

An experiment to measure BR($K_L \rightarrow \pi^0 v \bar{v}$) at the CERN SPS

Laboratori Nazionali di Frascati 21 June 2018

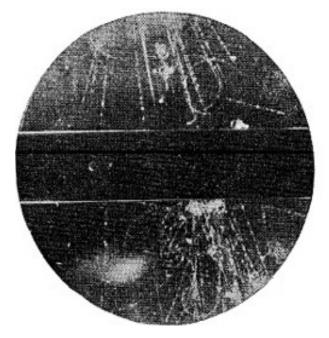
Matthew Moulson For the KLEVER project

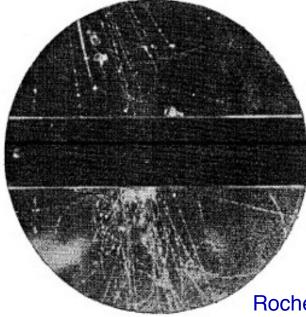
Precision physics and rare decays

How can we extend the search for new physics to high effective scales?

Energy frontier	Intensity frontier
Direct search	Indirect investigation
Create new degrees of freedom in lab	Evidence of new degrees of freedom as alteration of SM rates
Explore spectroscopy of new d.o.f.	Explore symmetry properties
Λ ~ 1-10 TeV	of new d.o.f
A~1-10 lev	Λ ~ 1-1000 TeV

A rare decay is useful as an NP probe if:


- Process is (strongly) suppressed in the SM
- Parameter to be measured precisely calculated in SM
- There are specific predictions for NP contributions


Examples of what may be studied with rare decays:

- Explicit violations of the SM (e.g., lepton flavor violation)
- Tests of fundamental symmetries such as CP and CPT
- Search for new d.o.f. in the flavor sector, e.g., in FCNC processes
- Strong interaction dynamics at low energy using exclusive processes

What have kaons taught us?

Rochester & Butler *Nature* 160 (1947)

Strangeness, concept of flavor quark model

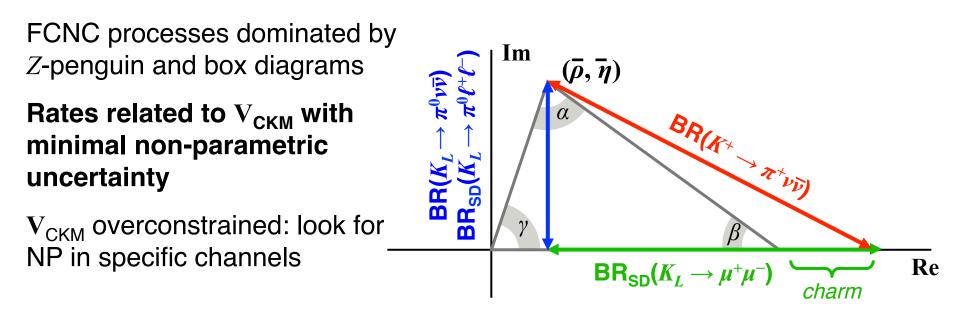
 τ - θ puzzle: hint of P violation, confirmation of weak V-A structure

CP violation in mixing of neutral kaons

Suppression of $K_L \rightarrow \mu^+ \mu^-$: GIM mechanism and the charm quark

Direct CP violation in $K \rightarrow \pi\pi$ and the CKM paradigm

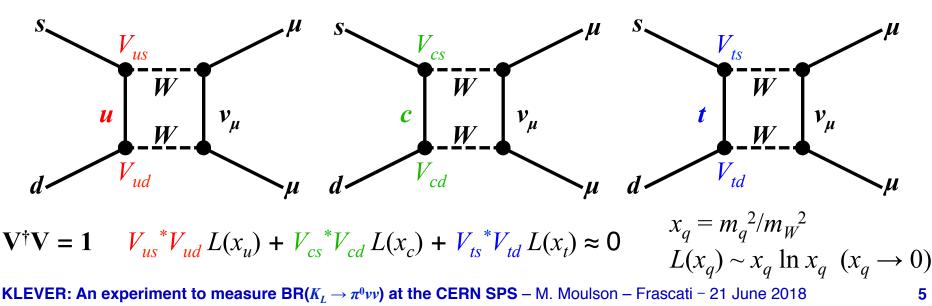
Quiet successes of confirmation: conservation of lepton flavor, V_{us} , etc.


Kaons have been fundamental in the development of the SM flavor sector

Rare kaon decays

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR $\times 10^{11}$	Exp. BR × 10 ¹¹
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28†
$K_L o \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38†
$K^{+} \rightarrow \pi^{+} v \overline{v}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L ightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 2600 ⁺

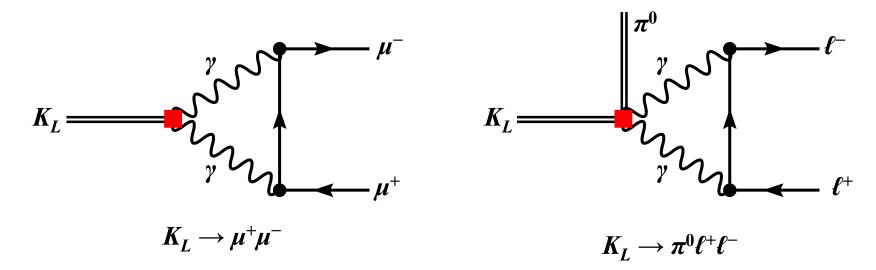
*Approx. error on LD-subtracted rate excluding parametric contributions [†]90% CL


Rare kaon decays

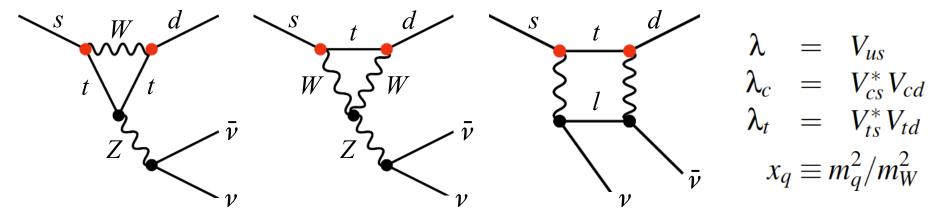
Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR × 10 ¹¹	Exp. BR × 10 ¹¹
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28†
$K_L o \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38†
$K^{+} \rightarrow \pi^{+} v \overline{v}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L ightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 2600†

*Approx. error on LD-subtracted rate excluding parametric contributions [†]90% CL

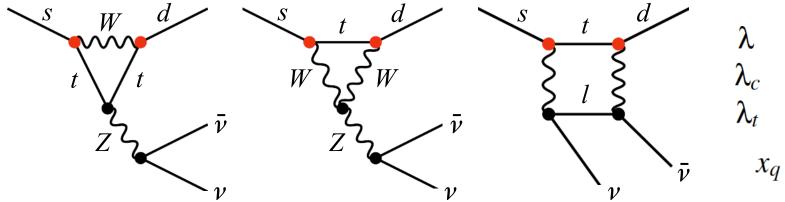
Rates for FCNC decays are suppressed by GIM mechanism:


Rare kaon decays

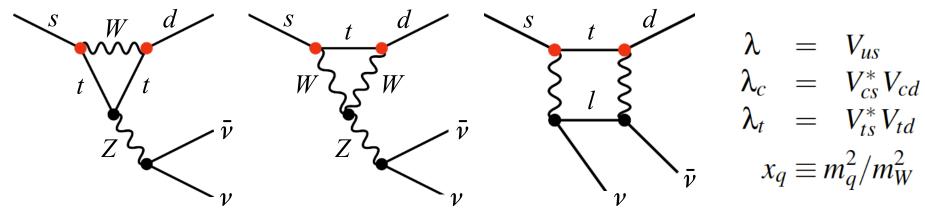
Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR $\times 10^{11}$	Exp. BR × 10 ¹¹
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L ightarrow \pi^0 e^+ e^-$	40%	10%	35 ± 10	< 28†
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	14 ± 3	< 38†
$K^{+} \rightarrow \pi^{+} v \overline{v}$	90%	4%	8.4 ± 1.0	17 ± 11
$K_L ightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 2600†


*Approx. error on LD-subtracted rate excluding parametric contributions [†]90% CL

No LD contributions from states with intermediate γ s for $K \rightarrow \pi v \bar{v}$


 $K \rightarrow \pi v \bar{v}$ in the Standard Model

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{Re \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{Re \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$$



$$\lambda = V_{us}$$

 $\lambda_c = V_{cs}^* V_{cd}$
 $\lambda_t = V_{ts}^* V_{td}$
 $x_q \equiv m_q^2 / m_W^2$

Loop functions favor top contribution

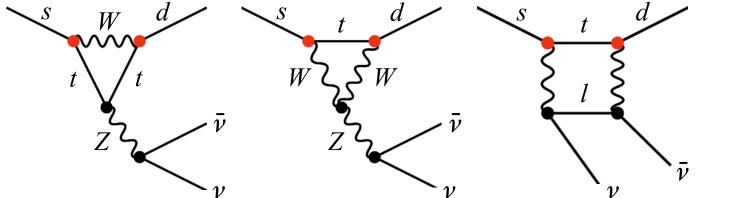
$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{Re \lambda_{t}}{\lambda^{5}} X(x_{t}) \right) + \frac{Re \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \leftarrow \mathcal{P}$$

Loop functions favor top contribution

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{Re \lambda_{t}}{\lambda^{5}} X(x_{t}) \right) + \left(\frac{Re \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$

$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \leftarrow \mathcal{P}$$

$$QCD \text{ corrections for } \sum_{c} v_{c}$$


$$QCD \text{ corrections for } \sum_{c} v_{c}$$

$$QCD \text{ corrections for } \sum_{c} v_{c}$$

$$QCD \text{ corrections for } v_{c}$$

$$QCD \text{ corrections for } v_{c}$$

$$\lambda = V_{us}$$

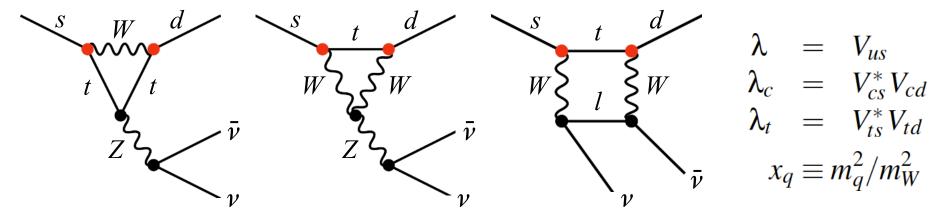
 $\lambda_c = V_{cs}^* V_{cd}$
 $\lambda_t = V_{ts}^* V_{td}$
 $x_q \equiv m_q^2 / m_W^2$

λ

Loop functions favor top contribution

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{Re \lambda_{t}}{\lambda^{5}} X(x_{t}) \right) + \frac{Re \lambda_{c}}{\lambda} P_{c}(X) \right]^{2} \right]$$

$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} \leftarrow e^{\rho}$$


$$\kappa_{+} = r_{K^{+}} \frac{3\alpha^{2} BR(K^{+} \to \pi^{0} e^{+} \nu)}{2\pi^{2} \sin^{4} \theta_{W}} \lambda^{8}$$

$$Hadronic matrix element obtained from BR(K_{c^{3}}) via isospin rotation$$

$$QCD corrections for charm diagrams contribute to uncertainty$$

$K \rightarrow \pi v \overline{v}$	$K \rightarrow \pi v \bar{v}$ in the Standard Model		
S W d t t Z	\bar{v}	s t $dW l W \bar{\nu}$	$\lambda = V_{us}$ $\lambda_c = V_{cs}^* V_{cd}$ $\lambda_t = V_{ts}^* V_{td}$ $x_q \equiv m_q^2 / m_W^2$
	SM predicted rates Buras et al, JHEP 1511*	Experimen	tal status
$K^+ \rightarrow \pi^+ v v$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	BR = (17.3 +11 Stopped <i>K</i> ⁺ , 7 ev Brookhaven 787/94	vents observed
$K_L ightarrow \pi^0 v v$	BR = (3.4 ± 0.6) × 10 ⁻¹¹	BR < 2600 × 1 Low energy, d KEK 391a, PI	ecay in flight

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{Re \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{Re \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right]$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{Im \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2}$$

Grossman-Nir limit on BR($K_L \rightarrow \pi^0 vv$):

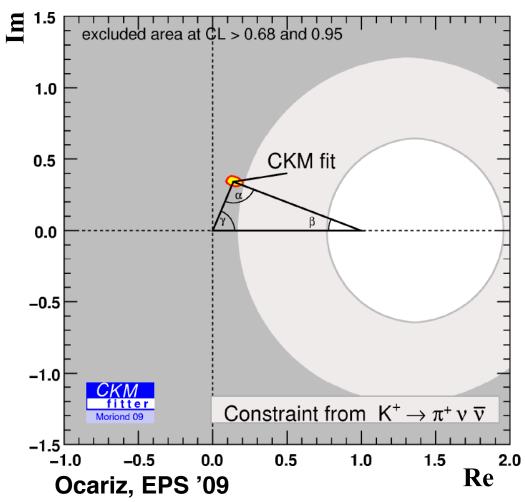
$$\frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \le 1$$

Current experimental value Brookhaven E787/949 '09 – Stopped K^+ BR($K^+ \rightarrow \pi^+ vv$) = (17.3^{+11.5}_{-10.5}) × 10⁻¹¹

 $\mathsf{BR}(K_L \to \pi^0 v v) \le 1.4 \times 10^{-9}$

Uncertainty on SM predictions for $K \rightarrow \pi v \overline{v}$ BRs mostly from V_{CKM}

${\sf BR}_{\sf SM}(K_L o \pi^0 v \overline{v}) imes 10^{11} \ {\sf 3.36 \pm 0.59}_{\sf par} \pm 0.05_{\sf th}$


V_{ub}	0.50	15%
γ	0.24	7%
V_{cb}	0.24	7%
X_t + other	0.05	1.5%

 $BR_{SM} (K^+ \to \pi^+ v \overline{\nu}) \times 10^{11}$ 8.39 ± 0.95_{par} ± 0.30_{th}

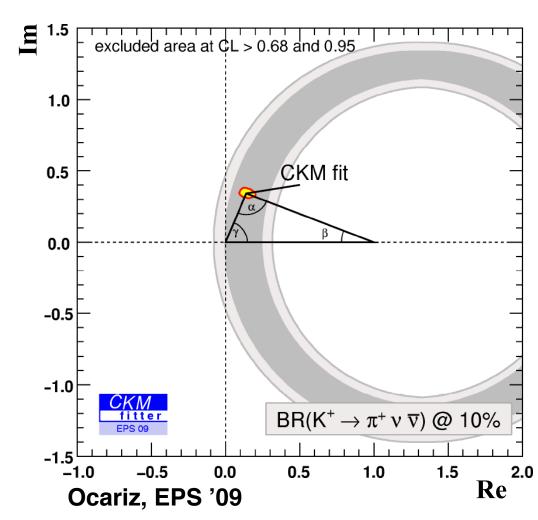
V _{cb}	0.83	10%
γ	0.56	7%
$P_c^{SD} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%

CKM constraints from: Current experimental value $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$

Brookhaven E787/949 '09 – Stopped K^+

Buras, et al. JHEP 1511

Uncertainty on SM predictions for $K \rightarrow \pi v \bar{v}$ BRs mostly from V_{CKM}


$BR_{SM}(K_L \to \pi^0 v \bar{v}) \times 10^{11}$ 3.36 ± 0.59_{par} ± 0.05_{th}

V_{ub}	0.50	15%
γ	0.24	7%
V_{cb}	0.24	7%
X_t + other	0.05	1.5%

 $BR_{SM} (K^+ \to \pi^+ v \bar{\nu}) \times 10^{11}$ 8.39 ± 0.95_{par} ± 0.30_{th}

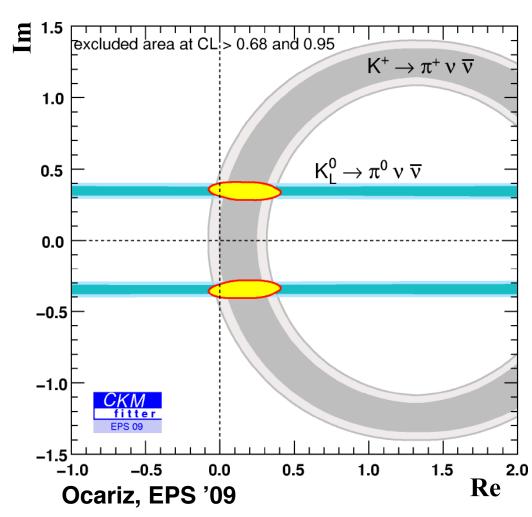
V _{cb}	0.83	10%
γ	0.56	7%
$P_c^{SD} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%

CKM constraints from: Hypothetical BR($K^+ \rightarrow \pi^+ v \overline{v}$) to ±10%

Buras, et al. JHEP 1511

Uncertainty on SM predictions for $K \rightarrow \pi v \overline{v}$ BRs mostly from V_{CKM}

$BR_{SM}(K_L \to \pi^0 v \bar{v}) \times 10^{11}$ 3.36 ± 0.59_{par} ± 0.05_{th}


V _{ub}	0.50	15%
γ	0.24	7%
V _{cb}	0.24	7%
X_t + other	0.05	1.5%

 $BR_{SM} (K^+ \to \pi^+ v \bar{\nu}) \times 10^{11}$ 8.39 ± 0.95_{par} ± 0.30_{th}

V _{cb}	0.83	10%
γ	0.56	7%
$P_c^{SD} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%

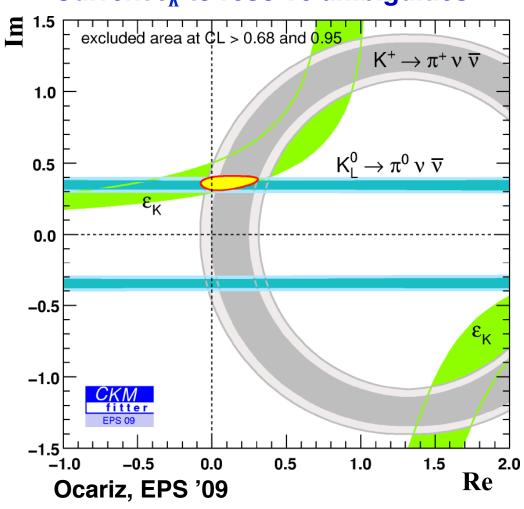
CKM constraints from:

Hypothetical BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) to ±10% Hypothetical BR($K_L \rightarrow \pi^0 \nu \overline{\nu}$) to ±15%

Buras, et al. JHEP 1511

Uncertainty on SM predictions for $K \rightarrow \pi v \bar{v}$ BRs mostly from V_{CKM}

${\sf BR}_{\sf SM}(K_L o \pi^0 v \overline{v}) imes 10^{11} \ {\sf 3.36 \pm 0.59}_{\sf par} \pm 0.05_{\sf th}$

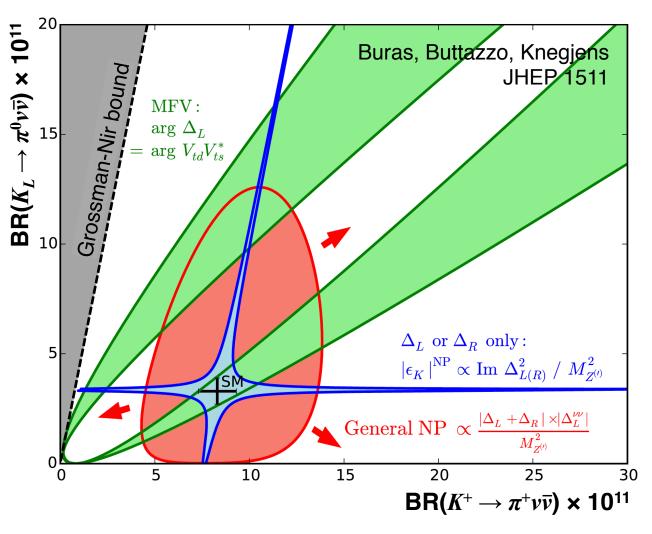

V_{ub}	0.50	15%
γ	0.24	7%
V_{cb}	0.24	7%
X_t + other	0.05	1.5%

 $BR_{SM} (K^+ \to \pi^+ v \overline{\nu}) \times 10^{11}$ 8.39 ± 0.95_{par} ± 0.30_{th}

V _{cb}	0.83	10%
γ	0.56	7%
$P_c^{SD} + \delta P_{c,u}$	0.39	5%
X_t + other	0.12	1.5%

CKM constraints from:

Hypothetical BR($K^+ \rightarrow \pi^+ v \bar{v}$) to ±10% Hypothetical BR($K_L \rightarrow \pi^0 v \bar{v}$) to ±15% **Current** ε_K to resolve ambiguities



Buras, et al. JHEP 1511

$K \rightarrow \pi v \overline{v}$ and new physics

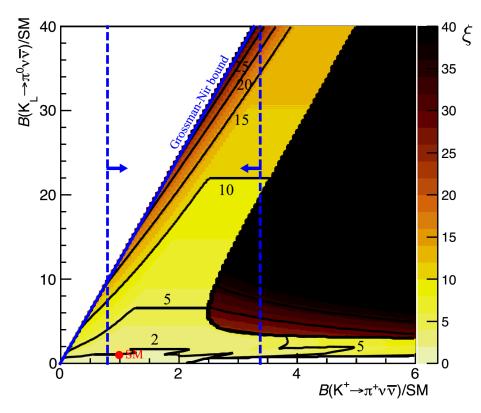
New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure
 Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - –Z/Z' models with pure LH/RH couplings
 - –Littlest Higgs with T parity
- Models without above constraints
 Randall-Sundrum

$K \rightarrow \pi v \bar{v}$ and other kaon observables **K**

Do constraints from Re ε'/ε , ε_K , Δm_K , $K_L \rightarrow \mu\mu$ limit size of effects on $K \rightarrow \pi \nu \nu$ BRs?

Model	Effect	Refs
Vector-like quarks	K_L suppressed, K^+ possibly enhanced	Bobeth et al. '16
Leptoquarks	Large effects for both K_L , K^+ : possibly ruled out?	Bobeth, Buras '17
Simplified Z	K_L suppressed 30%, K^+ enhanced up to 2x	Endo et al. '17
SUSY	K^+ and K_L enhanced 10-20% for $\Lambda_{SUSY} \sim 3 \text{ TeV}$	Kitahara et al. '16


Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1$ TeV

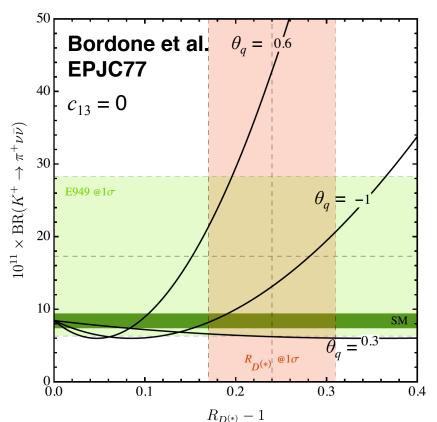
 Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε:

 $BR(K_L \rightarrow \pi^0 vv) \sim 0.5 SM BR$

- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for BR($K \rightarrow \pi v v$) are possible

$K \rightarrow \pi v \overline{v}$ and other flavor observables **K**

New ideas relating $K \rightarrow \pi v v$ to *B*-sector LFU anomalies:


 $R_{K}, P_{5}': \mu/e \text{ LFU in } B \to K\ell\ell, B \to K^{*}\ell\ell$ $R_{D(*)}: \tau/(\mu, e) \text{ LFU in } B \to D^{(*)}\ell\nu$

Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

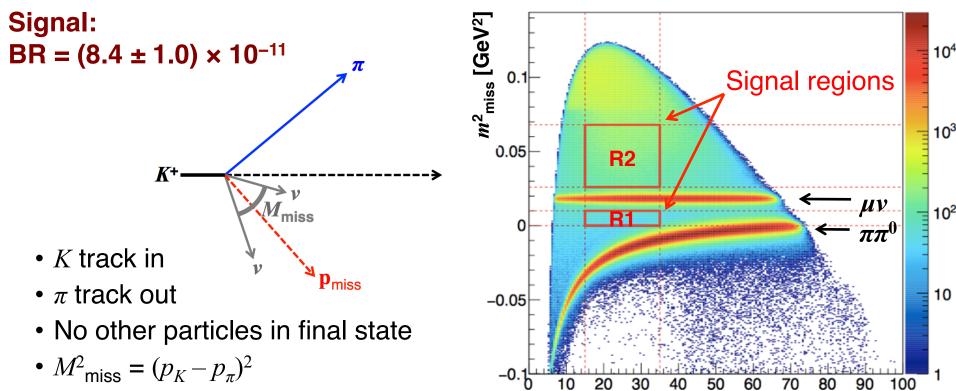
- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \rightarrow \pi v v$

• Bordone et al. EPJC77 (2017)

$$\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}) = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})_{\mathrm{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2$$

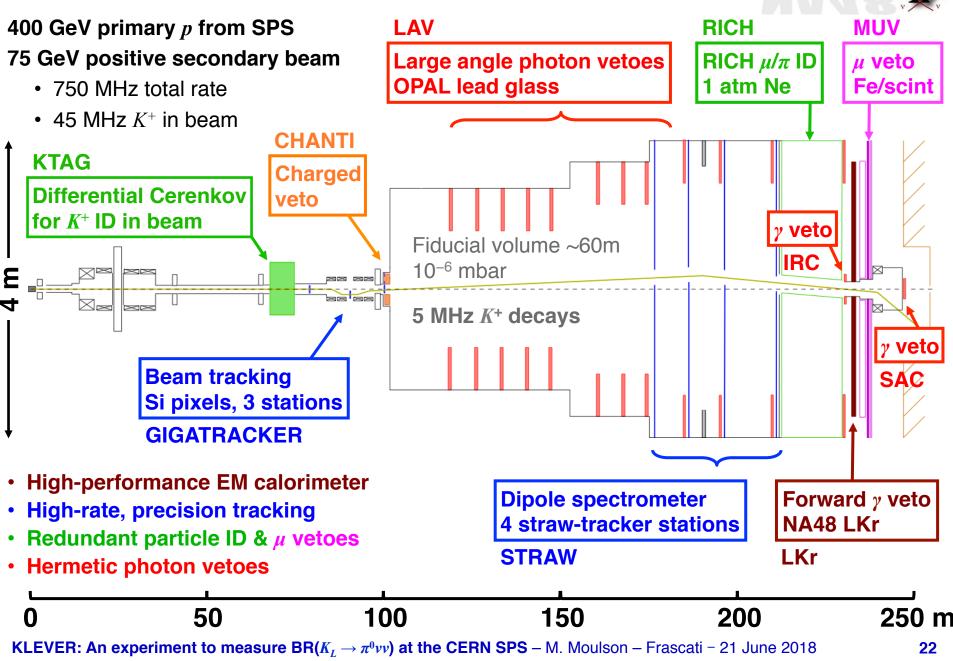
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\rm SM} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\rm SM} \left| 1 - \frac{R_0 \,\theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_{\rm t}/s_{\rm w}^2)} \right|^2$$


 $R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_F}$

The NA62 experiment at the CERN SPS

$K^+ \rightarrow \pi^+ \nu \nu$ with decay in flight

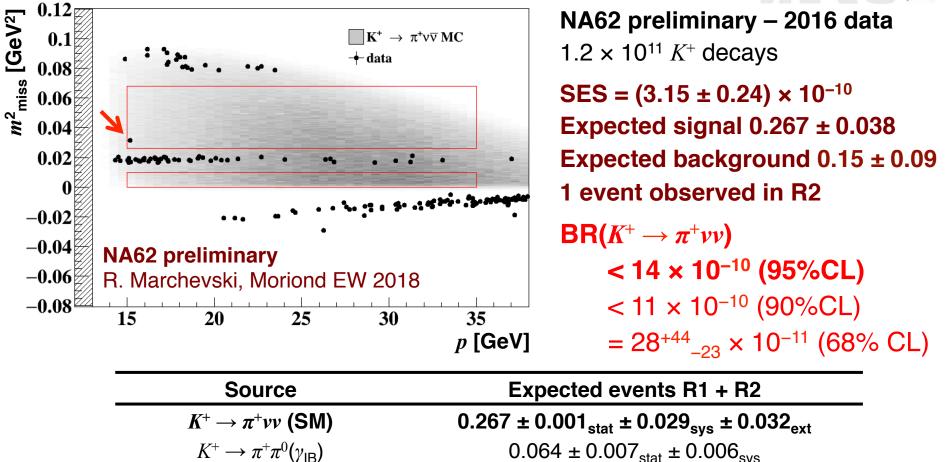
Main backgrounds:


$K^+ \rightarrow \mu^+ \nu(\gamma)$	BR = 63.5%
$K^{+} \rightarrow \pi^{+}\pi^{0}(\gamma)$	BR = 20.7%

Selection criteria:

- *K*⁺ beam identification
- Single track in final state
- π^+ identification ($\varepsilon_{\mu} \sim 1 \times 10^{-8}$)
- γ rejection ($\varepsilon_{\pi 0} \sim 3 \times 10^{-8}$)

p [GeV]


The NA62 experiment at the SPS

NA62

2016 results for $K^+ \rightarrow \pi^+ v v$

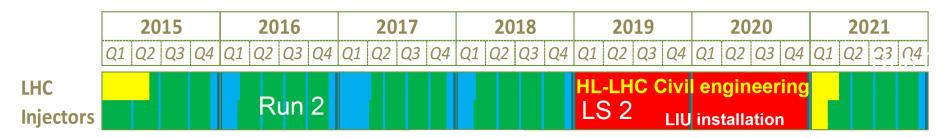
$K^{\!\scriptscriptstyle +} ightarrow \pi^{\!\scriptscriptstyle +} v v$ (SM)	0.267 ± 0.001 _{stat} ± 0.029 _{sys} ± 0.032 _{ext}
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \pi^0(\gamma_{\sf IB})$	$0.064 \pm 0.007_{stat} \pm 0.006_{sys}$
$K^+ \rightarrow \mu^+ \nu(\gamma_{IB})$	$0.020 \pm 0.003_{stat} \pm 0.003_{sys}$
$K^+ \rightarrow \pi^+ \pi^- e^+ v$	$0.018 + 0.024_{-0.017 \text{ stat}} \pm 0.009_{\text{sys}}$
$K^+ \longrightarrow \pi^+ \pi^- \pi^+$	$0.002 \pm 0.001_{stat} \pm 0.002_{sys}$
Upstream background	$0.050 \pm +0.090_{-0.030}$
Total background	0.15 ± 0.09 _{stat} ± 0.01 _{svs}

NA62 status and timeline

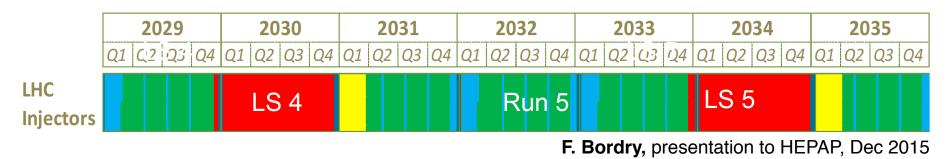
2014-2015	Pilot/commissioning runs
2016	Commissioning + 1 st physics run Preliminary result presented in March 2018 1 event observed BR($K^+ \rightarrow \pi^+ vv$) < 14 × 10 ⁻¹⁰ (95%CL)
2017	Physics run (23 weeks) 20x more data than 2016 result Data processing in progress
2018	Physics run (31 weeks, started 9 April)
2019-2020	LS2 (LHC Long Shutdown 2)

By end of 2018 NA62 will reach a sensitivity of 20 SM $K^+ \rightarrow \pi^+ vv$ events

- Input to the European Strategy for Particle Physics
- Solid extrapolation to ultimate sensitivity of NA62 achievable after LS2


Fixed target runs at the SPS

2021 (Run 3): Intention to continue data taking with NA62


- Measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with ultimate sensitivity
- · Search for hidden particles in beam-dump mode

2026 (Run 4): Turn focus to measurement of BR($K_L \rightarrow \pi^0 vv$) $\rightarrow K_LEVER$

$K_L \rightarrow \pi^0 v \bar{v}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have $\ge 2 \text{ extra } \gamma \text{s or } \ge 2 \text{ tracks to veto}$ Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_\perp = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

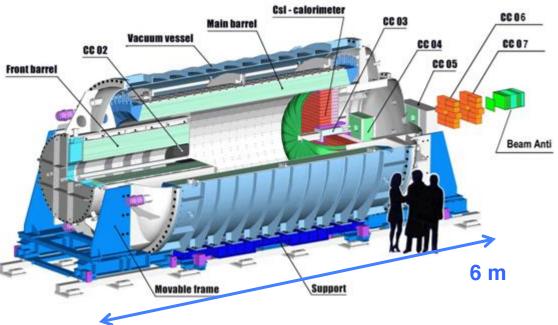
Generally used to reconstruct vertex position

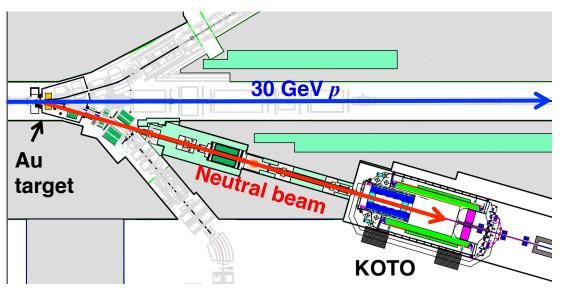
Main backgrounds:

veto $\gamma_1 d$ $R_1 \gamma_2$ R_2 R_2 R_2

$$m_{\pi^0}^2 = 2E_1 E_2 \left(1 - \cos\theta\right)$$

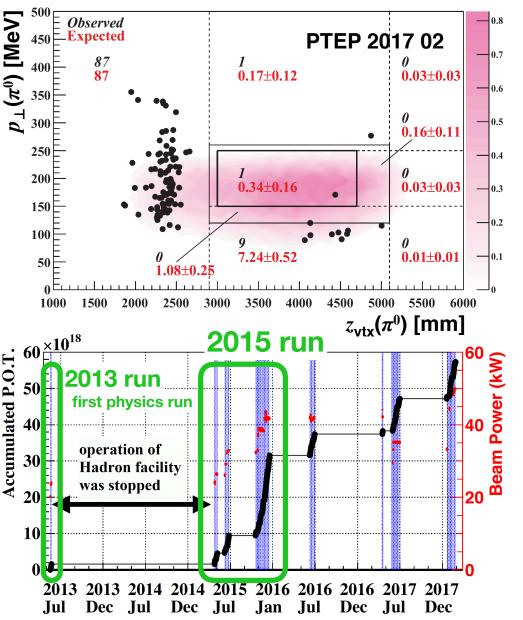
$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$


Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64 × 10 ^{−4}	γ vetoes, π^0 vertex, p_{\perp}
$K_L ightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \rightarrow \pi e v(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region


 $K_L \rightarrow \pi^0 v \bar{v}$ at J-PARC

Primary beam: 30 GeV p100 kW = 1.2 × 10¹⁴ p/6 s

Neutral beam (16°) $\langle p(K_L) \rangle = 2.1 \text{ GeV}$ 50% of K_L have 0.7-2.4 GeV 8 µsr "pencil" beam



 $K_{L} \rightarrow \pi^{0} v \bar{v}$ at J-PARC

KOTO is based on KEK-E391a E391a result = current exp. value: BR($K_L \rightarrow \pi^0 vv$) $\leq 2.6 \times 10^{-8}$ (90%CL)

KOTO run history:

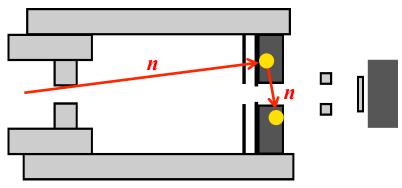
2013 pilot run (100 hrs)

 $BR(K_L \rightarrow \pi^0 vv) \le 5.1 \times 10^{-8}$ (90%CL)

2015 run (result coming soon)

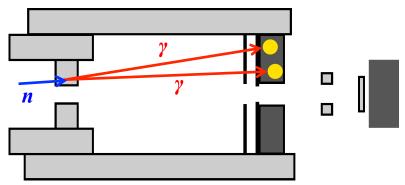
- 40 kW slow-extracted beam power
- 3×10^{19} pot collected

2016-2017

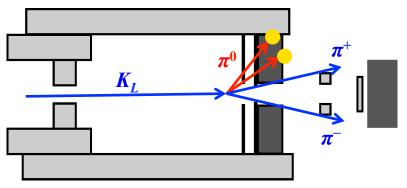

- Beam power increased to 50 kW
- Additional 3×10^{19} pot collected
- With all 2015-2017 data, expected sensitivity below Grossman-Nir limit

Background rejection

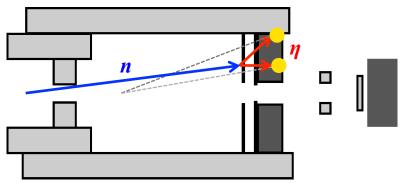
SOL:


Lessons from 2013 run help to reject backgrounds other than $K_L \rightarrow \pi^0 \pi^0$

1. Hadron clusters on Csl


- Control sample with AI plate in beam
- Cluster and pulse shape analysis

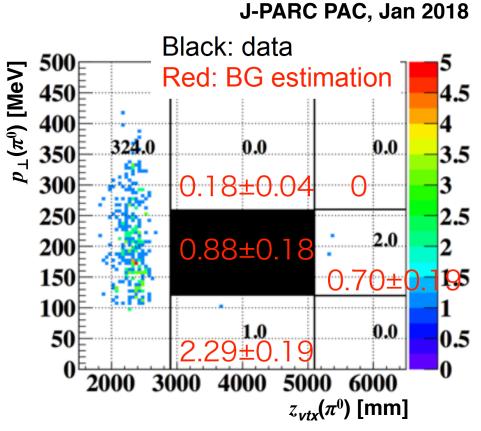
3. $n \rightarrow X\pi^0$ on collar (NCC)


- Beam profile monitor for better alignment
- Thinner vacuum window

2. $K_L \rightarrow \pi^+ \pi^- \pi^0$ with $\pi^+ \pi^-$ escape

• New charged-particle vetoes lining beam exit

4. $n \rightarrow X\eta$ on charged veto (CV)


• Cluster shape (angle of incidence)

Sensitivity from 2015 data

Background	Expected counts
$K_L \rightarrow 2\pi^0$	0.07 ± 0.07
$K_L \rightarrow \pi^+ \pi^- \pi^0$	0.18 ± 0.05
$K_L \rightarrow 3\pi^0$	0.17 ± 0.12
$K_L \rightarrow 2\gamma$	0.02 ± 0.02
Hadron cluster	0.26 ± 0.08
π^0 from NCC	0.13 ± 0.07
η from CV	0.05 ± 0.02
Total	0.88 ± 0.18

Preliminary sensitivity, all 2015 data: SES = 1.2×10^{-9} Expected bkg = 0.88 ± 0.18 events Signal box to be opened summer 2018

 K_L flux from $K_L \rightarrow 2\pi^0 = 4.62 \times 10^{12}$ $\pi^0 vv$ acceptance from MC: Decay in FV: 3.8% Overall acceptance: 1.8 × 10⁻⁴

Upgrades to improve sensitivity

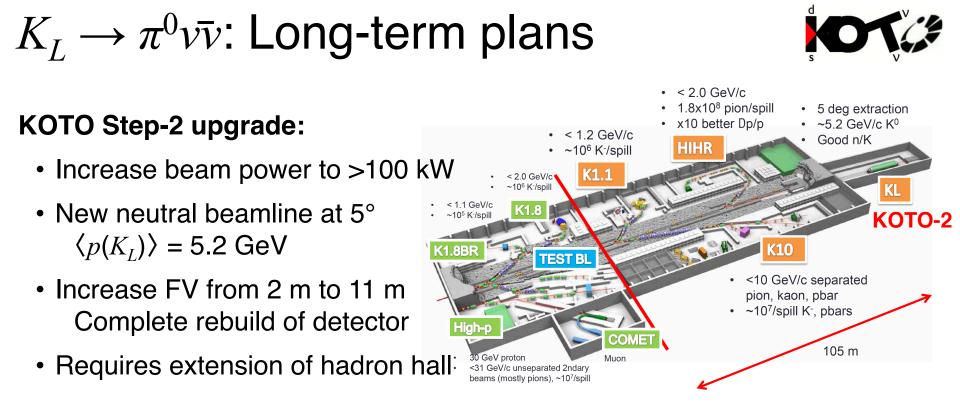
Signal: Need ~40x more flux × acceptance for 1 expected SM $\pi^0 vv$ event

- Beam power expected to increase $50 \rightarrow 100$ kW gradually by 2021
- 20+ months of additional running planned in 2018-2021

Background: Need ~40x more background rejection for S/B ~ 1

Continuing program of detector upgrades

Inner barrel veto

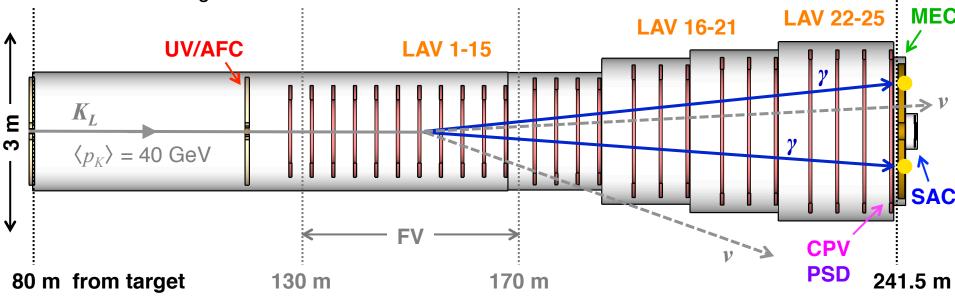

Increase barrel thickness $13.5 + 5 X_0$ 3x better rejection for $K_L \rightarrow 2\pi^0$ Installed April 2016 y interaction in Csl n interaction in Csl \uparrow SiPM Resolve γ/n interaction depth by reading light from front Csl face with SiPM

SiPMs to be installed summer 2018

Expect to reach SM sensitivity by 2021

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

Dual side readout for Csl modules

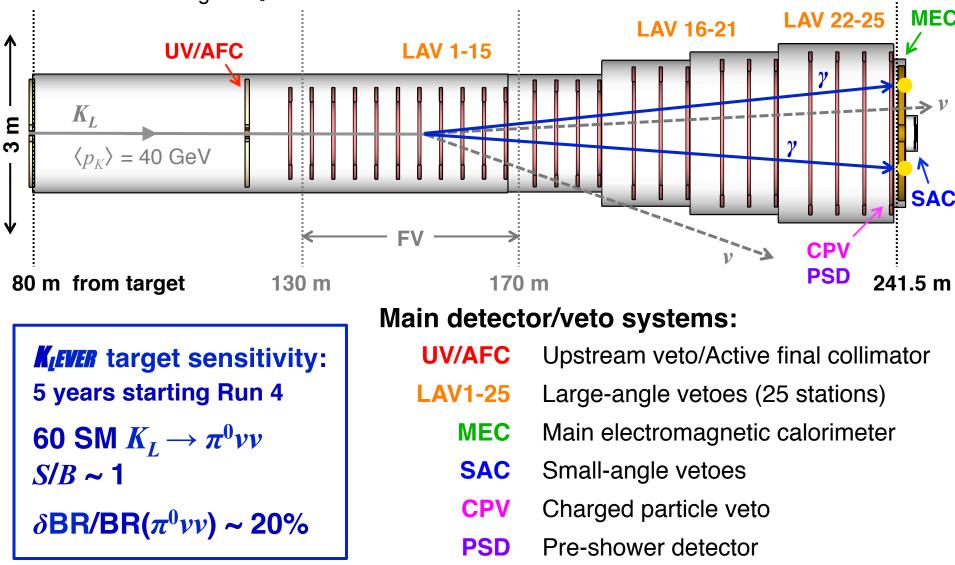


Strong intention to upgrade to O(100) event sensitivity over long term:

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling KOTO performance for smaller beam angle & larger detector: ~10 SM evts/year at 100 kW beam power?
- Exploring possibilities for machine & detector upgrades to further increase sensitivity

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS?

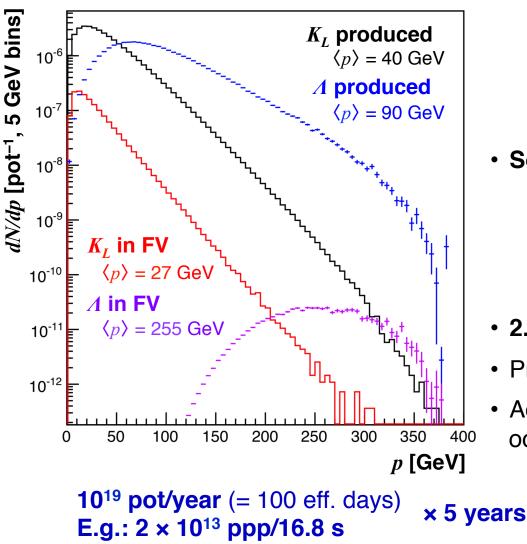
400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) incident on Be target at z = 0 m



K_L Experiment for VEry Rare events

- High-energy experiment: Complementary to KOTO
- Photons from *K*_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS


400-GeV SPS proton beam (2 × 10¹³ pot/16.8 s) incident on Be target at z = 0 m

Beam and intensity requirements

K_L and Λ fluxes in beam FLUKA simulation

- 400 GeV p on 400 mm Be target
- Production at θ = 8.0 mrad:
 - As much K_L production as possible
 - Low ratio of n/K_L in beam ~ 3
 - Reduce *A* production and soften momentum spectrum
- Solid angle $\Delta \theta = 0.4$ mrad
 - Large $\Delta \theta = \text{high } K_L$ flux
 - Maintain tight beam collimation to improves p_⊥ constraint for background rejection

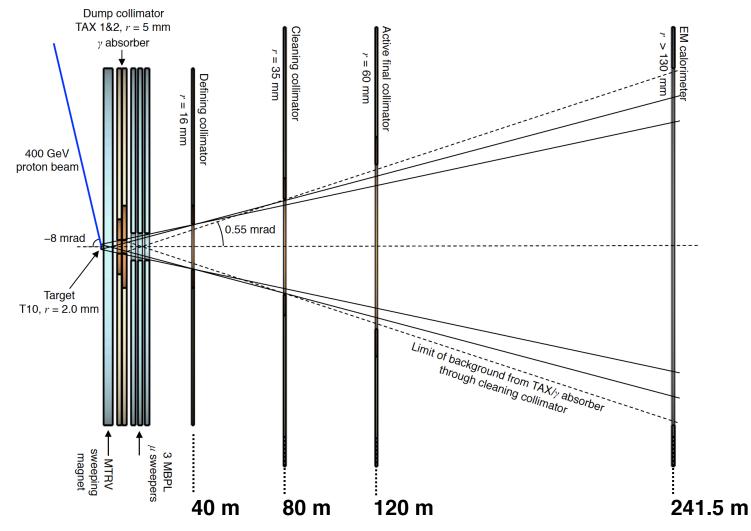
60 $K_L \rightarrow \pi^0 v v$ events

• 2.1 × 10⁻⁵ K_L in beam/pot

- Probability for decay inside FV $\sim 2\%$
- Acceptance for $K_L \rightarrow \pi^0 v v$ decays occurring in FV ~ 10%

High-intensity proton beam issues

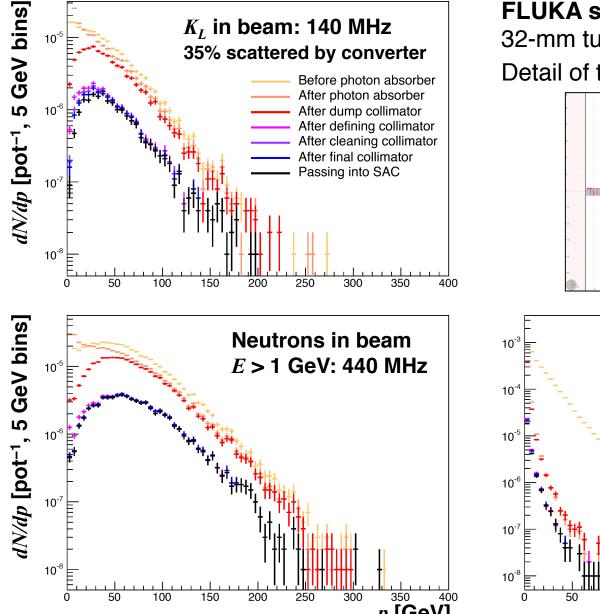
10¹⁹ pot/yr × 5 years \rightarrow 2 × 10¹³ ppp/16.8s = 6× increase relative to NA62


Feasibility/cost study a primary goal of our involvement in Physics Beyond Colliders

Preliminary analysis of critical issues by Secondary Beams & Areas group

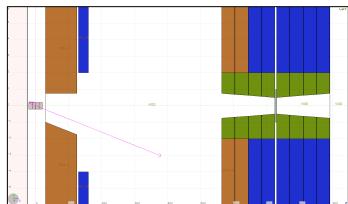
Issue	Approach
Proton availability	SHiP supercycle = 4×10^{19} pot/yr with 1×10^{13} ppp for users KLEVER requires 1×10^{19} pot/yr (25% of SHiP)
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) workshop, 9-11 November 2017: https://indico.cern.ch/event/639766/
Beam loss on T4	Vertical by-pass to increase transmission to T10
Equipment protection	Interlock to stop SPS extraction during P0Survey reaction time
Ventilation in ECN3	Preliminary measurements indicate good air containment Comprehensive ventilation system upgrade not needed?
ECN3 beam dump	Significantly improved for NA62 Need to better understand current safety margin
Background fluxes	Starting simulations for prompt background above target 8 mrad vertical targeting angle should help to mitigate

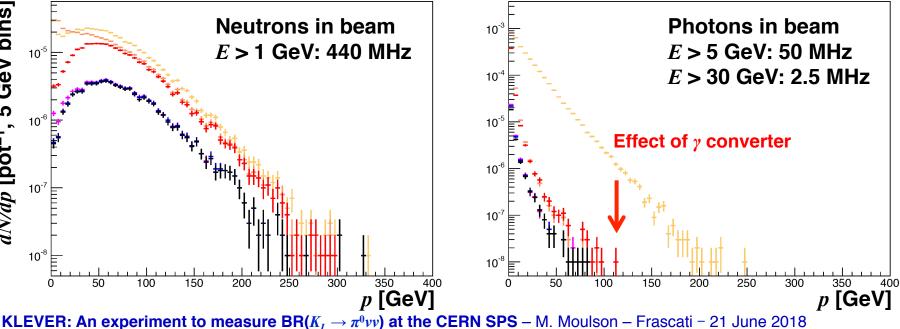
Neutral beamline layout



- Compact primary beam sweeping
- Photon absorber in dump collimator
- 4 collimation stages to minimize neutron halo, including beam scattered from absorber
- Active final collimator in LYSO

Neutral beam simulation





FLUKA simulation of beamline

32-mm tungsten coverter ($9X_0$)

Detail of target and dump collimator:

NA48 LKr calorimeter as MEC?

Quasi-homogeneous ionization calorimeter, $27X_0$ of LKr

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\% \qquad \sigma_t = \frac{2.5 \text{ ns}}{\sqrt{E}}$$

Photon detection efficiency probably adequate

- NA48-era studies for NA62: 1 ε < 10⁻⁵ for E_{γ} > 10 GeV
- High-energy efficiency confirmed with NA62 data

Other concerns about LKr:

Time resolution

- $\sigma_t \sim 500 \text{ ps for } \pi^0 \text{ with } E_{\gamma\gamma} > 20 \text{ GeV}$
- Would require improvement SAC may have ~100 MHz accidental rate

Long-term reliability (1996 \rightarrow 2018 \rightarrow 2030?)

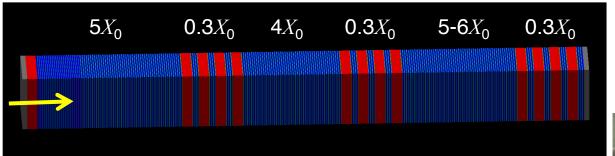
LKr cold bore r = 80 mm and start of sensitive volume r = 120 mm limits beam solid angle to $\Delta \theta < 0.3$ mrad $\rightarrow 40\%$ less K_L flux

Baseline design calls for NA48 LKr to be replaced by new MEC

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

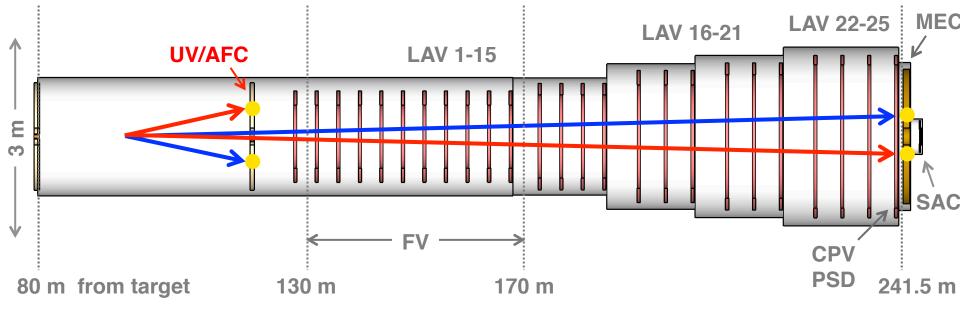

0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

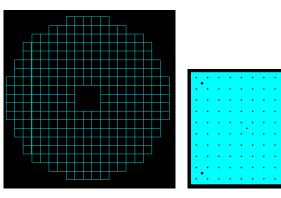
- σ_E/√E ~ 3% /√E (GeV)
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , n interactions
- Shower depth information: improved time resolution for EM showers

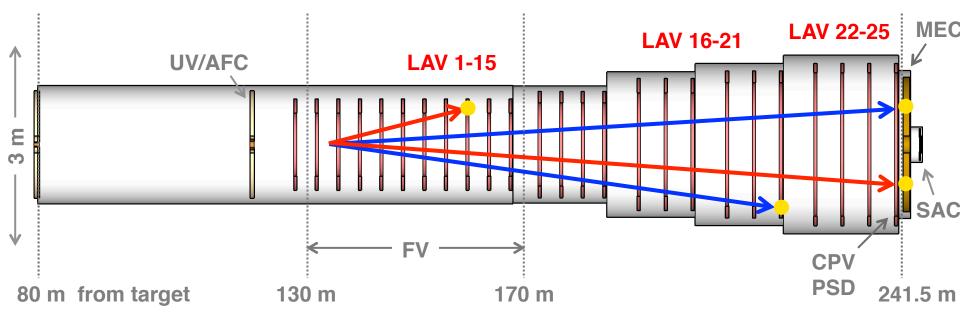


1st prototype assembled and tested at Protvino OKA beamline, April 2018


Vetoes for upstream $K_L \rightarrow \pi^0 \pi^0$

Upstream veto (UV):

- 10 cm < *r* < 1 m:
- Shashlyk calorimeter modules à la PANDA/KOPIO, like MEC

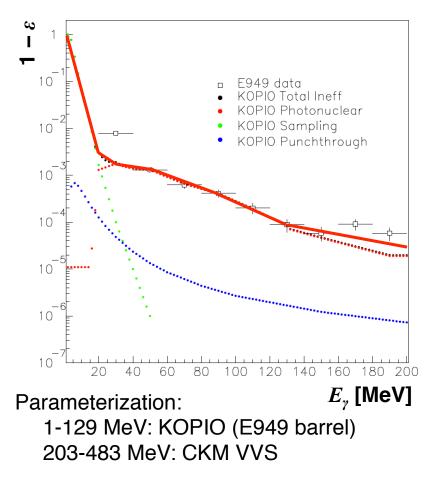

Active final collimator:

- 4.2 < *r* < 10 cm
- LYSO collar counter
- 80 cm long
- Internal collimating surfaces
- Intercepts halo particles from scattering on upstream collimators or γ absorber Rejects π^0 s from inelastic interactions
- Rejects $K_L \rightarrow \pi^0 \pi^0$ in transit through collimator

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

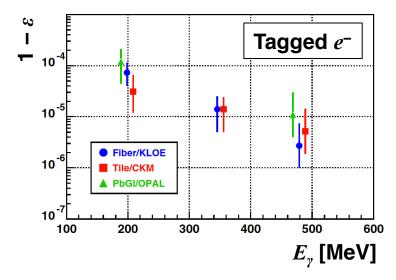
Large-angle photon vetoes

25 new large-angle photon veto stations (LAV)


- 5 sizes, sensitive radius 0.85 to 1.5 m, at intervals of 4 to 5 m
- Hermetic coverage out to 100 mrad
 Need good detection efficiency at low energy (1 ε ~ 0.5% at 20 MeV)
- Baseline technology: Lead/scintillator tile with WLS readout Based on design of CKM VVS Assumed efficiency based on E949 and CKM VVS experience

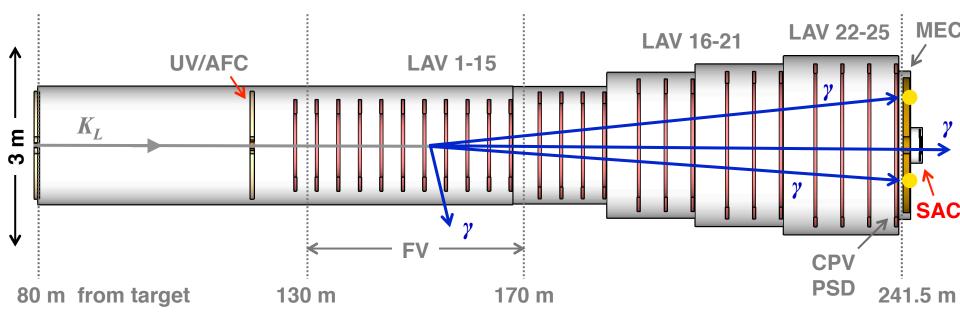
Large-angle photon vetoes

Need good detection efficiency at low energy $(1 - \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$


Baseline technology: CKM VVS Scintillating tile with WLS readout

Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficiencies Same construction as CKM

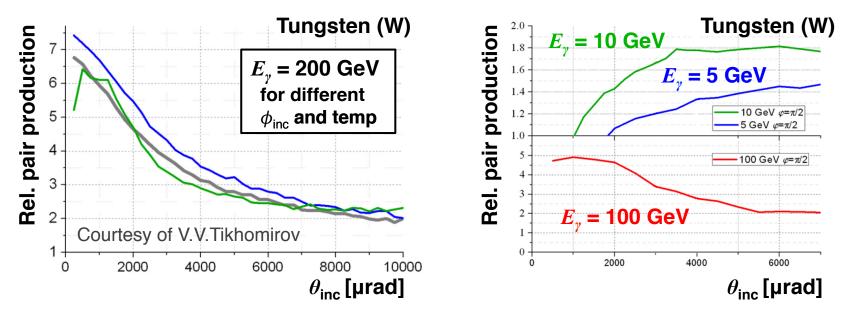

Tests for NA62 at Frascati BTF

Tests at JLAB for CKM: 1 − ε ~ 3 × 10⁻⁶ at 1200 MeV

Small-angle photon veto

Small-angle photon calorimeter system (SAC)

- Rejects high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons


Beam comp.	Rate (MHz)	Req. 1 – ε
γ, <i>E</i> > 5 GeV	50	10 ⁻²
γ, <i>E</i> > 30 GeV	2.5	10 ⁻⁴
n	430	-

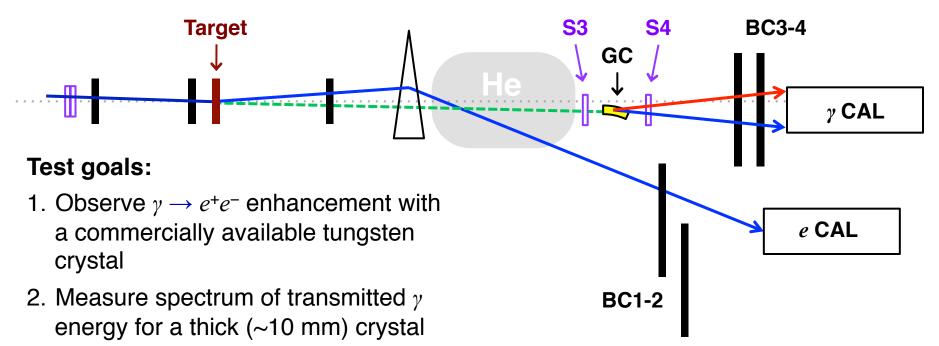
Baseline solution:

• Tungsten/silicon-pad sampling calorimeter with crystal metal absorber

Efficient y conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

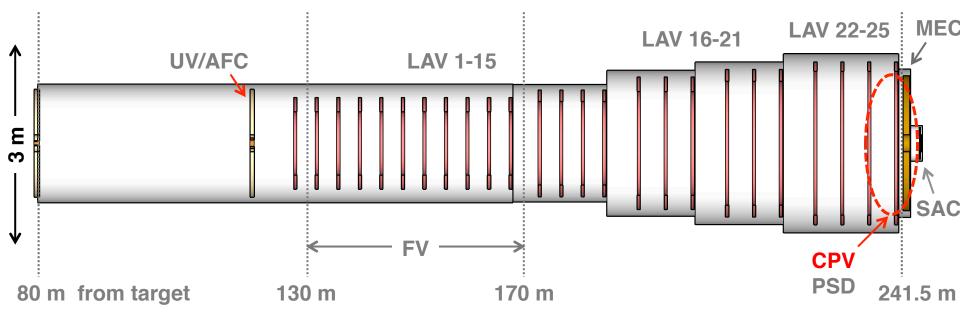
Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :


- **1. Beam photon converter in dump collimator** Effective at converting beam γ s while relatively transparent to K_L
- 2. Absorber material for small-angle calorimeter (SAC) Must be insensitive as possible to high flux of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

AXIAL group is collaborating with KLEVER on test beam measurement of pair-production enhancement in crystals

Tagged photon test beam setup:



- 3. Measure pair conversion vs. E_{γ} , θ_{inc} for 5 < E_{γ} < 150 GeV
- 4. Obtain information to assist MC development for beam photon converter and SAC

- Nearly all detectors and DAQ system available for use from AXIAL
- 1 week of beam H2 beam time in August 2018

Charged particle rejection

Most dangerous mode: K_{e3}

- BR = 40%
- Easy to mistake $e \leftrightarrow \gamma$ in LKr
- Acceptance $\pi^0 v v / K_{e3} = 30$
- → Need 10⁻⁹ suppression!

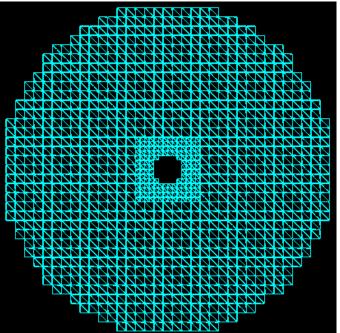
Charged particle veto (CPV)

Scintillating tiles, just upstream of MEC

Calorimetric ID for μ and π

- Shower profile in MEC
- Re-use NA62 hadronic calorimeters MUV1/2 (not shown), downstream of MEC

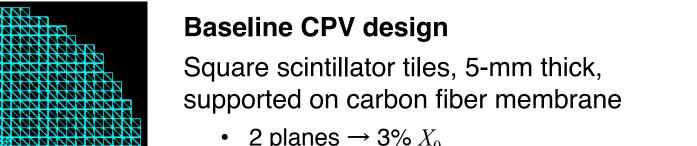
Charged particle veto


200

 $z_{\rm true}$ [m]

10

 $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in MEC


- Fake π^0 vertexes from πe all reconstructed downstream of true decay
 - $-\pi^+$ deposits only a fraction of its energy
- K_{e3} decays with " π^{0} " reconstructed in FV have $z_{\rm rec}$ < 200 m
 - All within the acceptance of the CPV

• 2 planes \rightarrow 3% X_0

Tile geometry: 4x4 cm² or 8x8 cm²

- Smaller tiles near beam line •
- Cracks staggered between planes •
- 4 chamfered corners (45°) for direct SiPM coupling

<u></u>

200 200

155 m

Charged particle rejection

 $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in LKr

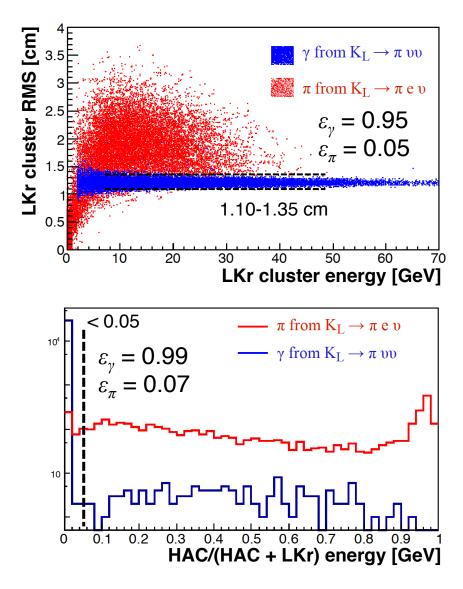
Use cluster RMS in LKr to identify and reject π interactions

• Geant4 confirmed by preliminary analysis of $\pi\pi^0$ events in NA62 data:

$$\varepsilon_{\gamma} = 0.95$$

 $\varepsilon_{\pi} = 0.05$

If LKr replaced by shashlyk, longitudinal shower profile information also available

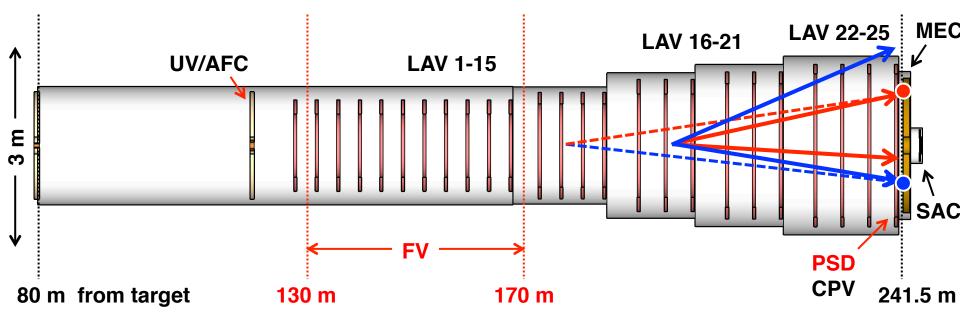

Ratio of hadronic/total energy effective to identify π showers

• Preliminary results based on Geant4:

$$\varepsilon_{\gamma} = 0.99$$

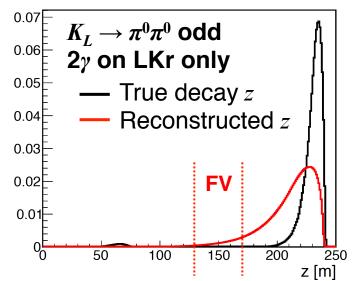
 $\varepsilon_{\pi} = 0.07$

Study of HAC (MUV1/2) response in NA62 data in progress


 Parameterization of response for inclusion in fast simulation

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

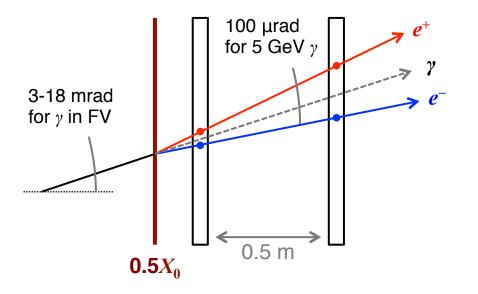
Mispaired $K_L \rightarrow \pi^0 \pi^0$ events



Distance from FV to LKr significantly helps for rejection of "odd" background from $K_L \rightarrow \pi^0 \pi^0$

- Most $K_L \rightarrow \pi^0 \pi^0$ decays with lost photons occur just upstream of the LKr
- " π^0 s" from mispaired γ s are mainly reconstructed upstream of true position

Preshower detector (PSD) is particularly effective against downstream decays



Concept for preshower detector

Advantages

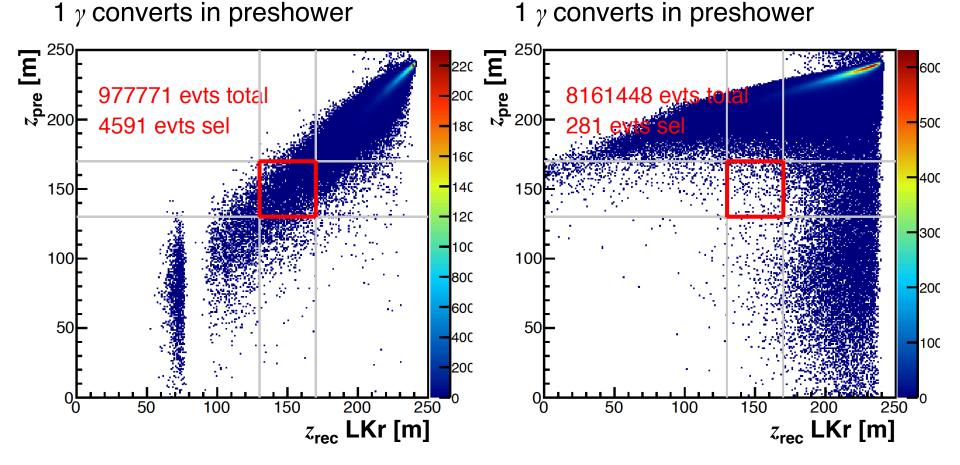
- Redundancy for rejection of $K_L \rightarrow \pi^0 \pi^0$
- Partial event reconstruction for calibration channels
- Sensitivity for exotics searches e.g. $K_L \rightarrow \pi^0 X, X \rightarrow \gamma \gamma$ with displaced vertex

Issues

- Implications of extra material on MEC γ efficiency
 - Place material as close as possible to MEC, so energy from preshowering γs cannot escape
- Enough to establish partial redundancy if 50% of pairs have at least 1 conversion:
 → 0.5X₀ converter
- Angular resolution for γ s dominated by multiple scattering in converter if tracking planes have $\sigma_x < 100 \ \mu m$
 - σ_{θ} = 2 mrad from MS
 - $\sigma_z \sim 10 \text{ m and } \sigma_{m\gamma\gamma} < 25 \text{ MeV}$
- Multi-pattern gas detectors to track conversion products?
 - Micromegas, µ-RWELL?
- Data condensation in front end: only active elements read out

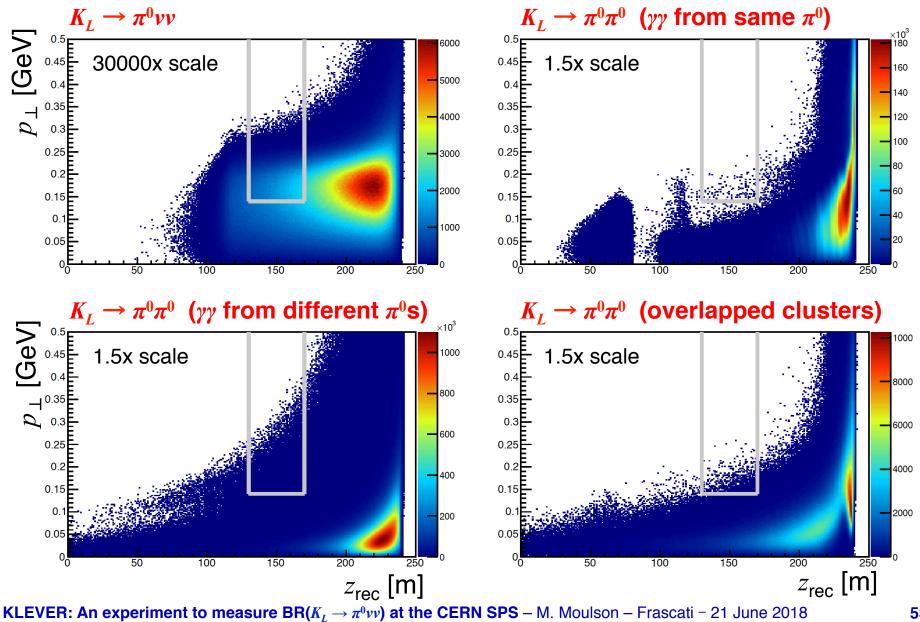
Preshower background rejection

Preshower vertex z_{pre} vs. LKr vertex z_{rec}


Even pairs (2 γ from same π^0)

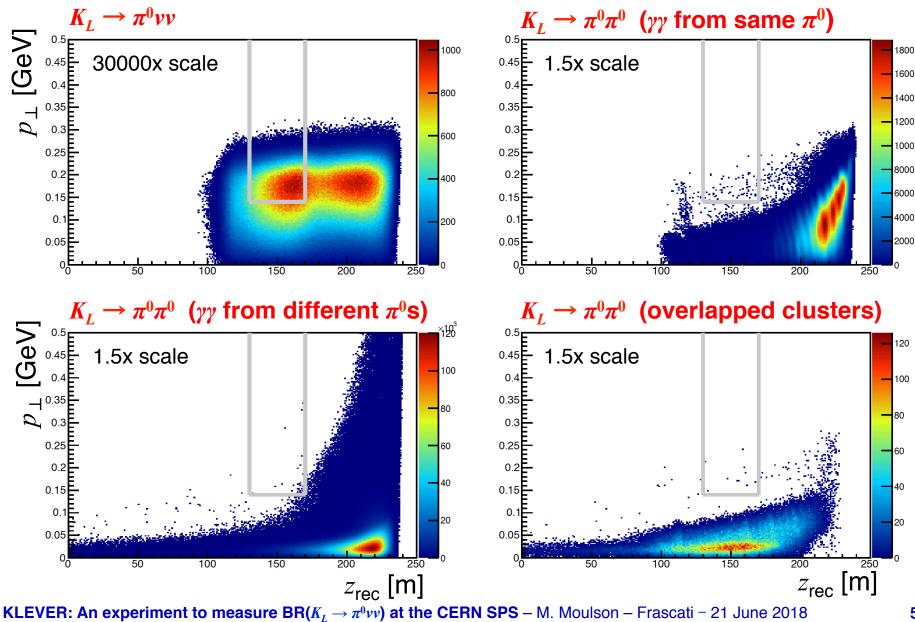
 $z_{\rm rec}$ reconstructed by imposing $M(\gamma\gamma) = m_{\pi 0}$ •

• $K_L \rightarrow \pi^0 \pi^0$, 1 year equivalent

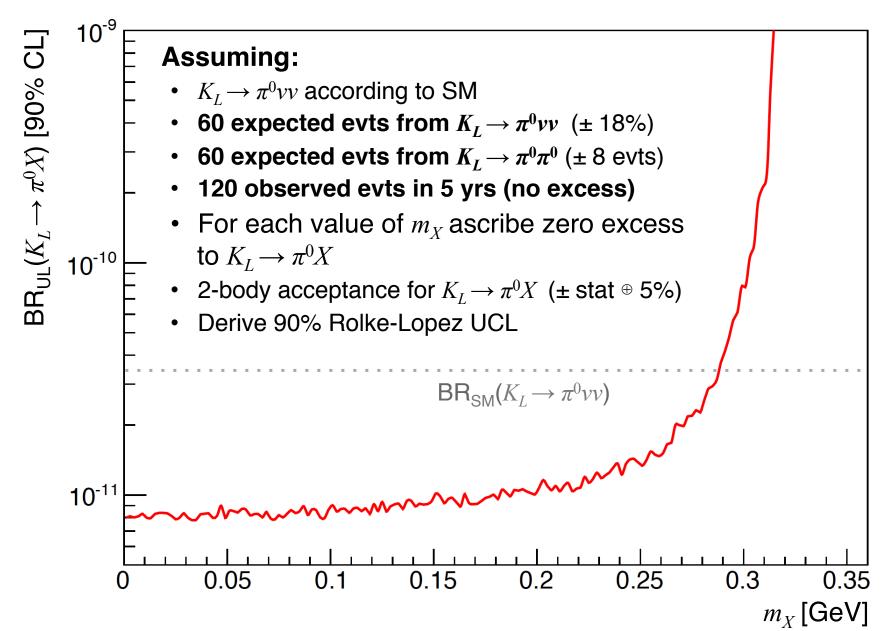

• No cuts on FV, p_{\perp} , r_{\min}

Odd pairs (2 γ s from different π^0)

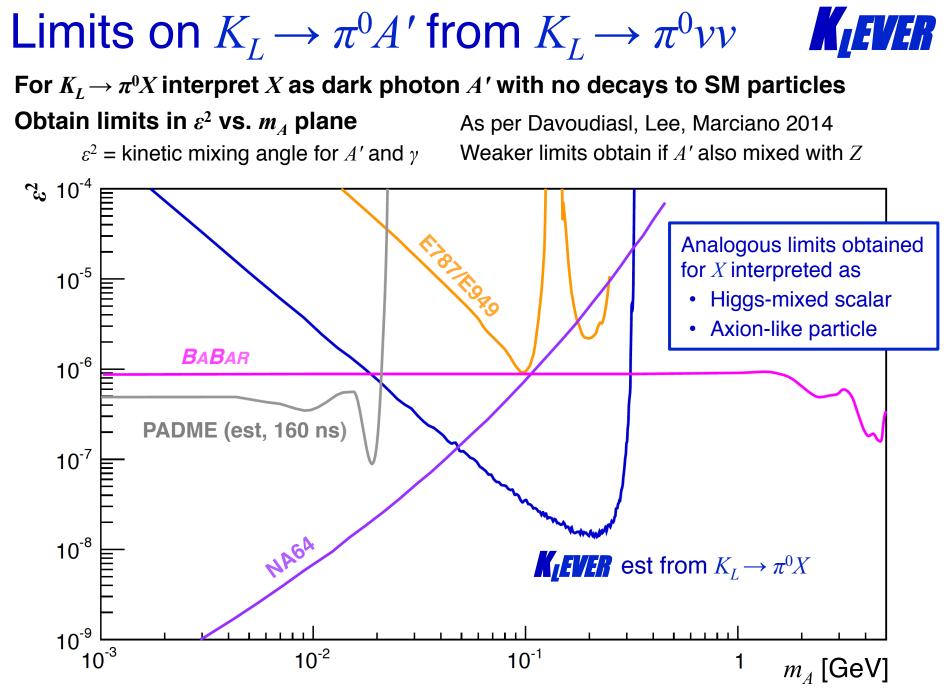
Basic signal selection


No hits in UV, AFC, LAV, SAC + fiducial volume (FV) and p_{\perp} cuts

Additional background rejection



Cluster radius r_{MEC} > 35 cm – Require z_{PSD} in FV if PSD hit available



Limits on $K_L \rightarrow \pi^0 X$ from $K_L \rightarrow \pi^0 v \bar{v}$

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

Status and timeline

Project timeline – target dates:

2017-2018	 Project consolidation and proposal Participation in Physics Beyond Colliders PRIN and MAECI proposals in Italy Beam test of crystal pair enhancement Design consolidation Input to European Strategy for Particle Physics Expression of Interest to CERN SPSC
2019-2021	Detector R&D
2021-2025	 Detector construction Possible K12 beam test if compatible with NA62
2024-2026	Installation during LS3
2026-	Data taking beginning Run 4

Most groups participating in NA62 have expressed interest in KLEVER We are actively seeking new collaborators!

Summary and outlook

Flavor will play an important role in identifying new physics, even if new physics is found at the LHC

 $K \rightarrow \pi v v$ is a uniquely sensitive indirect probe for high mass scales

Need precision measurements of both K⁺ and K_L decays

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ vv$) in the short term, ultimately reaching ~100 event sensitivity

KOTO will reach SM sensitivity to BR($K_L \rightarrow \pi^0 vv$) by 2021

Preliminary design studies indicate that an experiment to measure BR($K_L \rightarrow \pi^0 vv$) can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1

KLEVER is actively seeking new collaborators

- Expression of Interest to SPSC and input to ESPP in preparation
- Small contributions now can have a big impact!

Matthew Moulson For the KLEVER project

The CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathscr{O}(\lambda^4)$$

$$\overset{W^+}{\underset{i}{W^+}} \bigvee_{qq'} \bigvee_{q'd} \bigvee_{is} \text{ unitary: } \mathbf{V}^+ \mathbf{V} = \mathbf{1}$$

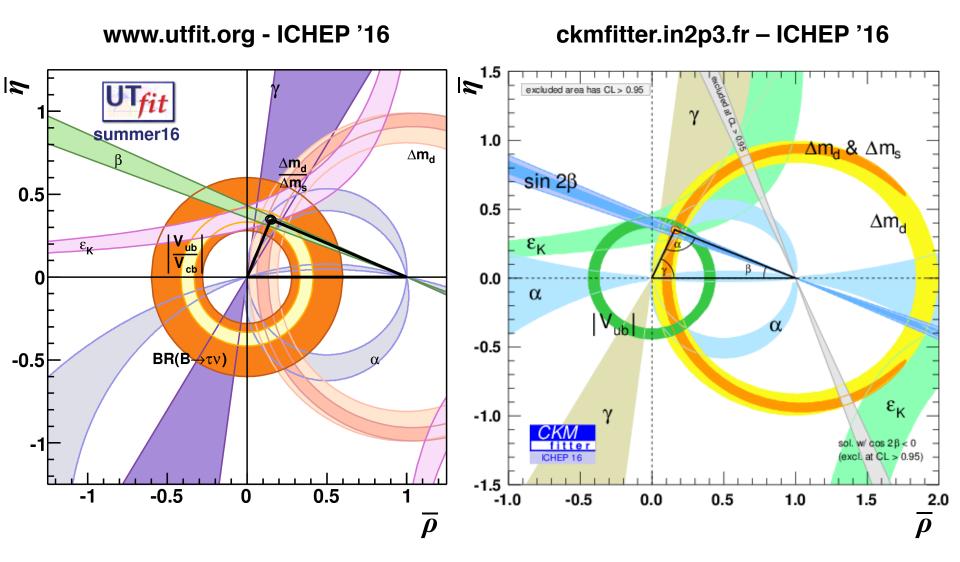
$$\sum_{i} V_{ij} V_{ik}^* = \sum_{i} V_{ji} V_{ki}^* = \delta_{jk}$$

$$\overset{B \text{ unitarity triangle}}{\underset{V_{ud}}{V_{ub}} + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0}$$

$$K \text{ unitarity triangle}$$

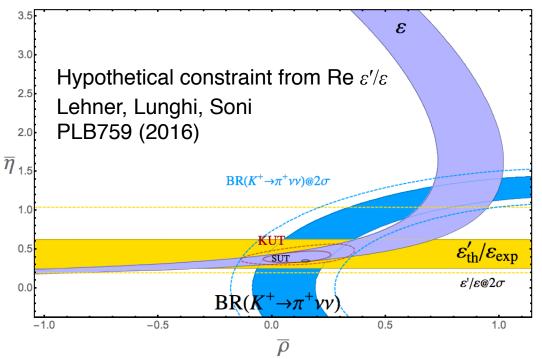
$$V_{ud} V_{us}^* + V_{cd} V_{cs}^* + V_{td} V_{ts}^* = 0$$

$$\overset{Observable}{\underset{K_{L}}{W^+}} \overset{Measurement}{\underset{K_{L}}{W^+}} \bigvee_{is} \frac{|V_{ts}^* V_{td}|}{\underset{K_{L}}{W^+}} \bigvee_{is} \frac{|V_{ts}^* V_{td}|}{\underset{K_{L}}{W^+}} \bigvee_{is} \frac{|V_{ts}^* V_{td} \propto \eta}{\underset{K_{d}}{W^-}}$$


$$\overset{M_{d}}{=} \frac{B_d - \bar{B}_d}{B_s - \bar{B}_s} |V_{td}/V_{ts}|$$

$$\overset{M_{d}}{=} \frac{B_d - \bar{B}_d}{\underset{K_{d}}{W_{td}}} \bigvee_{is} \frac{1 \text{ Re}}{1 \text{ Re}}$$

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

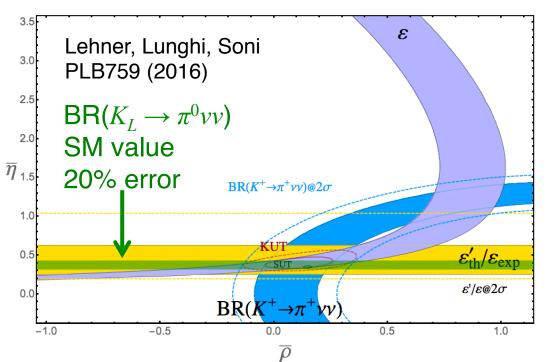

Unitarity triangles: state of the art

Re $\varepsilon' / \varepsilon$ vs BR($K_L \rightarrow \pi^0 v \overline{v}$)

Re ε'/ε constrains UT in same way as BR($K_L \rightarrow \pi^0 vv$)

Scenario assumes:

- Lattice value for Im A₀ in agreement with expt
- $\delta(\operatorname{Im} A_0) = \sim 100\% \rightarrow 18\%$ $\rightarrow \delta(\operatorname{Re} \varepsilon'_{\text{th}} / \varepsilon) = 1.6 \times 10^{-4}$
- BR($K^+ \rightarrow \pi^+ vv$) = SM value with 10% error


Calculations: Re $\varepsilon'/\varepsilon \times 10^4$		Measurements: Re $\varepsilon'/\varepsilon \times 10^4$			
RBC/UKQCD '15	1.38 ± 5.15 ± 4.59	KTeV	19.2 ±	1.1 ± 1.8	
Gisbert & Pich '17	15 ± 7	NA48 PDG fit	14.7 16.6 ±	± 1.7 ± 1.5 2.3 (<i>S</i> = 1.6)	

RBC/UKQCD value is 2.1σ lower than experimental value:

- Claim: Uncertainty ~10% of experimental value can be reached by ~2020
- In progress: Increased statistics, larger volumes, additional lattice spacings

Re $\varepsilon' / \varepsilon$ vs BR($K_L \rightarrow \pi^0 v \overline{v}$)

Re ε'/ε constrains UT in same way as BR($K_L \rightarrow \pi^0 vv$)

Scenario assumes:

- Lattice value for Im A₀ in agreement with expt
- $\delta(\operatorname{Im} A_0) = \sim 100\% \rightarrow 18\%$ $\rightarrow \delta(\operatorname{Re} \varepsilon'_{th} / \varepsilon) = 1.6 \times 10^{-4}$
- BR($K^+ \rightarrow \pi^+ vv$) = SM value with 10% error

How does progress on Re ε'/ε impact experimental interest in BR($K_L \rightarrow \pi^0 vv$)?

• Measurement of Re ε'/ε is dominated by systematics

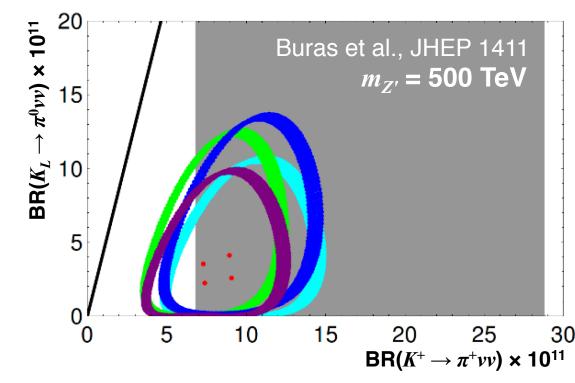
$$R = \frac{\mathrm{BR}(K_L \to \pi^0 \pi^0)}{\mathrm{BR}(K_S \to \pi^0 \pi^0)} \cdot \frac{\mathrm{BR}(K_S \to \pi^+ \pi^-)}{\mathrm{BR}(K_L \to \pi^+ \pi^-)} \approx 1 - 6 \operatorname{Re} \varepsilon' / \varepsilon$$

- NA48 and KTeV measured *R* to 0.1%: Very difficult to improve! Small gains from statistics and from resolution of *S* =1.6 in PDG fit
- $\delta BR(K_L \rightarrow \pi^0 vv) \sim 20\%$ gives tighter UT constraint than $\delta(\text{Re }\varepsilon'/\varepsilon) \sim 1 \times 10^{-4}$

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 vv$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

$K \rightarrow \pi v \overline{v}$ and new physics

General agreement of flavor observables with SM \rightarrow invocation of MFV


- Long before recent flavor results from LHC
- But NP may simply occur at a higher mass scale
 - Null results from direct searches at LHC so far

Indirect probes to explore high mass scales become very interesting!

$K \rightarrow \pi v \bar{v}$ is uniquely sensitive to high mass scales

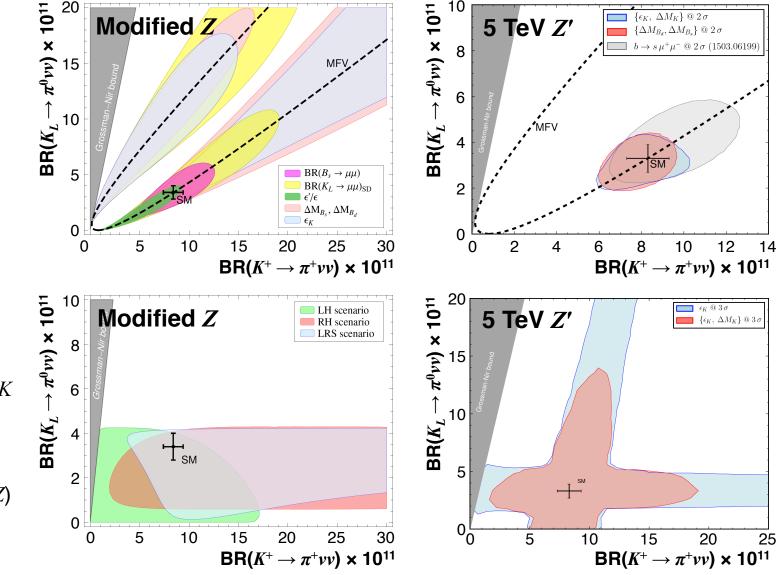
Tree-level flavor changing *Z*' LH+RH couplings

- Some fine-tuning around constraint from ε_K
- $K \rightarrow \pi v \bar{v}$ sensitive to mass scales up to 2000 TeV
 - Up to tens of TeV even if LH couplings only
- Order of magnitude higher than for *B* decays

$K \rightarrow \pi v \overline{v}$ and other flavor observables **K**

Simplified Z, Z' model used as paradigm

Buras, Buttazzo, Knegjens, JHEP 1511


CMFV hypothesis:

Constraints from *B* and *K* observables

Constraints from *K* observables:

- ε_K , ΔM_K
- $\varepsilon' / \varepsilon, K \to \mu \mu$ (for modfied Z)

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

Extra constraints for $K_L \rightarrow \pi^0 v \overline{v}$

<u>odo</u> **KOPIO 25 GeV Protons Brookhaven AGS** 200 ps Cancelled 2005 40 ns Primary: 26 GeV p 10¹⁴ *p*/7.2 s Kaons Neutral beam (43°) $\langle p(K_I) \rangle = 0.9 \text{ GeV}$ K_{I}^{0} 50% of K_L have 40 ns 1 11 0.5-1.2 GeV

Microbunched beam from AGS:

200 ps every 40 ns, 10^{-3} extinction

Flat beam to increase K_L flux

Solid angle 360 μ sr = 1 m wide!

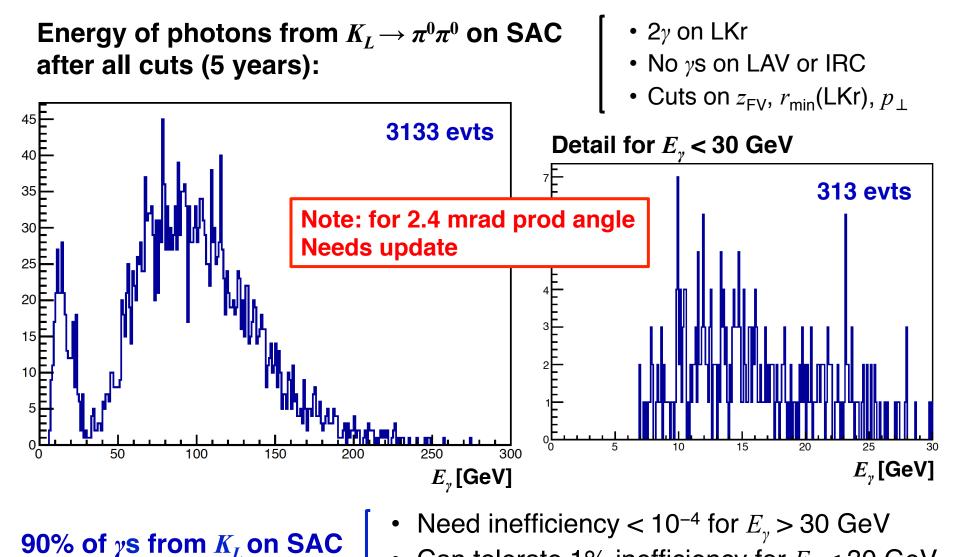
Preradiator in front of calorimeter

Reconstruct angle of incidence for γ s

Sensitivity: 180 SM evts in ~4 yr

Advantages:

- $p(K_L)$ from time of flight
- Vertex position from preradiator
- Redundant constraints


Disadvantages:

- Difficult to veto low-energy γs
- Much lower K_L flux at high angle

Small-angle calorimeter

have $30 < E_{y} < 250 \text{ GeV}$

- Can tolerate 1% inefficiency for E_{γ} < 30 GeV
- Can be blind for $E_{\gamma} < 5 \text{ GeV}$

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 v v$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

Small-angle calorimeter

Proof-of-concept simulation for baseline solution:

- W-Si pad calorimeter, 14 layers × 1 mm crystal absorber, θ_{inc} = 2 mrad
 - Depth = $14X_0$ for E_{γ} = 30 GeV, but only $4X_0$ for E_{γ} = 5 GeV
- Naïve simulation of pair-conversion enhancement with Geant4:
 - Increase overall density as function of E_{γ} , instead of X_0

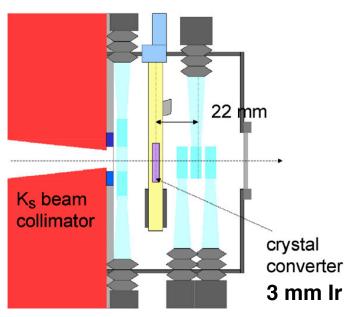
E_{γ} (GeV)	$ ho / ho_0$	1 – ε
350 GeV	3.5	5 × 10⁻⁵
30 GeV	3.5	1 × 10 ⁻⁴
10 GeV	1.5	4.5%
5 GeV	1.0	20%

Work in progress:

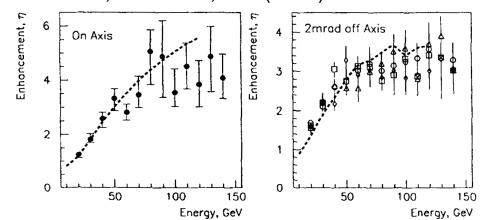
Photons

- Better simulation with X_0 for photons a function of E_{γ} and θ_{γ}
 - Benefit from effort by AXIAL collaborators to introduce into Geant4 detailed simulation of coherent effects in crystals
- Optimize transverse and longitudinal segmentation to increase γ/n separation

Neutrons

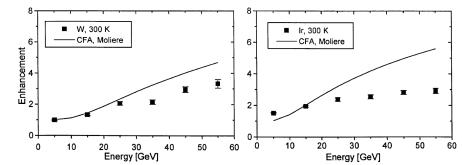

50-300 GeV

 $1 - \varepsilon = 20\%$


- E_{vis} thr. = 16 MeV chosen for E_{γ} = 30 GeV
- Inefficiency at small E_{γ} from punch through
- Need better treatment of coherent effects
- Need additional handles for γ/n separation

Crystal converter for the NA48 AKS

AKS used to define start of FV for $K_S \rightarrow \pi^0 \pi^0$ decays in NA48


Pair prod. enhancement vs E_{γ} and θ_{γ} Moore et al., NIMB 119, 149 (1996)

On-axis pair prod. enhancement for W and Ir

Kirsebom et al., NIMB 135, 248 (1998)

Pair-production enhancement from coherent interaction with crystal lattice was studied for AKS development

NA48 had use of high-quality crystals from MPI Stuttgart (mosaicity ~ 0.02 deg) These crystals appear no longer to be commercially available!

KLEVER: An experiment to measure BR($K_L \rightarrow \pi^0 \nu \nu$) at the CERN SPS – M. Moulson – Frascati – 21 June 2018

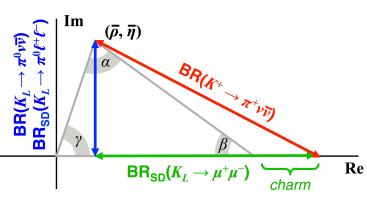
$$K_L \rightarrow \pi^0 \ell^+ \ell^-$$

$$K_L
ightarrow \pi^0 \ell^+ \ell^-$$
 vs $K
ightarrow \pi vv$:

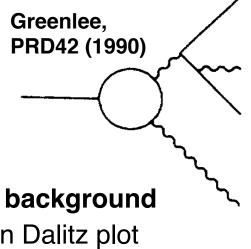
 Somewhat larger theoretical uncertainties from long-distance physics

- SD CPV amplitude: γ/Z exchange
- LD CPC amplitude from 2y exchange
- LD indirect CPV amplitude: $K_L \rightarrow K_S$
- $K_L \rightarrow \pi^0 \ell^+ \ell^-$ can be used to explore helicity suppression in FCNC decays

Main background: $K_L \rightarrow \ell^+ \ell^- \gamma \gamma$


• Like $K_L \rightarrow \ell^+ \ell^- \gamma$ with hard bremsstrahlung

 $\begin{array}{ll} \mathsf{BR}(K_L \to e^+ e^- \gamma \gamma) = (6.0 \pm 0.3) \times 10^{-7} & E_{\gamma}^* > 5 \; \mathrm{MeV} \\ \mathsf{BR}(K_L \to \mu^+ \mu^- \gamma \gamma) = 10^{+8}_{-6} \times 10^{-9} & m_{\gamma\gamma} > 1 \; \mathrm{MeV} \end{array}$


 $K_L \rightarrow \pi^0 e^+ e^-$ channel is plagued by $K_L \rightarrow e^+ e^- \gamma \gamma$ background - Small acceptance because of tight cuts on Dalitz plot $K_L \rightarrow \pi^0 \mu^+ \mu^-$ channel may be more tractable

 $K_L \rightarrow \pi^0 \ell^+ \ell^-$ CPV amplitude constrains UT in same way as BR($K_L \rightarrow \pi^0 vv$)

