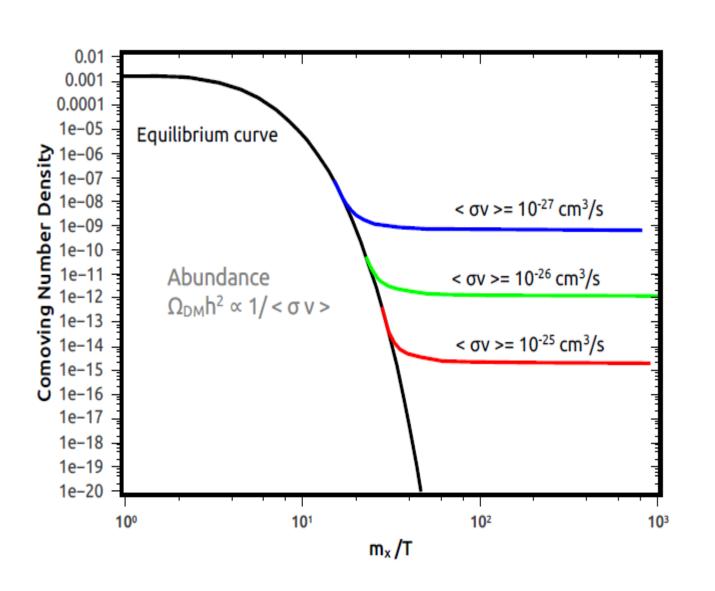
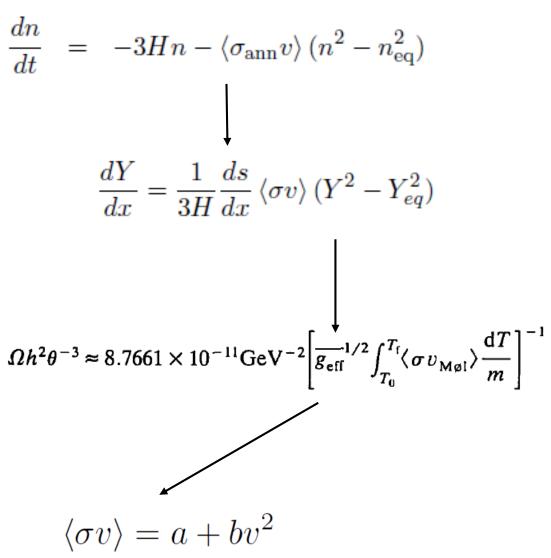
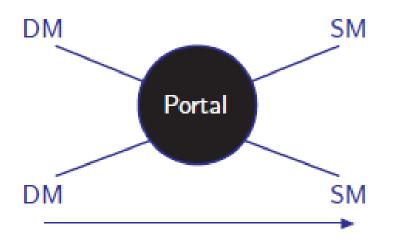
From Simplified to Gauge Invariant Realizations of a Light Pseudoscalar Portal

Giorgio Arcadi MPIK Heidelberg

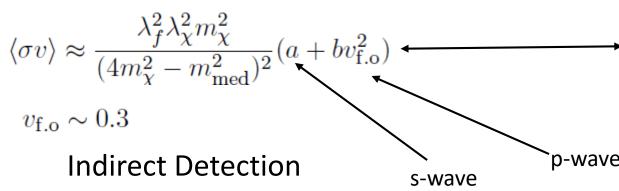
WIMP Paradigm

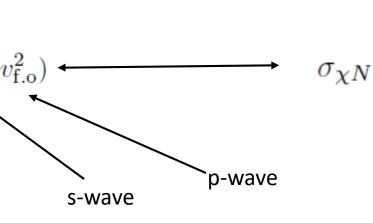






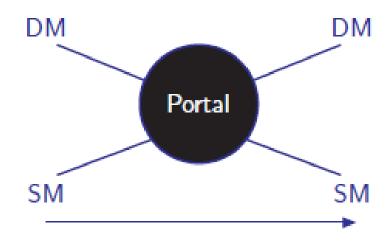
Relic Density





$$\langle \sigma v \rangle \approx \frac{\lambda_f^2 \lambda_\chi^2 m_\chi^2}{(4 m_\chi^2 - m_{\rm med}^2)^2} (a + b v_{\rm now}^2)$$

$$v_{\rm now} \sim 10^{-3}$$



$$\sigma_{\chi N} = \frac{\mu_{\chi N}^2 \lambda_{\chi}^2}{\pi m_{\text{med}}^4} f(\lambda_q)$$

Dark portal examples

$$\mathcal{L} = \xi \mu_{\chi}^{S} \chi \chi S + \xi \lambda_{\chi}^{S2} |\chi|^{2} |S|^{2} + \frac{c_{S}}{\sqrt{2}} \frac{m_{f}}{v_{h}} \bar{f} f S$$

$$\mathcal{L} = \xi g_{\psi} \bar{\psi} \psi S + \frac{c_S}{\sqrt{2}} \frac{m_f}{v_h} \bar{f} f S$$

$$\mathcal{L} = -i\lambda_{\psi}^{a}\overline{\psi}\gamma_{5}\psi a - i\sum_{f}\frac{c_{a}}{\sqrt{2}}\frac{m_{f}}{v_{h}}\overline{f}\gamma_{5}fa$$

$$\mathcal{L} = m_V \eta_V^S V^{\mu} V_{\mu} S + \frac{1}{2} \eta_S^{V2} V^{\mu} V_{\mu} S S + \frac{c_S}{\sqrt{2}} \frac{m_f}{v_h} S \bar{f} f$$

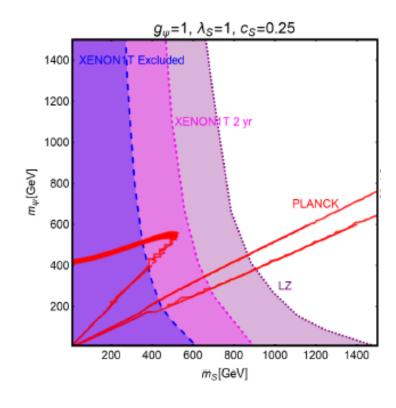
$$\mathcal{L} = ig^{'}\lambda_{\chi}^{Z^{'}}\left(\chi^{*}\partial_{\mu}\chi - \chi\partial_{\mu}\chi^{*}\right)Z^{'\,\mu} + g^{'\,2}\lambda_{\chi}^{Z^{'}\,2}\chi\chi^{*}Z_{\mu}^{'\,Z^{'\,\mu}} + g^{'}\sum_{f}\overline{f}\gamma^{\mu}\left(V_{f}^{Z^{'}} - A_{f}^{Z^{'}}\gamma_{5}\right)fZ_{\mu}^{'}$$

$$\mathcal{L} = g' \xi \overline{\psi} \left(\overline{V_{\psi}^{Z'}} - A_{\psi}^{Z'} \gamma_5 \right) \psi Z'^{\mu} + g' \sum_{f} \overline{f} \gamma^{\mu} \left(V_{f}^{Z'} - A_{f}^{Z'} \gamma_5 \right) f Z_{\mu}'$$

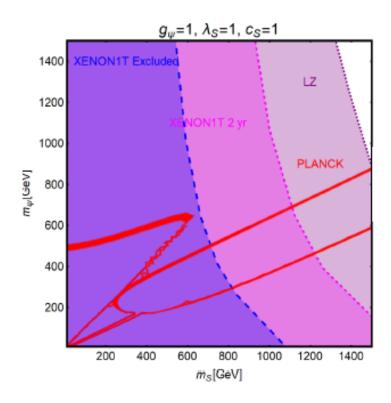
$$\mathcal{L} = g \eta_V^{Z^{'}}[[VVZ]] + \overline{f} \gamma^{\mu} \left(V_f^{Z^{'}} - A_f^{Z^{'}} \gamma^5 \right) f Z_{\mu}^{'}$$

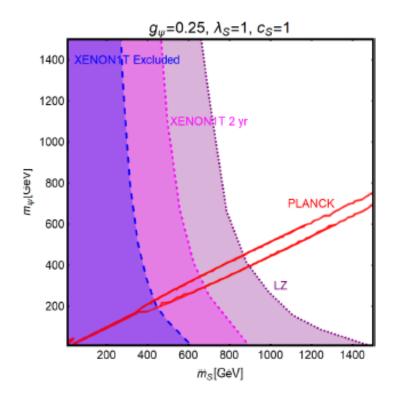
Not present for Majorana fermions

(Real) Scalar mediator

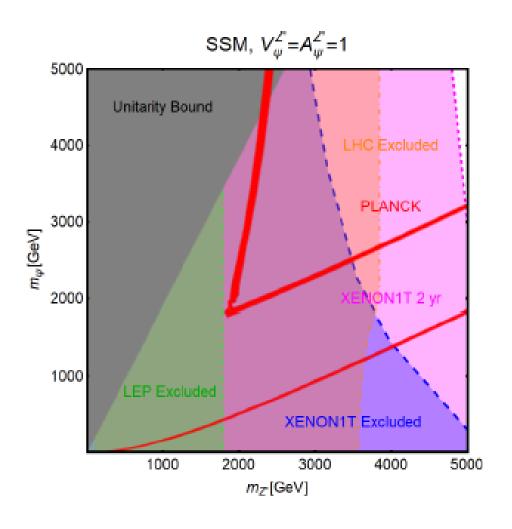


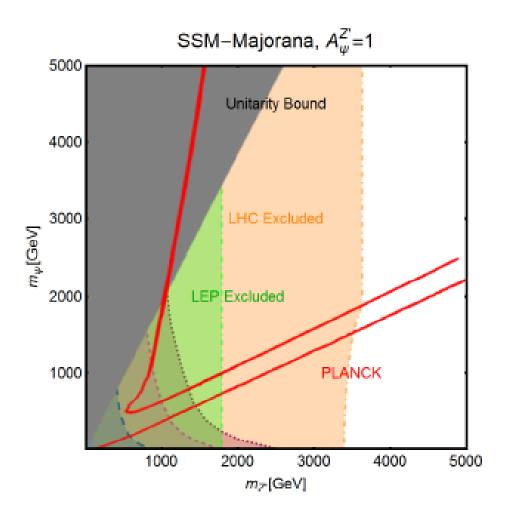
Arcadi et al. 1703.07364





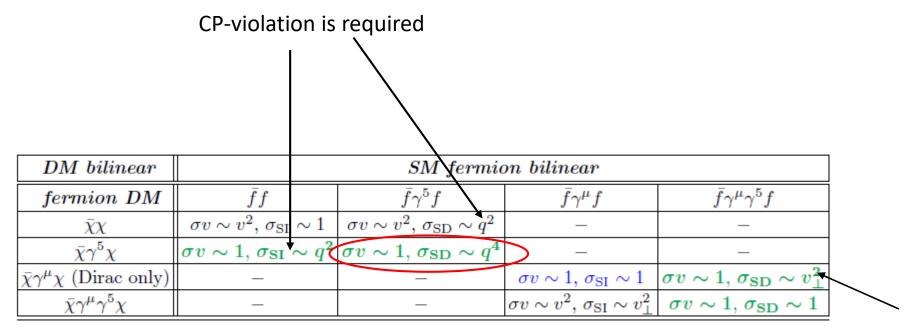
Vector mediator





Achieve sizable DM annihilation cross-section with suppressed scattering cross-section on nuclei (not exhaustive list):

- Accidental cancellations ("Blind Spots")
- "Natural " suppression of the scattering cross-section, e.g. dependence on the momentum transfer (radiative corrections can be relevant though)
- ➤ Break of the correlation between Direct Detection and relic density, i.e. presence of additional annihilation channels do not influencing Direct Detection.



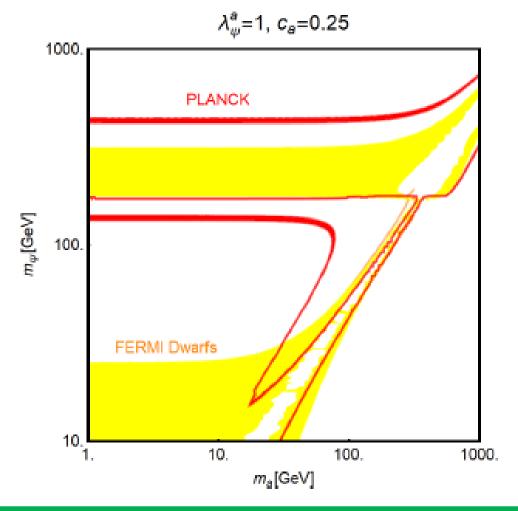
Radiative corrections relevant

DM bilinear	SM fermion bilinear				
scalar~DM	$ar{f}f$	$ar{f}\gamma^5 f$	$ar f \gamma^\mu f$	$ar{f}\gamma^{\mu}\gamma^{5}f$	
$\phi^\dagger\phi$	$\sigma v \sim 1, \sigma_{\rm SI} \sim 1$	$\sigma v \sim 1, \sigma_{\rm SD} \sim q^2$	1	_	
$\phi^{\dagger} \stackrel{\leftrightarrow}{\partial_{\mu}} \phi$ (complex only)	_	_	$\sigma v \sim v^2, \sigma_{\rm SI} \sim 1$	$\sigma v \sim v^2, \sigma_{\rm SD} \sim v_\perp^2$	
vector DM	$ar{f}f$	$ar{f}\gamma^5 f$	$ar{f}\gamma^{\mu}f$	$\bar{f}\gamma^{\mu}\gamma^{5}f$	
$X^{\mu}X^{\dagger}_{\mu}$	$\sigma v \sim 1, \sigma_{\rm SI} \sim 1$	$\sigma v \sim 1, \sigma_{\mathrm{SD}} \sim q^2$	1	_	
$X^{\nu}\partial_{\nu}X^{\dagger}_{\mu}$	_	_	$\sigma v \sim v^2, \sigma_{\rm SI} \sim q^2 \cdot v_\perp^2$	$\sigma v \sim v^2, \ \sigma_{\rm SD} \sim q^2$	

(Berlin et al 1404.0022)

(Light) Pseudoscalar mediator

$$\mathcal{L} = -i\lambda_{\psi}^{a}\overline{\psi}\gamma_{5}\psi a - i\sum_{f}\frac{c_{a}}{\sqrt{2}}\frac{m_{f}}{v_{h}}\overline{f}\gamma_{5}fa,$$



(see also Arina et al 1406.5542, Bauer et al. 1701.07427,1712.06597)

s-wave cross-section into SM fermions

$$\langle \sigma v \rangle (\overline{\psi}\psi \to \overline{f}f) \approx \sum_{f} \frac{n_c^f c_a^2 (\lambda_{\psi}^a)^2}{2\pi} \frac{m_f^2}{v_h^2} \times \begin{cases} \frac{m_{\psi}^2}{m_a^4} & \text{for } \\ m_{\psi} < m_a \end{cases} \\ \frac{1}{16m_{\psi}^2} & \text{for } \\ m_{\psi} > m_a \end{cases}$$

$$\langle \sigma v \rangle (\overline{\psi} \psi \to aa) \approx \frac{(\lambda_{\psi}^{a})^{2}}{192\pi m_{\psi}^{2}} v^{2}$$

Scattering cross-section on nuclei suppressed (at tree level) by the fourth power of momentum transfer.

Tree level DM scattering cross-section suppressed

$$\mathcal{L} = g_{\chi}\bar{\chi}\gamma_5\chi a + c_a \frac{m_q}{v_h}\bar{q}\gamma_5qa \longrightarrow$$

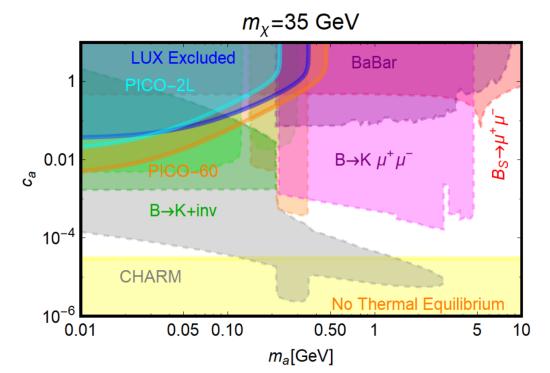
$$\frac{4g_{\chi}c_ag_N}{m_a^2}\mathcal{O}_6^{NR}$$

For a review Cirelli et al arXiv:1307.5955

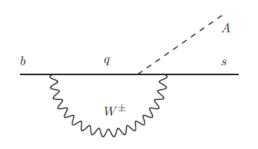
$$\mathcal{O}_6^{\rm NR} = (\vec{s_\chi} \cdot \vec{q})(\vec{s_N} \cdot \vec{q})$$

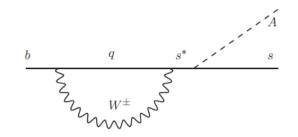
$$\frac{d\sigma}{dE_T} = \frac{g_{\chi}^2 c_a^2}{128\pi} \frac{q^2}{m_a^2} \frac{m_T^2}{m_{\chi} m_N} \frac{1}{v_E^2} \sum_{N,N'} F_{\Sigma''}^{NN'}(q^2)$$

$$g_N = \sum_{q=u,d,s} \frac{m_N}{v_h} \left(1 - \frac{\overline{m}}{m_q} \right) \Delta_q^N$$



$$\overline{m} = (1/m_u + 1/m_d + 1/m_s)^{-1}$$



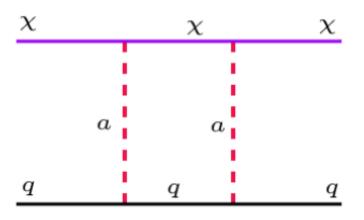


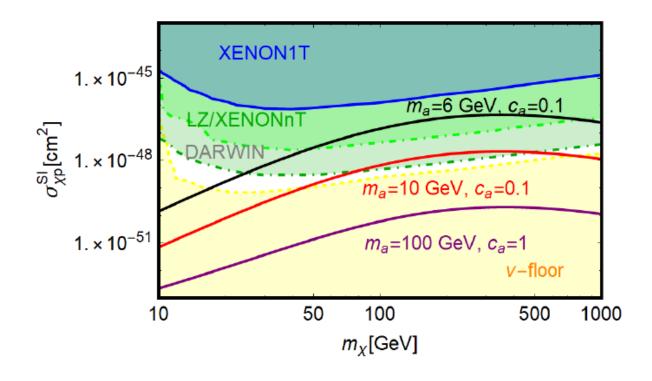
Dolan et al. arXiv:1412.5174 Döbrich et al. arXiv:1810.11336

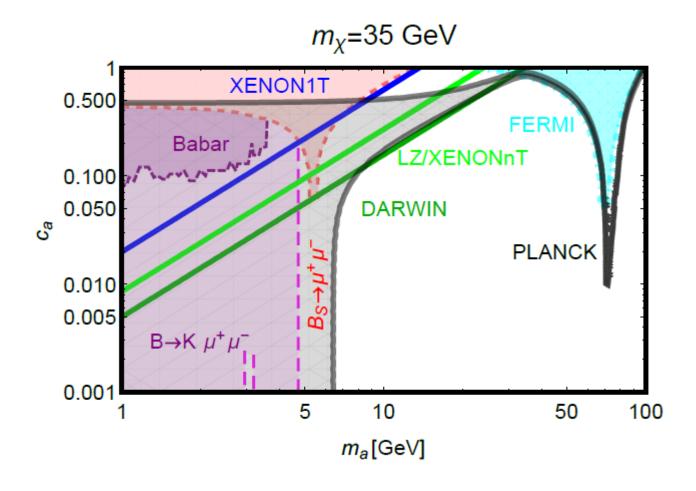
Table from Dolan et al. arXiv:1412.5174

Channel	Experiment	Mass range [MeV]	Ref.	Relevant for
$K^+ \to \pi^+ + \text{inv}$	E949	0–110	[70]	Long lifetime*
		150-260	[71]	Long lifetime*
	E787	$0\!\!-\!\!110\&150\!\!-\!\!260$	[72]	Long lifetime
$K^+ \to \pi^+ \pi^0 \to \pi^+ \nu \bar{\nu}$	E949	130–140	[73]	Long lifetime*
$K^+ \rightarrow \pi^+ e^+ e^-$	NA48/2	140–350	[74]	Leptonic decays
$K_L \to \pi^0 e^+ e^-$	${ m KTeV/E799}$	140 – 350	[75]	Leptonic decays *
$K^+ \to \pi^+ \mu^+ \mu^-$	NA48/2	210 – 350	[76]	Leptonic decays
$K_L \to \pi^0 \mu^+ \mu^-$	${ m KTeV/E799}$	210 – 350	[77]	Leptonic decays*
$K_L \to \pi^0 \gamma \gamma$	KTeV	40-100 & 160-350	[78]	Photonic decays*
$K_L \to \pi^0 \pi^0 \to 4\gamma$	KTeV	130–140	[79]	Photonic decays*
$K^+ \to \pi^+ A$	$K_{\mu 2}$	10-130 & 140-300	[80]	All decay modes*
$B^0 \to K_S^0 + \text{inv}$	CLEO	0-1100	[81]	Long lifetime*
$B \to K \ell^+ \ell^-$	BaBar	30–3000	[82]	Leptonic decays
	BELLE	140-3000	[83]	Leptonic decays
	LHCb	220-4690	[84]	Leptonic decays *
$B \to X_s \mu^+ \mu^-$	BELLE	210-3000	[85]	Leptonic decays
$b \rightarrow s g$	CLEO	$m_A < m_B - m_K$	[86]	Hadronic decays*
$B_s \to \mu^+ \mu^-$ $\Upsilon \to \gamma \tau^+ \tau^-$	LHCb/CMS	all masses	[87, 88]	Lepton couplings*
$\Upsilon \to \gamma \tau^+ \tau^-$	BaBar	3500-9200	[89]	Leptonic decays [*]
$\Upsilon \to \gamma \mu^+ \mu^-$	BaBar	212-9200	[90]	Leptonic decays *
$\Upsilon \to \gamma + \text{hadrons}$	BaBar	300-7000	[91]	Hadronic decays*
$K, B \rightarrow A + X$	CHARM	0-4000	[92]	Leptonic and
				photonic decays*

SI cross-section induced at the loop level







2HDM

Can a light pseudoscalar be accommodated in the 2HDM?

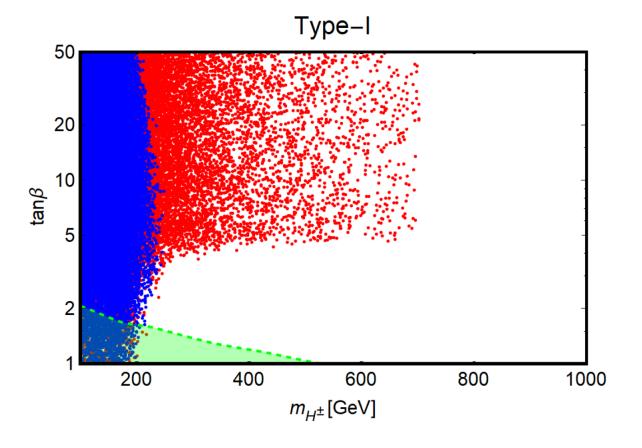
$$\begin{split} V(H_{1},H_{2}) &= m_{11}^{2}H_{1}^{\dagger}H_{1} + m_{22}^{2}H_{2}^{\dagger}H_{2} - m_{12}^{2}\left(H_{1}^{\dagger}H_{2} + \text{h.c.}\right) + \frac{\lambda_{1}}{2}\left(H_{1}^{\dagger}H_{1}\right)^{2} \\ &+ \frac{\lambda_{2}}{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} + \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) \\ &+ \frac{\lambda_{5}}{2}\left[\left(H_{1}^{\dagger}H_{2}\right)^{2} + \text{h.c.}\right] \end{split} \\ H_{i} &= \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \rho_{i} + i\eta_{i})/\sqrt{2} \end{pmatrix}$$

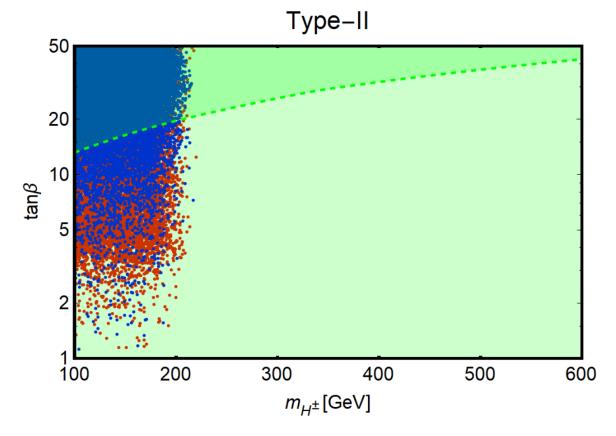
$$\begin{split} \lambda_1 &= \frac{1}{v^2} \left[-\tan^2 \beta M^2 + \frac{\sin^2 \alpha}{\cos^2 \beta} m_h^2 + \frac{\cos^2 \alpha}{\cos^2 \beta} m_H^2 \right], \\ \lambda_2 &= \frac{1}{v^2} \left[-\frac{1}{\tan^2 \beta} M^2 + \frac{\cos^2 \alpha}{\sin^2 \beta} m_h^2 + \frac{\sin^2 \alpha}{\sin^2 \beta} m_H^2 \right], \\ \lambda_3 &= \frac{1}{v^2} \left[-M^2 + 2 m_{H^\pm}^2 + \frac{\sin 2 \alpha}{\sin 2 \beta} (m_H^2 - m_h^2) \right], \\ \lambda_4 &= \frac{1}{v^2} \left[M^2 + m_A^2 - 2 m_{H^\pm}^2 \right], \\ \lambda_5 &= \frac{1}{v^2} \left[M^2 - m_A^2 \right], \end{split}$$

$$\begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} G^+ \\ H^+ \end{pmatrix}$$
$$\begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} G^0 \\ A \end{pmatrix}$$
$$\begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}$$

$$-\mathcal{L}_{yuk}^{SM} = \sum_{f=u,d,l} \frac{m_f}{v} \left[\xi_h^f \overline{f} f h + \xi_H^f \overline{f} f H - i \xi_A^f \overline{f} \gamma_5 f A \right]$$
$$- \left[\frac{\sqrt{2}}{v} \overline{u} \left(m_u \xi_A^u P_L + m_d \xi_A^d P_R \right) dH^+ + \frac{\sqrt{2}}{v} m_l \xi_A^l \overline{\nu_L} l_R H^+ + \text{h.c.} \right],$$

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	c_{α}/s_{β}	$c_{\alpha}/s_{\beta} \to 1$	$c_{\alpha}/s_{\beta} \to 1$	$c_{\alpha}/s_{\beta} \to 1$
ξ_h^d	$c_{\alpha}/s_{\beta} \to 1$	$-s_{\alpha}/c_{\beta} \to 1$	$c_{\alpha}/s_{\beta} \to 1$	$-s_{\alpha}/c_{\beta} \to 1$
ξ_h^l	$c_{\alpha}/s_{\beta} \to 1$	$-s_{\alpha}/c_{\beta} \to 1$	$-s_{\alpha}/c_{\beta} \to 1$	$c_{\alpha}/s_{\beta} \to 1$
ξ_H^u	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$
ξ_H^d	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$	$c_{\alpha}/c_{\beta} \to t_{\beta}$	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$	$c_{\alpha}/c_{\beta} \to t_{\beta}$
ξ_H^l	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$	$c_{lpha}/c_{eta} ightarrow t_{eta}$	$c_{lpha}/c_{eta} ightarrow t_{eta}$	$s_{\alpha}/s_{\beta} \to -t_{\beta}^{-1}$
ξ^u_A	t_{β}^{-1}	t_{β}^{-1}	t_{β}^{-1}	t_{β}^{-1}
ξ_A^d	$-t_{\beta}^{-1}$	t_{eta}	$-t_{\beta}^{-1}$	t_{eta}
ξ_A^l	$-t_{\beta}^{-1}$	t_{eta}	t_{eta}	$-t_{eta}^{-1}$





The Dark Matter is a mixture of a SM singlet and two (Weyl) fermions doublets under SU(2)

$$\mathcal{L} = -\frac{1}{2}M_{N}N^{'2} - M_{L}L_{L}L_{R} - y_{i}^{L}L_{L}H_{i}N^{'} - y_{i}^{R}\bar{N}^{'}\tilde{H}_{i}^{\dagger}L_{R} + \text{h.c.}, \quad i = 1, 2$$

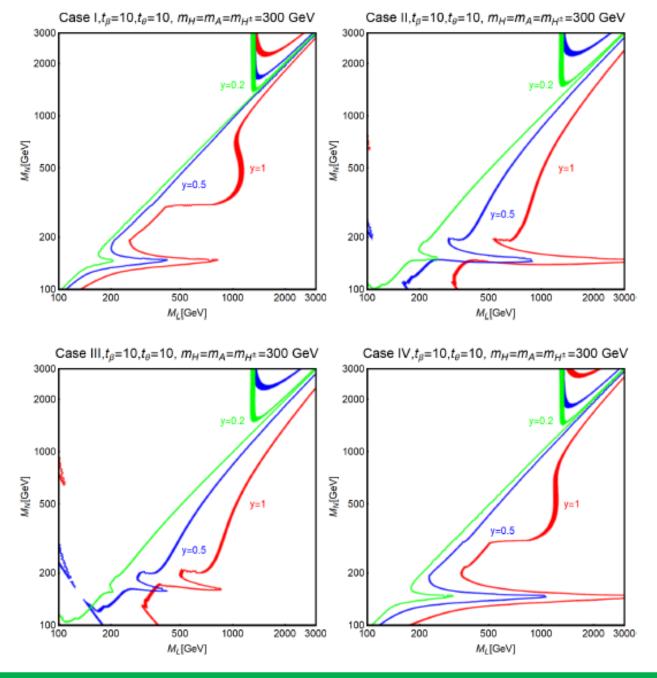
$$y_1 = y\cos\theta \quad y_2 = y\sin\theta$$

$$M = \begin{pmatrix} M_N & \frac{y_1 v_1}{\sqrt{2}} & \frac{y_2 v_2}{\sqrt{2}} \\ \frac{y_1 v_1}{\sqrt{2}} & 0 & M_L \\ \frac{y_2 v_2}{\sqrt{2}} & M_L & 0 \end{pmatrix} \qquad \psi_i = N' U_{i1} + N_L U_{i2} + N_R U_{i3}$$

$$\mathcal{L} = \overline{\psi^-} \gamma^\mu \left(g_{W\chi_i}^V - g_{W\chi_i}^A \gamma_5 \right) \psi_i W_\mu^- + \text{h.c.} + \frac{1}{2} \sum_{i,j=1}^3 \overline{\psi_i} \gamma^\mu \left(g_{Z\psi_i\psi_j}^V - g_{Z\psi_i\psi_j}^A \gamma_5 \right) Z_\mu \psi_j$$

$$+ \frac{1}{2} \sum_{i,j=1}^{3} \overline{\psi_{i}} \left(y_{h\psi_{i}\psi_{j}} h + y_{H\psi_{i}\psi_{j}} H + y_{A\psi_{i}\psi_{j}} \gamma_{5} A \right) \psi_{j} + \text{h.c.} + \overline{\psi^{-}} \left(g_{H^{\pm}\psi_{i}}^{S} - g_{H^{\pm}\psi_{i}}^{P} \gamma_{5} \right) \psi_{i} H^{-} + \text{h.c.}$$

$$-eA_{\mu}\overline{\psi^{-}}\gamma^{\mu}\psi^{-} - \frac{g}{2\cos\theta_{W}}(1-2\sin^{2}\theta_{W})Z_{\mu}\overline{\psi^{-}}\gamma^{\mu}\psi^{-} + \text{h.c.}$$



Exchange of CP-even Higgses induces SI cross-section.

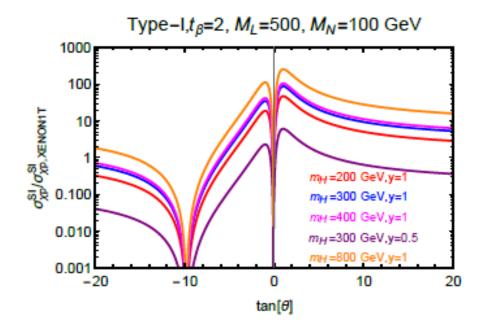
Limits can be avoided in presence of the so called Blind Spots.

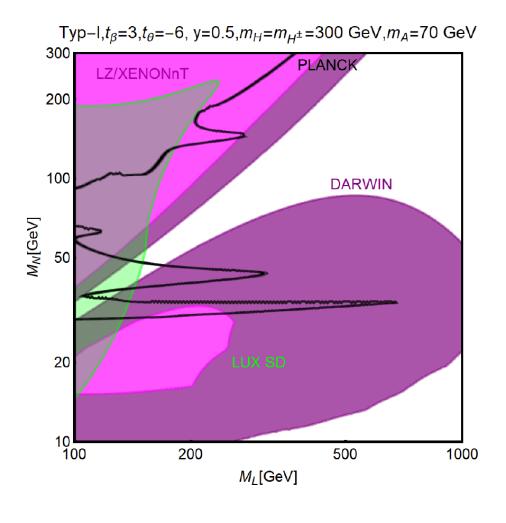
$$\sigma_{\chi p}^{\rm SI} = \frac{\mu_{\chi}^2}{\pi} \frac{m_p^2}{v^2} |\sum_q f_q \left(\frac{g_{h\psi_1\psi_1}\xi_h^q}{m_h^2} + \frac{g_{H\psi_1\psi_1}\xi_H^q}{m_H^2} \right)|^2$$

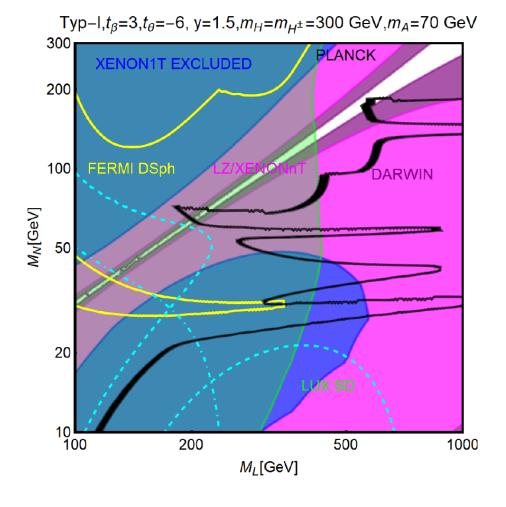
In case the new fermions couple with only one doublet

$$g_{h\psi_1\psi_1} = y^2 v \cos^2 \beta \frac{m_{\psi_1} + M_L \sin 2\theta}{2M_L^2 + 4M_N m_{\psi_1} - 6m_{\psi_1}^2 + y^2 v^2 \cos^2 \beta}$$

$$g_{H\psi_1\psi_1} = \frac{1}{2} y^2 v \sin 2\beta \frac{m_{\psi_1} + M_L \sin 2\theta}{2M_L^2 + 4M_N m_{\psi_1} - 6m_{\psi_1}^2 + y^2 v^2 \cos^2 \beta}$$







2HDM+Light Pseudoscalar

- > DM can be a pure SM singlet.
- ➤ Higher hierarchy between the lighter pseudoscalar and the other new boson (not arbitrary because of unitarity bound).

$$V = V_{\rm 2HDM} + \frac{1}{2} m_{a_0} a_0^2 + \frac{\lambda_a}{4} a_0^4 + \left(i \kappa a_0 H_1^{\dagger} H_2 + \text{h.c.} \right)$$

$$\mathcal{L} = ig_{\chi}a_0\bar{\chi}i\gamma^5\chi$$

$$\begin{pmatrix} A_0 \\ a_0 \end{pmatrix} = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} A \\ a \end{pmatrix}$$

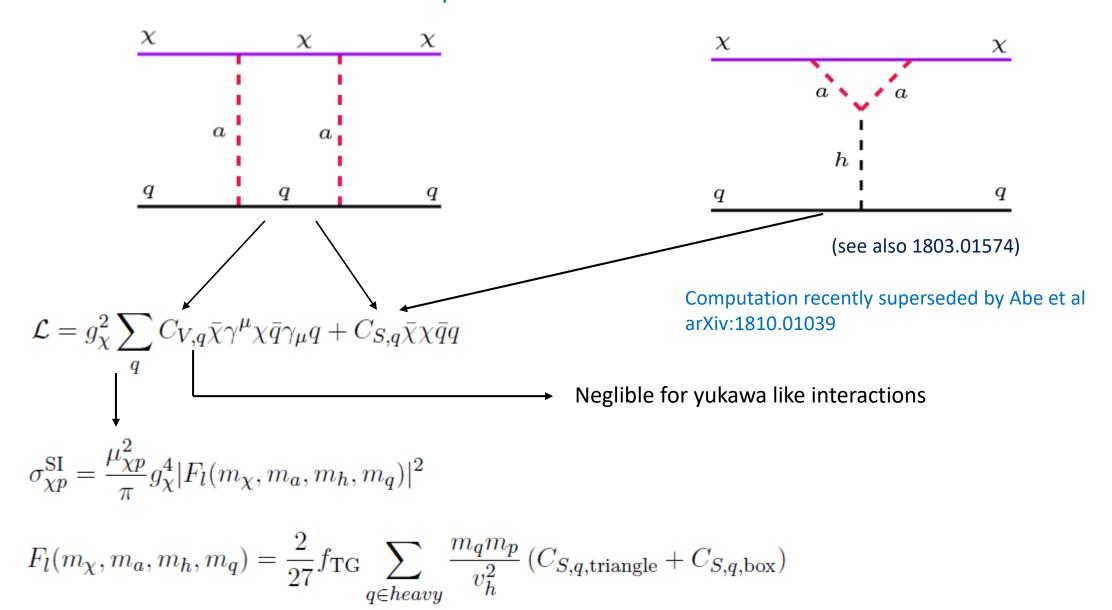
$$\tan 2\theta = \frac{2\kappa v_h}{m_{A_0}^2 - m_{a_0}^2}$$

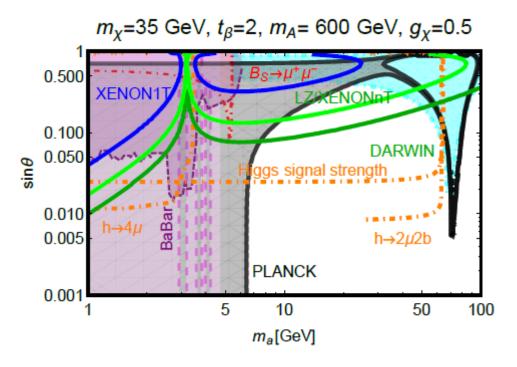
$$\mathcal{L}_{\rm DM} = g_{\chi} \left(\cos \theta a + \sin \theta A\right) \bar{\chi} i \gamma_5 \chi$$

$$\mathcal{L}_{\text{scalar}} = \frac{1}{2v_h} \left(m_A^2 - m_a^2 \right) \left[\sin 4\theta a A + \sin^2 2\theta \left(A^2 - a^2 \right) \right] \left(\sin(\beta - \alpha) h + \cos(\beta - \alpha) H \right)$$

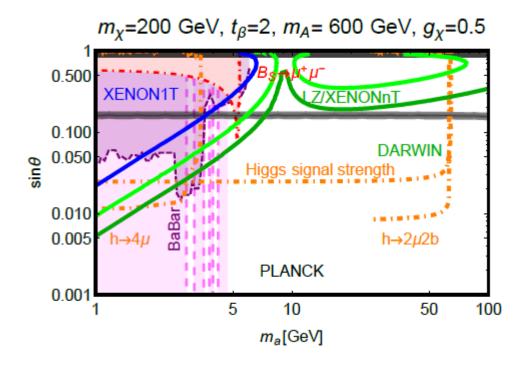
$$\mathcal{L}_{Yuk} = \sum_{f} \frac{m_f}{v_h} \left(\xi_f^h h \bar{f} f + \xi_f^H H \bar{f} f - i \xi_f^A A \bar{f} \gamma_5 f - i \xi_f^a a \bar{f} \gamma_5 a \right)$$

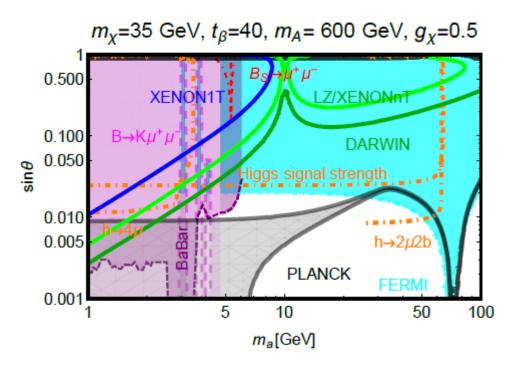
SI cross-section induced at the loop level

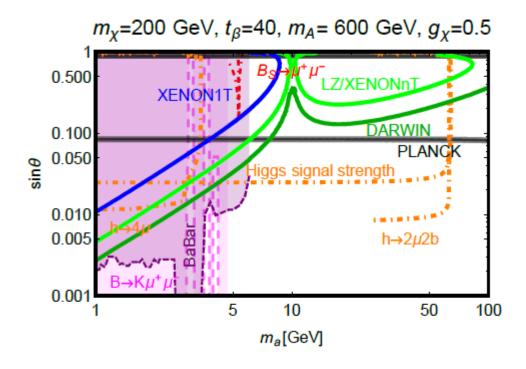


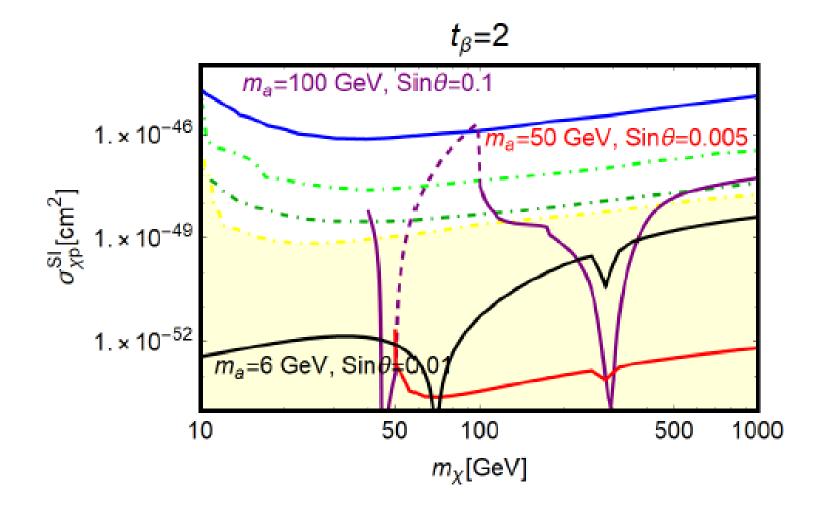


G.A., M. Lindner, F. Queiroz, W. Rodejohann, S. VoglarXiv:1711.02110









It is possible to have a WIMP model with typical scattering cross-section lying in the so-called 'neutrino floor'

Conclusions

A particularly interesting scenario is the case in which WIMP interactions are mostly mediated by a (possibly light) pseudoscalar field.

We have proposed an overview of possible implementations of this scenario from a simple portal to more refined models.