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Dark Matter relic density: Qpas ~ 26 %

Q—> requires a suppression of the DM particle number density during the
radiation dominated era: npas/n, ~ 1071 mpar ~ 100 GeV

L> thermal freeze-out scenario: Boltzmann suppression
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Super-cool DM: another possibility of n.pns /1~ suppression

L> applies to ‘dimensionless models: no mass term to start with in the £

v

no 1% term(s) for the scalar field(s)

v

EVVSB induced by radiative corrections:
radiative effective potential
Coleman-Weinberg 73’



Super-cool DM: another possibility of n.pns /1~ suppression

sketch of the general mechanism:

non trivial minimmum:

\/ symmetry breaking




Super-cool DM: another possibility of n.pns /1~ suppression

sketch of the general mechanism:

—> butatT >> w :potential has a minimum at the origin due to finite T
contributions

minimum at origin:
no symmetry breaking




Super-cool DM: another possibility of n.pns /1~ suppression

sketch of the general mechanism:

:“) at intermediate 7'

Verr!

scalar field is trapped in false
vacuum at omgm this leads

to a period of low scale

thermal inflation

Witten, ....,
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Iso, Serpico, Shimada | /'



Super-cool DM: another possibility of .par /1~ suppression

sketch of the general mechanism:

L> during inflation DM s still massless at this stage and gets
super-cooled (diluted) until end of this inflation period

e .

v

V'3 —y,h{qq)

ends inflation at 7"~ Agep
Witten, ....; Iso, Serpico, Shimada |/

—) after reheating, given the value of Agcp, the left diluted DM leads
to QDM = 26% ImeM ~ TeV




An explicit example model

=

(a new scalar S charged under\
\._ @ hew gauge symmetry _

s __

radiative breaking occurs for
this S scalar due to the gauge
boson loops contributing to
S effective potential

v

(S)=w#0



An explicit example model

(‘a new scalar S charged under )

™2 hew gauge symmetry

o — . _ i o

T

L3> -AgsSTSHTH
S5 -Agsw?2 H'H

U

EWSB Hempfling 96

=%



An explicit example model

(a new scalar S charged under®

T 2 hew gauge symmetry _

L3> -AgsSTSHTH A
S5 -Agsw?2 H'H

U

EWSB

+ we want a DM candidate: a possibility: stabilized by the new gauge symmetry




An explicit example model

ee——

(a new scalar S charged under®
N\ 2 new gauge symmetry _

PR T _

Standard Model

a new SU(2) x gauge symmetry
with S a scalar doublet of it

“"Hidden vector dark matter”

. 1 0
THO8', TH, Strumia |3’ S = —
5= (4 w)

the 3 X massive gauge bosons are stable because they form a
triplet of remnant SO(3)c¢ custodial symmetry, whereas all
other particles are singlets of it

—> DM are the 3 massive non-abelian gauge bosons which
drive the symmetry breaking: DM = "Hidden forces”



Potential at zero temperature

Vo = Ag|H|* — Aus|HS|? + As|S|*
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after we fix v = 246 GeV and m;, = 125 GeV the model has only 2 parameters

g9x, Mx = %
finally we add a constant to the potential to have ~0 cosmological

constant today: Vi ~ By, w* /16 ~ 9IM 5 /8(4m)?



Finite temperature period

Vils) = 2g F(2) + 1



Start of supercool period

at T >> w:minimum at s = 0 due
to finite temperature potential

My=10TeV, gx=10"°

at T = Terie ~ 0.3 Mx:2 minimumy ' :
at same level as a result of: £ LT
- no T = 0 quadratic term £ / — szT
- positive quadratic term g o \/ A reosr,
from thermal potential é of \/ — 7=0

- radiative potential developing e
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—> scalar field is trapped In false vacuum at origin: this leads to a period of
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Start of supercool period

true potential (not shifting it to have V.=01n s = 0):

Myx=10TeV, gx=10""
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End of super-cool period

L—> could anyway end through bubble nucleation at 7' = T},

but T,,.c IS very low as soon as gauge coupling below unity
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End of super-cool period

—> unless gauge coupling very close to unity, the super cool
period does not end at T,,,. but earlier at the

QCD phase transition: T9“P ~ 85 MeV <— massless quarks

My=10TeV, gy =107>
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End of super-cool period

Gauge coupling gy
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Oscillation of s field around s = w and reheating

L—> reheating with 2 scalar fields which mix

L=>S%SJ\4S]\4

h — SMSM
Tryg and M, in GeV

s — h mixing
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DM relic density: standard freezeout case

L—>if gx ~land Try 2= mppr/22 : DM can thermalize again

U

DM standard freezeout

U TH, Strumia 13’
mpmpm ~ VEW

Q—> leads to WIMP miracle



DM relic density: the super cool thing!

L—>if gx ~land Try 2= mppr/22 : DM can thermalize again

U

DM standard freezeout

U TH, Strumia 13’
mpmpm ~ VEW

L—> leads to \/\/IIVIPTmiracle

the ‘cool miracle’!

(not super-cool, just cool)

Q—> but as soon as gx Is sizably smaller than unity, DM doesn’t
thermalize after supercooling because Try < mpa/8.5 anyway

DM can be created only from tail of distribution of thermal bath particles

:> YDM ~ YDM’super—cool + YDM‘sub—thermal

. E
with YDM|sub—thermal << lfDl\%{2



DM relic density: the super cool DM population!

= super-cool DIM population:

DM particles are massless

3 during super-cooling:
Tru (1.
_ veq end .

infl infl no Boltzmann suppression!

only dilution!

= given the value of T2“? ~ 100 MeV one gets the right amount
of dilution to get Qpar >~ 26% for: mpyr ~ TeV

T

~ 10 e-folds




DM relic density: the super cool DM population!

=> super-cool DM population:

DM particles are massless

3 during super-cooling:
Y — vy Tru [ Tend gf Tp 5
DM|Super—cool — IpMm T T <« evenil Lrg <Mmpum, |

infl infl no Boltzmann suppression!

only dilution!

= given the value of T9“P ~ 100 MeV one gets the right amount
of dilution to get Qpyr ~ 26 % for: mpy ~ TeV

~ 10 e-folds the ‘'super-cool miracle’!




DM relic density: the super cool DM population!

=> super-cool DM population:

DM particles are massless

3 during super-cooling:
Y — vy TRH Tend gf Tp 5
DM|Super—cool — DMy Ton <« cven it frg <Mpm,

in

infl no Boltzmann suppression!
only dilution!

= given the value of T2P ~ 100 MeV one gets the right amount
of dilution to get Qpnr >~ 26% for: mpys ~ TeV

~ 10 e-folds the 'super-cool miracle’!

one-to-one relation between Qpyr and mps

L—>for (h)ocp ~ 100MeV one gets mpy = 520 GeV



DM relic density: the sub-thermal DM population

—> possible additional sub-thermal population

L—> DM pair production from thermal bath if gx not too small

suppressed because created from tail of distribution of thermal bath particles

Truy < mMpu

—> solving:

npm = —3Hnpwm + <UU>ann(nqu1\24 —npp) + (00 seminDM (M5 — PDM)

T

starting from super-cool population at T' = Try

- can aISQ_. - C !




DM relic density: final results
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DM relic density: final results

Qpmh® > 0.11
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Neutrino masses, baryogenesis?

L—> baryogenesis must be created after super-cool period because
supercool period basically dilutes any preexisting B-asymmetry

C o

L—> leptogenesis: add e.g. right-handed neutrinos V; and
extra scalar to give masses to them
once It gets a vev from s scalar vev

cold baryogenesis! 4 to be seen  Servantetal

—> leptogenesis: possible because Try > Tsphater. ~ 132 GeV 1S possible

Akhmedov, Rubakov, Smirnov; Asaka, Shaposhnikoy, ....

Q—> from total lepton number conserving ARS V; oscillation
setup: not easy because generically requires Trg >>> vpw

S 10° 3 :
L> from total lepton number violating %m@
Higgs decay setup: fine: infrared PRLY:
' ' = [
production just above Tsphaier. g 10
TH,Teresi 16, 17 ER:
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10?

10° 104
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Another example of simple model

simply assume:

Gauge coupling gp_g.

- U(1)p_r Instead of SU(2)x

- a scalar S charged under U(1)p_rinstead of the SU(2)x doublet

L—> inducing sym. breaking radiatively and

neutrino masses/leptogenesis through £ 3 —Yx S NN + h.c.

- an extra scalar ¢par stabilized by U(1)g_r:€.8 (B —L)gp, =1
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not ruled out by DM direct detection as usual B-L models
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Densities in Ge\/3
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Gauge coupling gy
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