

Pisa 5 June 2018

- Reminder on MUonE proposal
- Some Recent progress
- Plans
- Conclusions

Reference papers

A new approach to evaluate the leading hadronic corrections to the muon g-2

C. M. Carloni Calame^a, M. Passera^b, L. Trentadue^c, G. Venanzoni^d

^aDipartimento di Fisica, Università di Pavia, Pavia, Italy ^bINFN, Sezione di Padova, Padova, Italy ^cDipartimento di Fisica e Scienze della Terra "M. Melloni" Università di Parma, Parma, Italy and INFN, Sezione di Milano Bicocca, Milano, Italy ^dINFN, Laboratori Nazionali di Frascati, Frascati, Italy

Measuring the leading hadronic contribution to the muon g-2 via μe scattering

G. Abbiendi¹, C. M. Carloni Calame², U. Marconi¹, C. Matteuzzi³, G. Montagna^{4,2},
O. Nicrosini², M. Passera⁵, F. Piccinini², R. Tenchini⁶, L. Trentadue^{7,3}, and G. Venanzoni⁸ ¹INFN, Sezione di Bologna, Bologna, Italy ²INFN, Sezione di Pavia, Pavia, Italy ³INFN, Sezione di Milano Bicocca, Milano, Italy ⁴Dipartimento di Fisica, Università di Pavia, Pavia, Italy ⁵INFN, Sezione di Padova, Padova, Italy ⁶INFN, Sezione di Pisa, Pisa, Italy ⁷Dipartimento di Fisica e Scienze della Terra "M. Melloni", Università di Parma, Parma, Italy ⁸INFN, Laboratori Nazionali di Frascati, Frascati, Italy S

a_{μ}^{HLO} calculation, traditional way: time-like data

[C. Bouchiat, L. Michel, '61; N. Cabibbo, R. Gatto 61; L. Durand '62-'63; M. Gourdin, E. De Rafael, '69; S. Eidelman F. Jegerlehner '95,....]

$$\sigma(s)_{(e^+e^- \to had)} = \frac{4\pi}{s} \operatorname{Im} \Pi_{hadron}(s)$$

$$a_{\mu}^{HLO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \cdot \sigma(s)_{(e^+e^- \to had)}$$

The main contribution is in the highly fluctuating low energy

$$K(s) = \int_0^1 dx \, \frac{x^2(1-x)}{x^2 + (1-x)(s/m^2)} \sim \frac{1}{s}$$

The enhancement at low energy implies that the $\rho \rightarrow \pi^+\pi^-$ resonance is dominating the dispersion integral (~ 75 %). Current precision at 0.6% \rightarrow need to be reduced by a factor ~2

G. Venanzoni, Pisa, 5 June 2018

The high-energy tail of the integral is calculated using pQCD ⁴

$$\Delta^{\text{SM-BNL}} \sim 3\% a_{\mu}^{\text{HLO}}$$

Alternative approach: a_{μ}^{HLO} from space-like region

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx \left(1 - x\right) \cdot \Delta \alpha_{had} \left(-\frac{x^2 m_{\mu}^2}{1 - x}\right)$$

$$\begin{split} t &= \frac{x^2 m_{\mu}^2}{x-1} \quad 0 \leq -t < +\infty \\ x &= \frac{t}{2m_{\mu}^2} (1 - \sqrt{1 - \frac{4m_{\mu}^2}{t}}); \quad 0 \leq x < 1; \end{split}$$

- a_μ^{HLO} is given by the integral of the curve (smooth behaviour)
- It requires a measurement of the hadronic contribution to the effective electromagnetic coupling in the space-like region Δα_{had}(t) (t=q²<o)
- It enhances the contribution from low q² region (below 0.11 GeV²)
- Its precision is determined by the uncertainty on $\Delta \alpha_{had}$ (t) in this region

G. Venanzoni, Pisa, 5 June 2018

Measurement of $\Delta \alpha_{had}$ (t) spacelike at LEP

• $\Delta \alpha_{had}$ (t) (t<o) has been measured at LEP using small angle Bhabha scattering

$$f(t) = \frac{N_{\text{data}}(t)}{N_{\text{MC}}^0(t)} \propto \left(\frac{1}{1 - \Delta\alpha(t)}\right)^2.$$

Accuracy at per mill level was achieved! G. Abbience [see also A. Arbuzov et al. Eur.Phys.J. C34 (2004) 267-275]

 For low t values (≤0.11 GeV²) and higher precision (~10⁻⁵) as in our case a different approach is needed!

OPAL

Experimental approach:

Use of a 150 GeV μ beam on Be target at CERN (elastic scattering $\mu e \rightarrow \mu e$)

G. Venanzoni, Pisa, 5 June 2018

Why measuring $\Delta \alpha_{had}(t)$ with a 150 GeV μ beam on e⁻ target ?

It looks an ideal process!

- $\mu e \rightarrow \mu e$ is pure t-channel (at LO)
- Simple kinematics (2 body process, t=-2m_eE_e<o) allows to span the region o<-t<0.143 GeV² (0<x<0.93); 87% of total a_µ^{HLO} (the rest can be computed by pQCD/time-like data)
- Angular measurement: high boosted system gives access to all angles (t) in the cms region $\theta_e^{LAB} < 32 \text{ mrad} (E_e > 1 \text{ GeV}) \\ \theta_\mu^{LAB} < 5 \text{ mrad}$
- It allows using the same detector for signal and normalization (x<0.3, $\Delta \alpha_{had}(t) < 10^{-5}$) \rightarrow cancellation of detector effects at first order

MUonE : signal/normalization region

G. Venanzoni, Pisa, 5 June 2018

Detector considerations

- Modular apparatus: 60 layers of ~1 cm Be (target), each coupled to ~0.5 m distant Si (0.3 mm) planes. It provides a 0.02 mrad resolution on the scattering angle
- The t=q² <0 of the interaction is determined by the electron (or muon) scattering angle (a` la NA7)
- ECAL and μ Detector located downstream to solve PID ambiguity below 5 mrad. Above that, angular measurement gives correct PID
- It provides uniform full acceptance, with the potential to keep the systematic errors at 10⁻⁵ (main effect is the multiple scattering for normalization which can be studied by data)
- Statistical considerations show that a **0.3%** error can be achieved on a_{μ}^{HLO} in 2 years of data taking with ~10⁷ μ /s (4x10¹⁴ μ total)

Elastic scattering in the (θ_e , θ_μ) plane

G. Venanzoni, Pisa, 5 June 2018

Muon beam M2 at CERN

"Forty years ago, on 7 May 1977, CERN inaugurated the world's largest accelerator at the time – the Super Proton Synchrotron".

I_{beam} > 10⁷ muon/s, E_{μ} = 150 GeV ₁₃

G. Venanzoni, Pisa, 5 June 2018

Measuring e- and muon angle: Repetition (x50) of this single module

~1cm State-of-art Silicon detectors
 Be Target hit resolution ~10 μm
 expected angular resolution ~ 10 μm / 0.5 m = 0.02 m/rad

Systematics

- 1. Multiple scattering
- 2. Tracking (alignment & misreconstruction)
- 3. PID
- 4. Knowledge of muon momentum distribution
- 5. Background
- 6. Theoretical uncertainty on the mu-e cross section (see later)

```
7. ...
```

All the systematic effects must be known to ensure an error on the cross section < 10ppm

Multiple Scattering studies: Results from Test Beam

Check GEANT MSC prediction and populate the 2D (θ_e , θ_{μ}) scattering plane

- 27 Sep-3 October 2017 at CERN "H8 Beam Line"
- Adapted UA9 Apparatus
- Beam energy: e- of 12/20 GeV; μ of 160 GeV
- 10⁷ events with C targets of different thickness (2,4,8,-20mm)

Adapted UA9 apparatus

5 Si planes: 2 before and 3 after the target, 3.8x3.8 cm2 intrinsic resolution ${\sim}100\mu rad$

Test Beam setup and target

Thanks to the UA9 Collaboration (particularly M. Garattini, R. Iaconageli, M. Pesaresi), J. Bernhard

8mm, 20 GeV

Detector optimization

Detector optimization

- Target thickness (10mm Be default)
- Silicon sensors (type, material)
- Number of tracking stations per unit (3-4)
- Dimension of apparatus
- Calorimetry/PID
- Trigger/DAQ

— . . .

Some numbers:

- 60 cm total Be target (2X₀) segmented in 60 stations with 1 cm target (0.03 X₀)
- ~30 m total detector length
- 10x10 cm² silicon detectors
- Resolve each µ,e track with uniform efficiency
- Best possible resolution on $\theta\mu$ (<5mrad), θe (<50 mrad)
- μ rate: ~60 MHz (peak) \rightarrow 13 MHz (averaged)
- μ separation: 17 ns (peak) \rightarrow 77 ns (averaged)
- Collect $4x10^{12}$ events with E_e>1GeV in ~2 years
- Scattering probability (E_e>1GeV): 1.2x10⁻⁴/cm
- Scattering event rate (E_e>1GeV): 7 kHz per station
- Scattering separation (E_e>1GeV): 140 µs per station

Silicon detectors survey

	ALICE Upg Inner	ALICE Upg Outer	CMS Upg 2S	2×CMS Upg 2S	CMS Upg PS	CMS Upg Pixel	2×CMS Current	Mimosa26	LHCb VELO- pix
Technology	MAPS	MAPS	Hybrid strip	Hybrid strip	Hybrid strip/px	Hybrid pixel	Hybrid strip	MAPS	Hybrid pixel
active x [cm]	27	21	10	10	10	33	10	1.06	4.246
active y [cm]	1.5	3	10	10	5	44.2	10	2.12	1.408
pixel size x [µm]	30	30	90	90	100	50	90	18.4	55
pixel size y [µm]	30	30	50000	90	1400	50	50000	18.4	55
σx [μm]	2	2	26	26	29	7	18	3.2	12
σy [μm]	2	2	14434	26	404	7	18	3.2	12
Material [x/X _o]	0.3%	0.8%	2.3%	4.5%	3.8%	2.0%	4.5%	0.10%	0.94%
Sensor mat. $[x/X_0]$	0.3%	0.8%	0.3%	0.6%	3.8%	2.0%	0.6%	0.10%	0.94%

Plans for 2018

Build up and test a full scale prototype (2 modules).

- Run of a 2 full scale modules on a muon beam on M2 (behind COMPASS) from April/May
- Study of the detector performance: signal/background; tracking efficiency; understand the systematics
- Data taking is going on!

G. Venanzoni, Pisa, 5 June 2018

EXPERIMENTAL SETUP

Picture taken on 4/8/18

G. Venanzoni, Pisa, 5 June 2018

Theory

- QED NLO MC generator with full mass dependence has been developed and is currently under use (Pavia group)
- First results obtained for the NNLO box diagrams contributing to mu-e scattering in QED (Padova group) 1709.07435

Master integrals for the NNLO virtual corrections to μe scattering in QED: the planar graphs

^aDipartimento di Fisica ed Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, It ^bINFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy ^cHigh Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

E-mail: pierpaolo.mastrolia@pd.infn.it, massimo.passera@pd.infn.it, amedeo.primo@pd.infn.it, schubertmielnik@anl.gov

 An unprecedented precision challenge for theory: a full NNLO MC generator for μ-e scattering (10⁻⁵ accuracy)

G. Venanzoni, Pisa, 5 June 2018

III III III

 T_1

 T_7

Theory: international community!

 2017: Sept 4-5: A kick-off theory meeting in Padova:

https://agenda.infn.it/internalPage.py?pa geld=o&confld=13774

Muon-electron scattering: Theory kickoff workshop

• 2018, Feb 19-23: A Topical workshop at MIPT, Mainz <u>https://indico.mitp.uni-mainz.de/event/128/</u>

-5 September 2017 Padova

Mainz Institute for Theoretical Physics

The Evaluation of the Leading Hadronic Contribution to the Muon Anomalous Magnetic Moment

- 2019, Feb 4-7: Workshop on
- "Theory for muon-electron scattering @ 10ppm" in Zurich

G. Venanzoni, Pisa, 5 June 2018

Status of the Collaboration and plans

 Collaboration is growing and interest from International groups from CERN, Poland, Russia (Novosibirsk), UK, USA (Virginia) has been expressed.

 Results so far encouraging; we are part of "Physics Beyond Collider" process at CERN (<u>http://pbc.web.cern.ch/</u>); we are working hard toward a formal LoI (2019).

Report of A. Magnon (MUonE referee in PBC) 2 March 2018

Expect a lot of physics Input from these tests <u>Hope we can run at (close) to nominal µ Flux</u>

 Concerning the final project for High precision measurement of a^{HLO} Certainly very challenging
 I (Alain Magnon) DO NOT SEE a priori showstopper(s)

Plans

- 2018-2019
 - Detector optimization studies: simulation; Test Run at CERN (2018); Mainz with 1GeV e- (2019); Fermilab with 6o GeV μ (2019)
 - Theoretical studies
 - Set up a collaboration
 - Letter of Intent to the SPSC

• 2020-2021

- Detector construction and installation
- _HC readinap, according to MPP 2016-2020*
- 2022-2027.
 - Start the data taking arter Loz to measure Log shutdown (LS) (not necessarily the ultimate precision)

Conclusion

- Exciting times for the muon g-2!
- Alternative/competitive determinations of a_{μ}^{HLO} are essential:
 - Time-like (dispersive) approach
 - Lattice
 - Space-like approach (MUonE)

• Progress on **MUonE**:

- Analysis of MS 2017 TB data
- Detector optimization
- Silicon detector procurement
- Progress on the Theory side
- Test run in 2018; planned tests for 2019
- Growing interest from both experiment and theory community
- LoI planned for 2019

Very challenging experiment: If you are interested you are very welcome!!

"Fattí non foste a víver come brutí, ma per seguír vírtute e canoscenza " (Dante Alíghíerí, Dívína Commedía, Inferno, XXXVI)

[We were not born to live like brutes but to follow virtue and knowledge]

Thanks!

THE END

SPARE

calibration curve. Detailed check of GEANT predictions.

Fraction of a_{μ}^{HLO} covered

Fraction of a_{\mu}^{HLO} covered

 $P_{\mu} = 150 \text{ GeV/c}$

Muon g-2: summary of the present status

- E821 experiment at BNL has generated enormous interest: $a_{\mu}^{E821} = 11659208.9(6.3) \times 10^{-10}$ (0.54 ppm)
- Tantalizing $\sim 3\sigma$ deviation with SM (persistent since >10 years):

 $a_{\mu}^{SM} = 11659180.2(4.9) \times 10^{-10} (DHMZ)$

M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C71 (2011)

$$a_{\mu}^{E821} - a_{\mu}^{SM} \sim (28 \pm 8) \times 10^{-10}$$

- Current discrepancy limited by:
 - Experimental uncertainty → New experiments at FNAL and J-PARC x4 accuracy
 - Theoretical uncertanty → limited by hadronic effects

MUonE

A high precision measurement of a_μ^{HLO} with a 150 GeV μ beam on e⁻ target at CERN

G. Abbiendi, M. Alacevich, M. Bonomi, C. Brizzolari, A. Broggio, C.M.Carloni Calame, E. Conti, D. Galli, M. Fael, A. Ferroglia, F.V. Ignatov, M. Incagli, A. Keshavarzi, F. Ligabue, U. Marconi, M.K. Marinković, V. Mascagna, P. Mastrolia, C. Matteuzzi, S. Mersi, G. Montagna, O. Nicrosini, G. Ossola, L. Pagani, M. Passera, P. Paradisi, C. Patrignani, F. Piccinini, F. Pisani, M. Prest, A. Primo, A. Principe, M. Rocco, U. Schubert, F. Simonetto, R. Stroili, L. Tranchedi, R. Tenchini, W. Torres-Bodabilla, L. Trentadue, E. Vallazza, <u>G. Venanzoni</u>,...

Pisa, 5 Giugno 2018

The silicon detectors

Sensors developed for AGILE, being used by LEMMA

Table 1 Main features of the AGILE silicon detector

Item	Value		
Dimension (cm ²)	9.5 × 9.5		
Thickness (µm)	410		
Readout strips	384		
Readout pitch (µm)	242		
Physical pitch (µm)	121		
Bias resistor $(M\Omega)$	40		
AC coupling Al resistance (Ω /cm)	4.5		
Coupling capacitance (pF)	527		
Leakage current (nA/cm ²)	1.5		

M. Prest et al., NIM A, 501:280–287, 2003

Daniela Lietti, PhD thesis. VISION: a Versatile and Innovative SIlicON tracking system

http://insulab.dfm.uninsubria.it/images/download_files/thesis_phd_lietti.pdf

Report of A. Magnon (MUonE referee in PBC) 2 March 2018

 Expect a lot of physics Input from these tests Hope we can run at (close) to nominal µ Flux

Concerning the final project for High precision measurement of a_µ^{HLO}
 Certainly very challenging

 I (Alain Magnon) DO NOT SEE a priori showstopper(s)

Plans

- 2018-2019
 - Detector optimization studies: simulation; Test Run at CERN (2018); Mainz with 1GeV e- (2019); Fermilab with 60 GeV μ (2019)
 - Theoretical studies
 - Set up a collaboration
 - Letter of Intent to the SPSC

• 2020-2021

- Detector construction and installation
- LHC readinap, according to MPP 2016-2020*
- 2022-2027.
 - Start the data taking arter Loz to measure Log shutdown (LS) (not necessarily the ultimate precision)

Resolution dominated by MS up to 10~100 GeV/c

- Resolution on scattering angle assumptions:
- 2 measurement plane 0.5 m apart
- Scattering on:

 - No plane (ideal resolution) First detector plane (pure tracker resolution) First plane + $\frac{1}{2}$ Be target (includes "average" MS in target)
- Core of MS only considered (no tails)

Detector integration time

- Hybrid pixels & strips for (HL-)LHC: 25 ns
- ALPIDE: 1 µs

Expected pile-up events

• Mimosa26: 112 μs

Experimental setup location

Site inspection in COMPASS on 11/10/2017

Counting room quite far from experimental site: DAQ PC near setup → "short" optical fiber from crate VME to DAQ PC, then ethernet cable from DAQ PC to counting room

Multiple Scattering studies: Results from Test Beam

Check GEANT MSC prediction and populate the 2D (θ_e , θ_{μ}) scattering plane

- 27 Sep-3 October 2017 at CERN "H8 Beam Line"
- Adapted UA9 Apparatus
- Beam energy: e- of 12/20 GeV; μ of 160 GeV
- 10⁷ events with C targets of different thickness (2,4,8,-20mm)

Adapted UA9 apparatus

5 Si planes: 2 before and 3 after the target, 3.8x3.8 cm2 intrinsic resolution ${\sim}100\mu rad$

Test Beam setup and target

Thanks to the UA9 Collaboration (particularly M. Garattini, R. Iaconageli, M. Pesaresi), J. Bernhard

12 GeV e^{-} 8mm C

12 GeV e⁻ 20mm C

- data-MC agree on σ (core) at ~2%
- data-MC agree on σ (tail) at ~5%
- (Possible) improvement due to better alignment and track fit
- Discussion with GEANT expert (V. Ivantchenko) ongoing

Hộne

20 GeV e⁻ 8mm C

20 GeV e⁺ 20mm C

- data-MC agree on σ (core) at ~2%
- data-MC agree on σ (tail) at ~5%
- (Possible) improvement due to better alignment and track fit
- Discussion with GEANT expert (V. Ivantchenko) ongoing

G. Venanzoni, g-2 Coll Meeting 22 March 2018

Output angle[mrad]

 $\sigma(\text{core})_{\text{DATA}}=3.27 \times 10^{-1} \text{ mrad}$

- p2: σ(core)_{MC}=3.24x10⁻¹ mrad
- p9: $\sigma(tail)_{MC}=2.27$ mrad $\sigma(core)_{DATA}=2.22$ mrad Fractional difference: <1% on $\sigma(core)$; ~3% on $\sigma(tail)$

Timelike data aiming at 0.2% on a_{μ}^{HLO} ?

- Not an easy task!
 - >30 channels to keep under control (at (sub)percent level)
 - local discrepancies in main channels (2π (KLOE/Babar), K⁺K⁻ CMD2/Babar)
 - Isospin corrections for not measured channels
 - Treatment of narrow resonances? (See F. Jegerlehner, ArXiv:1511.04473)

M. Davier, TAU16 WS

An independent/complementary approach is highly desirable!

G. Venanzoni, μ -e Theory Workshop, Padova, 4 September 2017

Lattice-QCD progress on a_{μ}^{HVP}

- Can calculate nonperturbative vacuum polarization function П(Q²) directly in lattice QCD from simple 2-point correlation function of EM quark current [Blum, PRL 91 (2003) 052001]
- Several ongoing lattice efforts yielding new results since ICHEP 2014 including:
- (1) First calculation of quark-disconnected contribution [RBC/UKQCD, PRL116, 232002 (2016)]
- (2) Second complete calculation of leading-order a_{μ}^{HVP} [HPQCD, arXiv:1601.03071]
 - First to reach precision needed to observe significant deviation from experiment
 - ~1% total uncertainty by 2018 possible
 - Sub-percent precision will require inclusion of isospin breaking & QED, and hence take longer

However: Recent Lattice evaluation

Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles

Sz. Borsanyi,¹ Z. Fodor,^{1,2,3} C. Hoelbling,¹ T. Kawanai,³ S. Krieg,^{1,3} L. Lellouch,⁴ R. Malak,^{4,5} K. Miura,⁴ K.K. Szabo,^{1,3} C. Torrero,⁴ and B.C. Toth¹

(Budapest-Marseille-Wuppertal collaboration)

arXiv:1711.04980v1 [hep-lat] 14 Nov

$a_{\mu}^{\text{LO-HVP}} = 711.0(7.5)(17.3) \times 10^{-10}$

(NP). Using the SM contributions summarized in [8], we find $a_{\mu,\text{noNP}}^{\text{LO-HVP}} = (720.0 \pm 6.8) \times 10^{-10}$. The errors on the lattice results, which are in the range of 2.0 to 4.1%are substantially larger than those of the phenomenological approach. Our result for $a_{\mu}^{\text{LO-HVP}}$ is larger than those of the other lattice calculations and in slight tension with the one from HPQCD [33] which is 1.9σ away. A more detailed flavor-by-flavor comparison is given in [45]. However, our result is consistent with those from phenomenology within about one standard deviation, as well as with $a_{\mu,\text{noNP}}^{\text{LO-HVP}}$. Thus, one will have to wait for the next generation of lattice QCD calculations to confirm or infirm the larger than 3σ deviation between the measurement of a_{μ} and the prediction of the SM based on phenomenology.

G. Venanzoni, Seminar at BINP, Novosibirsk 25 January 2018

Experimental Setup

Multiple scattering angle

G. Venanzoni, PBC QCD-WG Meeting 2 March 2018

$\boldsymbol{\tau}$ and trigger rate define operation mode

Connections (power, data, network)

world

Jama III//2 Fabial

Multiple Scattering resolution:

a worst-case scenario

- The detector effects (mostly MS in the target) modify the theoretical spectrum (N(θ_e))
- We assume a 1% miscalibration on the GEANT model for $\sigma_{\theta e}~$ MS (N_mis)
- N_{mis} quadratically in θ_e respect to NO bias (N_i)
- By correcting N_{mis}/N_i in the normalization region → residual effects <10⁻⁵ in the signal region G. Venanzoni, PBC Workshop, CERN, 21 November 2017

Low energy electrons should be tagged

Not only the track angle

ll readout

Readout electronics

- Zero suppression mode
- 1 ADC board per 4 moduli single side
- 1 VME Readout Board per leggere gli ADC e immagazzinare i dati durante la spill
- Readout speed → 6 kHz → questo numero può salire a 15 kHz se ognuno dei 3 ASIC che leggono una vista è letto in modo indipendente (e non in una daisy chain a 3 come succede adesso) → è possibile solo costruendo moduli nuovi

Abbiamo materiale per costruire ulteriori 10 viste x-y

ADC board

Prospect for 2018 run

Silicon beam chambers:

- 4 moduli X-Y con i rivelatori single side di AGILE → 9.5x9.5 cm² con strip a passo 242 µm – 1 strip floating → risoluzione spaziale di 30 µm
- 4 moduli X-Y richiedibili a INFN Bari (gruppo Fermi) → rivelatori single side di 8.75x8.75 cm² con strip a passo 228 μm
- In costruzione: 5 moduli X-Y per LEMMA con i rivelatori single side di AGILE

M. Prest et al., Nucl. Instr. and Meth. in Phys. Res. A, 501:280–287, 2003

Daniela Lietti, PhD thesis. VISION: a Versatile and Innovative SllicON tracking system http://insulab.dfm.uninsubria.it/images/do wnload_files/thesis_phd_lietti.pdf

MuONe software status

- created a gitlab area for MuONe
- created a project for the Geant4 based simulation inside the area
 - already some wiki pages available as documentation
 - in the future also the test beam reconstruction/analysis software will be hosted in the gitlab area
- simulation has implemented two different geometries with the possibility to change parameters at runtime
- it should be easy enough to put in the test beam detectors