystals, Lviv, Ukraine, 2002 
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(1) Peak belongs to  particles (thanks to pulse-shape discrimination) 

(2) Correct energy 

(3) T1/2 in agreement with theoretical expectations   

Quenching of scintillation signals  

from alpha particles (observed energy 

of ’s is ~0.14 of their real energy):  

    

The effect is observed, T1/2 = (1.1+0.9
0.5)1018 y 
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Confirmation:                  C. Cozzini et al., Phys. Rev. C 70(2004)064606 

 

CRESST, CaWO4 scintillating bolometer 300 g, ~15 mK, FWHM = ~18 

keV, ~2300 h of measurements, low background set-up at LNGS (3600 

m w.e. underground) 
 

T1/2 = (1.80.2)1018 y 

Measured Q = 2516.4  1.1(stat)  1.2(syst) keV 

 
 

 

 

Further observations:  

T1/2 = 

(1.0+0.7
0.3)1018 y – CaWO4, Yu.G. Zdesenko et al., NIMA 538(2005)657 

(1.3+0.6
0.5)1018 y – ZnWO4, P. Belli et al., NIMA 626-627(2010)31 

 

Now it is routine observation in many rare events’ experiments. 



151Eu    P. Belli et al., Nucl. Phys. A 789(2007)15 

 decay 151Eu (5/2+)  147Pm (7/2+),  = 47.81%, Q = 1.964 MeV 

 

Our theoretical estimations with few models: T1/2 = 3.01017  3.61018 y 

The effect could be observed with CaF2(Eu) scintillator with 0.4% Eu. 

 

LNGS (3600 m w.e.), low background set-up, 7426 h, CaF2(Eu) 370 g 

 
147Sm: / ratio = 0.13             Pulse shape discrimination 

expected energy for 151Eu       between  and / events: 

 ~250 keV      
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Experimental spectrum and its fit by 

simulated distributions: 
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Spectra: total and divided  

on  and  components 

Peak’s energy:  2557 keV  E=1.980.04 MeV (expected E=1.912)  

Number of 151Eu nuclei (ICP-MS): (2.80.7)1021; S = 302232 counts 

      T1/2 = 5+11
31018 y 

 

Later calculations:  8.51018 y – O.A.P. Tavares et al., Phys. Scr. 76(2007)C163 

  1.31018 y – Y.B. Qian et al., Phys. Rev. C 84(2011)064307 

  1.01019 y – Y.B. Qian et al., Phys. Rev. C 85(2012)027306 

  8.01017 y – K.P. Santhosh et al., Int. J. Mod. Phys. E 22(2013)1350081  
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Confirmation:                         N. Casali et al., J. Phys. G 41(2014)075101 

 

LUCIFER, Li6Eu(BO3)3 scintillating bolometer 6.15 g, FWHM = 65 keV, 

462 h of measurements, low background set-up at LNGS (3600 m w.e. 

underground) 
 

S = 388, T1/2 = (4.61.2)1018 y  

Measured Q = 1948.98.6 keV 

L. Pattavina, talk at RPScint’2013 

workshop, Kyiv, 17-20.09.2013 

 

 

     Excellent 

     discrimination 

     of / events  

     from  events 

147Sm 

151Eu 



204,206,207,208Pb         J.W. Beeman et al., Eur. Phys. J. A 49(2013)50 

All naturally occuring Pb isotopes are potentially  decaying, Q = 

0.392 – 1.970 MeV. Theoretical expectations: T1/2 = 1035  10189 y. 

 

LUCIFER, PbWO4 scintillating bolometer (with ancient Roman lead: 

activity of 210Pb < 4 mBq/kg, while for usual Pb it is ~ 102 – 103 Bq/kg),  

454 g, LNGS (3600 m w.e.), low background set-up, 586 h 

 

Only limits are derived: T1/2 > 1.41020 – 2.61021 y  

(for 204Pb – 3 orders of magnitude better than previous exp. limit) 
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209Bi 

1.91019 
151Eu 

51018 180W 

1.21018 

   KINR      ROSE-     KINR 

& DAMA     BUD 

Half life, y 

2 

1 

3 

180W 

2.3 
209Bi 

105 151Eu 

263 

  ROSE-     KINR       KINR 

   BUD                     & DAMA 

Activity, decays in 1 g 

of element (of natural 

isotopic composition) 

during 1 year 

(209Bi)  = 100% 

(151Eu) = 47.81% 

(180W)  = 0.12% 

Observations of rare  

g.s. to g.s.  decays 

(in sports terminology): 
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178m2Hf  174Yb*                        S.A. Karamian et al., PRC 75(2007)057301 

 
178m2Hf – extremely interesting nucleus: Eexc = 2446 keV but T1/2 = 31 y 

 

 

 

 

 

 

 

 

 

 

 

Usually it decays through IT, but 

potentially it is  decaying, Q=4526 

keV; several excited levels of 174Yb 

can be populated.   

First observed in 2007: source with 3.51013 nuclei of 178m2Hf (176Yb 

target exposed to 36 MeV He ion beam) deposited on thin Be foil 

between 2 CR-39 foils, ~1 y exposure, observation of  tracks after 

CR-39 etching.  

Result: 307 (25?)  events in excess, T1/2
* = (2.50.5)1010 y 

most 

prob

able 
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190Pt  186Os* (Eexc=137.2 keV)            P. Belli et al., PRC 83(2011)034603 

 

G.s. to g.s. decay 190Pt  186Os is known since 1921: Q=3251 keV, 

T1/2=(6.50.3)1011 y; 

Transition to the 1st excited level was observed only in 2011 
 

LNGS (3600 m w.e.), HPGe 468 cm3, low background set-up, 1815 h, 

42.5 g of natural Pt (190Pt: =0.014%; new value (2011) =0.012%) 

Measured energy = 137.10.1 keV 

Peak =13217 counts (8 effect)  

The peak is absent in background 
 

T1/2
* = 2.6+0.4

0.3(stat)0.6(syst)1014 y 
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Old and new schemes of 190Pt decay 

 

T1/2 limits for other Pt isotopes were also set at the level  

of 1016 – 1020 y  

 

 

 

It would be nice to remeasure with different detector and Pt sample 



 

 

 

 
 

 

19 

209Bi  205Tl* (Eexc=204 keV)    J.W. Beeman et al., PRL 108(2012)062501 

 

G.s. to g.s. decay 209Bi  205Tl – 2003: Q=3137 keV, T1/2=(1.90.2)e18 y 

Transition to the 1st excited level was observed in 2012 
 

LNGS (3600 m w.e.), Bi4Ge3O12 bolometer 889 g, few tens mK, 375 h 

Heat and light signals – discrimination of  and / events by ratio of 

light/heat  

 g.s.:         + recoil (3137 keV) 

 204 keV:  + recoil (2933 keV) +  (204 keV) 

The same heat signals, but different light  

signals because scintillation from  is 

quenched, and from   not quenched 

T1/2
   = (2.040.08)1019 y 

T1/2
* = (1.40.2)1021 y 
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151Eu  147Pm* (Eexc=91 keV)       F.A. Danevich et al., EPJA 48(2012)157 

 

G.s. to g.s. decay: T1/2 ~ 51018 y  
 

Decays to excited levels are also possible,  

the most probable to 1st level, Eexc=91 keV 
 

HADES (500 m w.e.), high purity Eu2O3  

303 g, 2233 h in low-background  

set-up with HPGe 40 cm3 

The effect is absent, only limit: 

T1/2 > 3.71018 y  
 

~1 order of magnitude better than 

previous exp. limits 
 

Not far from theor. estimates  

10191020 y  
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3. Investigations of rare  

 decays 

48Ca   50V   96Zr   113Cd   115In*   123Te   180mTa   222Rn 
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48Ca  

Q=282 keV   

 

Could be populated: 

ground state  J=6+ 

level 131 keV  J=5+ 

level 252 keV  J=4+ 

 

T1/2 - theoretical estimates and experimental limits (y) 

(T1/2 decreases for bigger Q as ~1/Q5, but increases for bigger J): 

 

      Theory [1] Theory [2]      Experiment [3] 

6+(g.s.)      =4.0e25 =1.5e29-1.3e31      >1.6e20 

5+(131)      =4.0e22 =(1.1+0.8
-0.6)e21      >2.5e20 the most probable 

4+(252)      =3.0e23 =8.8e23-5.2e26      >1.9e20 

 

[1] R.K. Bardin et al., NPA 158 (1970) 337 

[2] M. Aunola et al., Europhys. Lett. 46 (1999) 577 

[3] A. Bakalyarov et al., JETP Lett. 76 (2002) 545  

     (search for deexcitation ’s of 48Sc, 48Ti with Ge detector; however (48Ca)=0.187%) 

 

At the same time, 48Ca can decay also through 2 decay to 48Ti (2nd order process);  

already observed in few experiments: T1/2(22, g.s.) = 4.3e19 y.  

Thus single  decay occurs even with lower probability than 2 decay - due to big J 
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96Zr  

Q=161 keV   

 

Could be populated: 

ground state  J=6+ 

level 44 keV  J=5+ 

level 146 keV  J=4+ 

 

T1/2 - theoretical estimates and experimental limits (y): 

 

      Theory [1] Experiment [2] 

6+(g.s.)      =1.2e29 >3.8e19 

5+(44)      =2.4e20 >3.8e19  the most probable 

4+(146)      =4.9e22 >3.8e19 

 

[1] H. Heiskanen et al., J. Phys. G 34 (2007) 837 

[2] M. Arpesella et al., Europhys. Lett. 27 (1994) 29 

     (search for deexcitation ’s of 96Mo with Ge detector; (96Zr)=2.80% - much higher 

     than that for 48Ca; worth to remeasure with higher sensitivity?) 

 

2 decay of 96Zr to 96Mo: T1/2(22, g.s.) =(2.30.4)e19 y (NEMO-3’2008).  

Geochemical 2 T1/2: =(3.90.9)e19  Kawashima’1993 and =(0.90.3)e19 Wieser’2001. 

Contribution of single  decay to geochemical T1/2? 
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180mTa  

 

Extremely interesting case: 

g.s. state quickly decays (T1/2~8 h);  

isomeric state (Eexc=77 keV) has  very big T1/2>2e16 y 

(180mTa)=0.012% 

 

EC  J=3 

  J=3 

 

Last experimental search: 

M. Hult et al., Appl. Rad. Isot. 67 (2009) 918 

1500 g of natural Ta, sandwich HP Ge, 

underground HADES laboratory (500 m w.e.), 68 d 

T1/2(EC) > 4.5e16 y 

T1/2(
)   > 3.7e16 y 

 

Theoretical T1/2 estimations: 

IT   > 1e27 y   E.B. Norman, PRC 24(1981)2334 

EC,                calculations are absent 
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123Te (123Te)=0.89% 

 

Many puzzling experimental situations (only K EC was searched for): 

 

1. D.N. Watt et al., Philos. Mag. 7 (1962) 105 

Detection of Sb X rays EX=26.1 keV after EC with prop. counter, T1/2=(1.240.10)e13 y   

This result was present in all nuclear tables many years 

 

2. A. Alessandrello et al., PRL 77 (1996) 3319  

Four 340 g TeO2 bolometers, underground measurements (LNGS, 3600 m w.e.), 1548 h 

Peak at total energy release of 30.5 keV (EK of Sb) is observed,  

T1/2
K=(2.40.9)e19 y  - 6 orders of magnitude higher! 

Result of Watt’1962 was explained by excitation of Te atoms by cosmic rays and nat. 

radioactivity that gives EX=27.3 keV, and by not enough good resolution of prop. counter 

 

3. A. Alessandrello et al., PRC 67 (2003) 014323 

Twenty 340 g TeO2 bolometers, LNGS (3600 m w.e.), peak at 30.5 keV is not present, 

T1/2
K>5.0e19 y ! 

 

However, this peak appeared once more after all crystals were dismounted for surface 

cleaning at the sea level for ~2 months period and reinstalled underground. 

Explanation of Alessandrello’1996: peak at 30.5 keV is due to EC of 121Te (Q=1036 keV, 

T1/2=16.78 d); 121Te is produced by neutron capture on 120Te (=0.09%) !  

 



26 

50V         =0.250%  

 

One of only 3 nuclei where  processes with J=4+ were 

 observed (other two are 113Cd and 115In) 

 

Low natural abundance (=0.250%), big T1/2 (difficult to study) 

 

Experiment 1989: J.J. Simpson et al., PRC 39 (1989) 2367 

3 Ge detectors, 337.5 g of natural V, salt mine, 1109 h 

Search for ’s of 1554 keV (EC) and 783 keV ( decay) 

Experiment 2011: H. Dombrowski et al., PRC 83 (2011) 054322 

Ge detector, 255.8 g of natural V, Asse salt mine (1200 m w.e.), 2347 h 

Peak 783 keV is not observed:  

T1/2(EC)=(2.30.3)e17 y,  T1/2(
 )>1.7e18 y 

 

Only ’s are detected; T1/2 is measured but not shape of  spectrum 
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113Cd        =12.22% 

 

1/2+  9/2+     J = 4+     classified as 4 FNU 

 

Was searched for since 1940, first observed in 1970,  

first measurement of  shape in 1988 with CdTe detector 

 

One of the last experiments: P. Belli et al., PRC 76 (2007) 064603 

CdWO4 scintillator 434 g, LNGS (3600 m w.e.), 2758 h 

 

 

 

  

Experimental spectrum (S/B ratio = 1/50) and its 

fit by: 

Kurie plots not accounting and accounting for 

correction factor C(w) 

 

Big statistics, purity of crystal lead to 

determination of T1/2 with small uncertainty: 

T1/2=(8.040.05)e15 y 

2.4e6 events 
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Experimental spectrum is excellently described as 3 FU (J = 4): 

C(E) = P6+c1P
4Q2+c2P

2Q4+c3Q
6      with c1 = 7.112, c2 = 10.493, c3 = 3.034 

(small puzzle …) 

 

Recent theoretical description as 4 FNU: 

M.T. Mustonen et al., PRC 73 (2006) 054301 + PRC 76 (2007) 019901(E) 

M.T. Mustonen et al., PLB 657 (2007) 38 

(shape different from the experimental one) 

 

Last experimental work: 

J.V. Dawson et al., NPA 818 (2009) 264 

16 CdZnTe detectors, LNGS, 6.58 kgd 

Confirmed T1/2  and shape of spectrum,  

but gave different Q value  

(322 keV instead of 345 keV in Belli’2007) 

(another small puzzle …) 
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115In         =95.71% 

 

9/2+  1/2+     J = 4+     classified as 4 FNU 

 

On contrary to 113Cd, spectrum shape was measured only in one work: 

L. Pfeiffer et al., PRC 19 (1979) 1035 

 

Liquid scintillator loaded by In at 51.2 g/l, measurements at the sea level 

What could be improved: 

(1) Background, in particular n capture by 115In (and 116In is  unstable, Q=3275 keV) 

(2) Strong quenching of low-energy electrons in liquid scintillator (was not discussed) 

(3) Response function (resolution) “is not known and is not readily measurable” 

(4) Q value was obtained as 492.7(13.6) keV and 470.6(5.2) keV; today value is 499(4) 

keV 

(5) T1/2=(4.410.24)e14 y (since 1979 – in all tables), but in some disagreement with 

previous results (f.e. G.B. Beard et al., PR 122 (1961) 1576: T1/2=(6.91.5)e14 y) 

(6) Energy threshold – around 50 keV 

(7) Shape is described as polynomial in E 

Remeasuring in low background conditions would be very interesting! 

 

Recent theoretical description as 4 FNU: 

M.T. Mustonen et al., PRC 73 (2006) 054301 + PRC 76 (2007) 019901(E) 

M.T. Mustonen et al., PLB 657 (2007) 38 

 

 



115In  115Sn*     

 

First observation of  decay of 115In to the first excited level (Eexc=497.4 keV) of 115Sn: 

C.M. Cattadori et al., NPA 748 (2005) 333 + Phys. At. Nucl. 70 (2007) 127 

LNGS, ~1 kg In, 4 HP Ge detectors 225 cm3 each, 2762 h In + 1601 h background 

  
De-excitation ’s give peak at 497.4 keV  

(observation with 4’s), (1.180.31)e-6 yield, 

T1/2=(3.71.0)e20 y 

Situation in 2005: 

Implications for neutrino mass: 

Ma = 499±4 keV (Audi et al., 2003)  

Q
* = Ma Eexc = 1.6±4 keV  

our calculation: Q
* = 460 eV 

(possibly the lowest known measured Q value) 

Evidently: m<Q 

Could be Q~1 eV? 

Need to re-measure Ma (
115In-

115Sn, =4 keV) and Eexc (=22 

eV) with greater accuracy 

E.G. Myers, Florida St. Un.:  

Ma with ~10 eV for A=100 
30 
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Subsequent events: 

 

1. Confirmation of observation of 115In  115Sn* decay 

HADES underground laboratory (500 m w.e.), 2566 g of In, 3 Ge:  

T1/2=(4.10.6)e20 y  (E. Wieslander et al., PRL 103(2009)122501) 

T1/2=(4.30.5)e20 y  (E. Andreotti et al., PRC 84(2011)044605) 

 

2. New measurements of difference  of 115In115Sn masses 

= 497.6800.170 keV (E. Wieslander et al., PRL 103(2009)122501)  

= 497.4890.010 keV (B.J. Mount et al., PRL 103(2009)122502) 

Thus, Q* value is: Q* =   Eexc = (497.3340.022)(497.4890.010) = 15524 eV 

 

Really the lowest Q value of a known  decay (163Ho – 2.555 keV, 187Re – 2.469 keV) 

(and highest (partial) T1/2) 

Paradoxical  situation: masses of the nuclei (~100 GeV) are known with precision 10 eV 

while Eexc (~500 keV)  with precision 22 eV (needs to be remeasured) 

 

3. Influence of different chemical environment on T1/2 (In, InCl3, etc.). If to use 

dependence T1/2~1/Q5 and change Q on 1 eV only, we will obtain (155/154)5=1.03 – 3% 

change in T1/2.  Difficult but maybe possible to see (current accuracy – 12%). 

 

4. Deviations from theoretical spectrum due to non-zero  mass? Theoretical spectrum 

(J = 3+ – classified as 2 FU) was calculated in R. Dvornicky, F. Simkovic, AIP Conf. 

Proc. 1417(2011)33. Very difficult experimentally. 



222Rn                                                                       P. Belli et al., Eur. Phys. J. A 50(2014)134 

 

BaF2 scintillator, 1.714 kg, LNGS (3600 m w.e.), 101 h.  

High contamination by 226Ra – 7.8 Bq/kg. 

 

In all nuclear tables, 222Rn (in chain of 238U) is 100%  decaying. Usual chain: 

 

 

 

 

However,  decay of 222Rn also is energetically allowed with Q=2421 keV. In this case: 

 

 

 

 
 

222Rn(0+)  222Fr(2), J=2; T1/2 can be estimated using average (for 216 known 1 FU 

 decays) log ft = 9.5 and LOGFT tool at NNDC as T1/2 = 4.8105 y (for Q=24 keV; 

6.7104 y for Q=45 keV and 2.4108 y for Q=3 keV). 
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Expected E and t are known, and it is possible to distinguish between  and  events in 

BaF2 scintillator because of difference in their time shapes. 

 

The following sequence of events was searched for (222Fr  222Ra  218Rn  214Po): 

(1) event at 30 – 2207 keV (222Fr Q + FWHM) and with  time shape; 

(2) next event at 2109 – 2623 keV (222Ra E + FWHM in  scale), with  time shape  

     and in time interval [1.65 ms, 1.65 ms + 538.0 s]; 

(3) last event at 2398 – 2946 keV (218Rn E + FWHM in  scale), with  time shape  

     and in time interval [1.65 ms, 1.65 ms + 535 ms]. 

7.0105 selected potential 218Rn events. 

 

Maximal effect consistent with exp. data, 

T1/2
 > 122 d (too conservative limit) 

 

Limit from fit by model (known  peaks 

from contamination), T1/2
 > 8.0 y. 
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4. Observation of emission of 

e+e pairs in  decay of 241Am 
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           R. Bernabei et al., EPJA 49 (2013) 64 

 

 decay -  internal bremsstrahlung (IB) and internal pair production 

  (IPP) are known effects  

 decay - IB is known; what about IPP? 

 

In fact, it was observed previously in 3 experiments (1973, 1986, 1990): 

[2] A. Ljubicic, B.A. Logan, Phys. Rev. C 7 (1973) 1541 

[6] K. Pisk et al., Phys. Rev. C 17 (1978) 739  

[10] J. Stanicek et al., Nucl. Instrum. Meth. B 17 (1986) 462 

[16] T. Asanuma et al., Phys. Lett. B 237 (1990) 588 
 

Theory, which describes the effect as creation of bremsstrahlung  

during  acceleration with E > 1.022 MeV which borns e+e,  

gives  value of a correct order of magnitude. 
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In the DAMA experiment [R. Bernabei et al., Int. J. Mod. Phys. A 28 

(2013) 1330022], 241Am sources are used for weekly calibrations. So, 

an idea appeared to check the old -IPP results, at the first time deep 

underground (avoiding influence of cosmic rays) and in low-

background high-pure set-up (suppressing presence of + 

contaminations). 

 

DAMA/LIBRA: 25 NaI(Tl) scintilaltors, 9.70 kg each, 10.210.225.4 cm. 

 

1st run: 6 241Am sources and 6 NaI(Tl) pairs (all other NaI(Tl)’s – as 

anticoincidence); 1.29 d with 241Am and 24.6 d background; total 241Am 

activity 200.8 kBq; result: excess rate of double coincidences in 465-

557 keV (2 region) s = 4.870.87 counts/d/NaI(Tl)pair 

 

2nd run: 3 241Am sources and 3 NaI(Tl) pairs, 2.63 d (241Am) + 24.6 d 

(bkg), 98.9 kBq, s = 5.230.90 counts/d/NaI(Tl)pair 
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Exp. 

spectrum 

with 241Am 

 

 

 

 

 

Simulated 
241Am 

decay 

Exp. 

background 

 

 

 

 

 

 

Simulated  

e+ 

annihilation 

Analysis of data:  

presence of 243Am,  
233Pa, 154Eu 

Spectrum of one 

NaI(Tl) when 

energy of second 

is 465-557 keV 

 

S=22030 counts 

=(4.700.63)109 
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Many possible mimicking contributions were analyzed and excluded: 

  - + emitters in chain 241Am  …  209Bi; 

  - high energy  rays in chain 241Am  …  209Bi; 

  -  decays of 241Am to high energy levels of 237Np; 

  - (,n) and (,p) reactions on isotopes of C, N, O, Cu in surrounding 

    materials which lead to creation of + emitters; 

  - (,n) and (,) reactions leading to high energy ’s; 

  - 241Am fission and cluster decays. 

 

The observed excess cannot be explained by any side process. 

 

It would be interesting to repeat such studies with HPGe detectors with 

high energy resolution. 
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5. Conclusions 
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There was a little interest in investigations of rare  and  decays 

since ~1970’s – no T1/2 were measured with higher precision, no 

shapes of  spectra. 

 

However, development of experimental technique lead to improvement 

in sensitivity, and new decays were observed with extreme 

characteristics ( with longest T1/2 of 1019 y for 209Bi;  with lowest Q of 

155 eV for 115In*; …).  Traditional (HPGe, NaI(Tl),…) but also new types 

of detectors (Li6Eu(BO3)3,…) are used in these investigations. 

 

Interest to  shapes also is growing, in particular for nuclides which 

create background in rare events’ searches.  

 

Many theoretical works also appeared last time (especially in  decay: 

tens of articles per year). 

 

It could be concluded that investigations of rare  and  decays 

experience revival now. 



 

 

 

Thank you for attention!  
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