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Small brain, big world

The brain gathers information
from the world, makes
decisions for future actions,
learns from experience, and
tries to remember.

The Challenge: It’s a very big, complex, and often
unpredictable world, and the brain has very limited resources

The Question: What are the organizational principles that
allow neural circuits to meet this enormous challenge!?



Specialization of Circuits in The Brain



Neurons & Neural Communication

Axon terminals synapse
with dendrites on target cell
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Specialization of function: brain areas

Primary Central Central sulcus
motor sulcus Primary Motor
cortex somatosensory control Touch and pressure

cortex

Parietal -~ Taste

lobe

7 Occipital
lobe
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Hearing Face recognition

\. ——Spinal cord
- From Purves et al., Life:The Science of Biology
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Specialization of function: layers within brain areas

Left side
of brain
represents
(,“.....\ . right side
! &/ of bOdy

)

From Purves et al., Life:The Science of Biology
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Specialization: cell types in the retina

3 cones

l

2 horizontal
cells
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|0 bipolars
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interneurons
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|5 ganglion
cells

Masland 2001




Specialization: Precise microcircuitry
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Maps in the brain

At every scale of organization, the brain has a diverse
repertoire of functional units whose coordinated activity
produces the desired overall function.

e.g.Whole Brain Coverage by

(everything you do) one architectural

element

e.g. Entorhinal Cortex e .
(cell type/circuit motif)

(the sense of place)

e.g Retina
(vision) Sensory, Cognitive,
e.g Olfactory Cortex Algorithmic Repertoires
(smell)

A view of the repertoire: A memory of computations that
have predictive value for behavior, learned over evolutionary
time, encoded in the genome and the developmental program.




What organizational principles
(“laws”) control the computational

& information-processing
repertoires of the brain?




The Costs of Computation
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* Brain: 2% of body weight, but 20% of metabolic load.
* Brain: Every mm3 contains 4 km of wire

Power and space are major constraints -- (Attwell & Laughlin; Wen & Chklovskii)

* Brain consumes ~12W of power (refrigerator lightbulb)
* Packing seems to minimize wire length

How does the brain achieve its efficiency!?
ldea: Specialization in the circuit repertoire &
Adaptation to structure in the world



A theory of maps in the brain?

HYPOTHESIS: Brains exploit structure in the world to
efficiently allocate limited computational resources to
maximize gain for the organism

* Retina
(visual features) Coverage by

. one architectural
* Entorhinal Cortex clement
(the sense of place)
* Olfactory Cortex
(complex smells) Sensory Features /

, Cognitive Functions /

* Whole Brain Algorithms
(everything you do)




Roadmap

 Example |: Vision (the sense of sight)
e Example 2: Spatial cognition (the sense of place)

* Example 3: Olfaction (the sense of smell)

In each case we will see that evolution seems to have
exploited sophisticated mathematical principles of

information processing that have only recently been
discovered.




Visual Repertoires

Charles Ratliff, Bart Borghuis, Peter Sterling,Vijay Balasubramanian



The retinal repertoire

* Retinal ganglion cells (the
output cells of the retina)
detect “features” of the world
(bright spots / dark spots /
color / local motion) and report
them to the brain.

* How should the repertoire of
ganglion cells (1,000,000 in
humans) be divided into types
responding to these different
features.

e Let’s consider the example of

bright and dark saot detectors
(ON and OFF cell

O -~ @OFF




Statistical structure of natural scenes
Garrigan, Ratliff,

B 5. Sterling, Brainard,
» 20- Balasubramanian
£ (PLoS Comp Bio,
. 2010)
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Natural images contain more dark spots
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What should
be the relative
proportion of

ON and OFF
cells?



How to design the best detector array

Assume that resource constraints require that a particular ON/OFF

channel contains N cells.

Norr + Non.

Let N

find the OFF:ON ratio that

’

Given N

maximizes total information.
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For N=1 the answer is clear: choose an OFF cell -- it is more likely to respond.



Characterizing the optimal mosaic: simplest model

Total information in the array: oI _
I = IOONKANONIéN + (N — NON)POFFI})FF ONon

ON-ON redundancy, depends only on Receptive Field overlap.
Assume fixed Receptive Field overlap like real cells so that redundancy
is constant and equal for ON and OFF types.

Simple SNR + redundancy approximation of each mosaic:

1
I(l)N — 5 log(l =+ f(z)N SNRcone)

Receptive field SNR improves with area of receptive field:

2 _ A — A oI.. for | A
on _ﬂon Tc—ﬂonN—(m — N... ? O Oor large

Information equality in
the optimal mosaic.

Thus 35— = 1), =1}




Characterizing the optimal mosaic

Total information in the array:
ol __
[ = POé\f Non IéN + porr (N — Non) IéFF _fM ONon 0
ON-ON redundancy ON-OFF redundancy
Simple model (equally used signaling levels; porr = | - pon):
lon
PON PonN
I = —(1—pon)log(l — pon) — T log T
A —, 'ON ON
info. of non-response Realistic

A \ /2 | model: optimal
Number of signaling levels (SNR) lon = Bon < ) ratio is ~|.7
improves with area of receptive field: Non times as many
OFF cells.

Mutual information due to anti-correlation between ON and
OFF cells - if an ON cell fails to fire, overlapping OFF cells do
fire. Thus the entropy of non-response of ON cells is
redundant with OFF responses s drop it.

Replace |! by: ION = — ZZEN PON 4o DON

1=1 lon lon



The brain separates light from dark unequally

* Behavioral measurements show greater sensitivity to light decrements
and dark spots in images (Zemon et al.,‘88; Chubb et al., 2004)

* More cortical cells respond to negative (dark) than to positive (bright)
contrasts (Jin et al., 2008)

e Retinal OFF cells are ~1.3-2 times as numerous as ON. Conserved
across types and species: guinea pig (Ratliff et al, 2010), rabbit (de Vries & Baylor,
1997), rat (Morigiwa 1989), monkey (Chlchllnlsky & Kalmar 2002), human (Dacey and

Petersen 1992). e — e ——— — ————————
.' PREDICTED BECAUSE There are more

t dark regions in natural scenes and information is}
| more densely packed in them. ‘




Can this approach be applied generally?

Q. What is optimized!?
A. Information is an approximation of the “objective” of the early
visual system.

Q. Shouldn’t the forms and function be determined by
evolutionary history!?

A. Within the lineage, which is constrained by its history, better
adapted forms and functions, are selected over time.

Q. Nothing is ever optimal -- life is a work in progress.Why
should anything be optimal?

A.lt isn’t. But the optimal solution guides us to the principles
underlying circuit organization.

There may not be any order in nature, but those of us who look for it
have a better chance of finding it if it is there.



Coverage by
one retinal
ganglion cell

Visual Features
(Lego blocks of vision)

CHALLENGE: Explain the relative proportions of
different elements of the visual repertoire in
terms of the value they have for vision



Cognitive repertoires:
The sense of place

Xuexin Wei, Jason Prentice,Vijay Balasubramanian



The sense of place

What is place? How do you know where you are?

Inside your head,"here” is an abstract pattern of
neurons firing. These patterns maintain a map of
your location.



A simple representation of one dimensional space

I m I m I m I m I m I m I m I m

8m linear track

To achieve I m resolution on an 8m track can have 8 “place
neurons’, each of which fire when you are in a particular
Im wide location. This requires 8 neurons.



A more efficient representation: binary humbers

Location: 010 Location: |01

This is a “binary” representation of
space (i.e. a base 2 number system)
and requires only 6 neurons — it is
more efficient.

. You can use other |
| bases, like decimal, |
~ i.e.base |0.



A simple representation of two dimensional space

* Square: 8m on each side
* Resolution: Im on each side

* Need: 64 neurons

In two dimensions you could imagine different neurons
responding when the animal is in different locations



A two dimensional analog of binary nhumbers

* Square: 8m on each side

* Resolution: | m on each side

* Need: | 2 neurons

. You can use other |
. bases, like decimal,
i.e. base 10. :




Grid Cells: a numbering system for location?

* Grid cells in the entorhinal cortex
respond when an animal is physically
in locations lying on a triangular lattice

* The grids increase in size along the
axis of the entorhinal cortex

* Different cells have randomly varying
offsets (phases) for their grids

X140 JeulyJolud ay3 suofe Yyada(g

2 Like a two-dimensional, fuzzy, neural
number system Hafting et al Nature 2005



Which number system (binary,
decimal, etc. ) should the brain

pick to represent space?

The ratio of adjacent grid sizes
is the “base” of the number system

(e.g. binary or base 2; decimal or
base |0)

X33402 [eulyJojud ay3 3uoje yida(g



mEC

AAAA

AN

AAAA

Spatial characteristics of the grid system

Ai = Scale of grid (assume largest
scale matched to environment)

ventral

[; = Diameter of single grid
field
Assume: Uniform spatial phases, and
constant coverage at each scale

Ai
Ty = = Ratio of grid scales
>\z—|—1
Al
R = N, Hn Resolution formulae
written
N Z = Number of for 1d
grid cells grids

Cost of grid = f(N)

What ratio between scales minimizes the number of cells
required achieve a given spatial resolution?



One dimensional grids

scale i

)\3 scale i+1 -

animal |ineartrack E ( ..... }/ ..... ’L...‘.\.\ ..... ). )\
: . : i

location SR S A A o

too large compared to the next scale

| Ambiguities arise if the grid field width is




Optimizing the grid: a simple model
mEC
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Ak, ventral
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. . Nt 1 Ratio of grid
oo scales
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A1
. . It = . Hri = Resolution

formulae
| written |
for Id |
| grids |

n

. . NO(Z ;‘— = Number of

grid cells

g . A1 > Ao > -0 A
‘+‘ 1 2 m

faal— Minimize number of cells
s dorsal - (N) for fixed resolution (R)

Unambiguous N N
decoding: >‘i+1 — >, == in > p



mEC

AAAA

A

ventral

dorsal

Optimizing the grid

N; f
ry = = Ratio of grid
D VI 8
scales
A1
R = N H"“i = Resolution (formulae
" i written

NOCZ"“@ = Number of f0|.* | d
i grid cells grids)

Minimize number of cells (N) for fixed
resolution (R)

Predictions:
(1) The ratios of adjacent periods will be equal

(2) The constant ratio is r = (e)!/d in d dimensions.

By /l; =



Optimizing the grid: probabilistic decoding

® Asymptotically, the posterior distribution over position
of each module may be approximated by a periodic series
of Gaussian bumps.

® Combine information from modules (scales) by
multiplying the posterior distributions.



Resolution vs. Ambiguity

A C

Shrinking the ﬂ ﬂ
scale
Improves ...
Prov Ambiguities
resolution | | .2
arise if the
scales shrink
B D too quickly




Iwo dimensional grids

Firing maps are doubly-periodic, with period
vectors \,u and \,v (|u| =1




Theory matches experiment

2.0

Simple Probabilistic
Model

scaling ratio

1.0

0.0

| | |
Data Data
TheO r)’ Barry et al. Stensola et al.

Excellent match with our theory! Evolution seems to have invented
base-n number systems, and optimized them for neural hardware!

.' An efficiency principle seems to explain the
i organization of complex circuits supporting a
| cognitive function.




CHALLENGES

* Dynamical mechanism for self-
organization of grid module repertoire via
an attractor mechanism (Louis Kang,VB)

* Dynamical mechanism for explaining
deformations of grids with sudden changes
of the environment (Alex Keinath,VB)

X331J02 [eUlyJ403Ud 3Y3 3uoje yada(g



Olfactory Repertoires
el Disordered Sensing and
Y the Sense of Smell

Kamesh Krishnamurthy
Ann Hermundstad
Thierry Mora
Aleksandra Walczak
% Vijay Balasubramanian




The intimidatingly diverse space of smells

* There are a very large number of
volatile molecules, maybe 1,000,000

N°S ,
- CHANEL
|

* Complex odors contain 100 or more
molecules = (1,000,000)!% = bazillions
of odor types, in each of which you can
vary all the concentrations

* Odors change with seasons, and as
new opportunities and threats come to
light.

Molecules

MWOQ_O



http://www.google.com/imgres?imgurl=http%3A%2F%2Fwww.youne.com%2Fwp-content%2Fuploads%2F2013%2F12%2Fjasmine-770x513.jpg&imgrefurl=http%3A%2F%2Fwww.youne.com%2F10-benefits-of-jasmine-flower%2F&h=513&w=770&tbnid=0cLEiIV4EpKDoM%3A&zoom=1&docid=EcUFsZ1jnsEW1M&ei=NBDtU-zbHc-UyASO4YHADA&tbm=isch&client=firefox-a&ved=0CCMQMygHMAc&iact=rc&uact=3&dur=1330&page=1&start=0&ndsp=14

The challenge of identifying odors

* Odors are sensed when molecules bind to Olfactory
Receptors in the nose

* Every receptor needs a separate gene. Flies have ~100,
humans have ~ 300, mice have ~1000.

* How can you possibly represent so many odors with ~1000

sensors!
Imagine representing three

dimensional positions using a single
(%,y,2)
number. Also want to preserve
= proximity relations.
X

I d The space of odors is perhaps

3d 1,000,000 dimensional and we have
maybe |00-1000 numbers to
describe it. Can this be done!




Sensory processing with limited resources

e Strategy: adaptation
to the environment

* Exploit stable
structure in the world
to produce compact and
easily manipulated
information
architectures

Molecules
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Natural odours are sparse in
“chemotopic” space



Efficient packing of odors by disordered sensing

Molecules Yy @) &
: N®1l
M X ]‘ i = sparse
(d) | - m measurements E sl:i)gnal
0 ] B
- K<MIN 0 entries
!\lz‘tj:ural odou.rs”are sparse Can recover x from y as long as
in “chemotopic™ space X is known to be sparse
IR
IE | Decoding
;ix ~ Sparse vectors (odors) that | Find a vector X such that
Z’l are nearby in the high- y=A X (wherey is the
dimensional odor space will | measured output), and x
be nearby after the minimizes the LI norm.

. . . N
rojection into neural space ‘
PTo) P Ixll =3 |

i=1




Olfaction & Disordered Sensing?

Molecules

I

l I

(nﬂOQ_O

H

The typical odor contains
maybe ~50 of the millions
of possible molecules

If each receptor binds with “random” affinities to volatile molecules
then you only need ~O(100) sensors to represent all odors.

Does the olfactory system use this approach?

Key Property: Diffuse randomized sensing



The disordered structure of olfactory circuits

natural odors: disordered projections:
chemotopic space:  SParse distribute information for flexible learning

high-dimensional

glomerular transformation:

5 olfactory receptors: . :
d fi dd lat A aversive
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Input Space Stage 1 . Stage3
odorant mixture composition  Olfactory Receptor Antennal Lobe (insects) = Mushroom Body (insects)
molecules vector Neurons (ORNs) Olfactory Bulb (mammals) Piriform Cortex (mammals)

e — E—

Maybe the brain disorders odor information as
mathematicians would recommend

—_——— ————— ————




Stage |: Receptors and random sensing

disordered projections:
distribute information for flexible learning

natural odors:

chemotopic space: SParse
high-dimensional
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molecules vector Neurons (ORNs) Ifactory Bulb (mammals) Piriform Cortex (mammals)



Stage |: Decoding from receptor responses

min| T Max

Hallem & Carlson .
24 receptors

ORNs

110 odorarits Droso_EhiIa o]
P _ > i .

| L} m ‘Ii --.II

odorants

decoding error
O e I 1

14

—
o

mixture complexity (K)
(@)

Y
un

10 15 20 24
subset size (n)

R;; = response of receptor i to odor |

Linear sensing model: y = Rx

Decoding error = fraction of
decoded odors that differ from
original by more than 1% in norm

Mixture complexity = number
of odor components in a mixture

* 677% of odors with 5 or fewer
components drawn from | |10
odorants can be accurately
decoded from responses of 24
receptors.

e There are ~100 million such
mixtures



Decoding odor mixtures from receptor responses

ORNs

decoding error

firing rate
min | T

T gl
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ORN responses

- measured
- = scrambled

synthetic models

) labeled-line
________ ---- Gaussian
I.-----.I---- | | | | | 1
2 4 6 8 10 12 14

mixture complexity (K)

* scrambled = random
permutation of
Drosophila sensing
matrix

* labeled-line =
threshold to keep
the k largest
responses (k = 5)

* Gaussian = ideal
random sensing
model

—

Receptors approach
ideal performance




Stage 2: Decorrelation in the olfactory bulb

disordered projections:
distNpute information for flexible learning

natural odors:

chemotopic space: SParse
high-dimensional

- olfactory receptors: . -
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Stage 3. Random expansion to cortex

natural odors:

chemotopic space: ~ SPars€
high-dimensional

u : glomerular transformation: ,. .
? H olfa.ctory receptors: densifies and decorrelates \ - aversive
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The maps inside your head

Towards a theory of functional maps and computational
repertoires in the brain — today, examples from vision,
olfaction & spatial cognition

* Adaptation to the environment and to the task

e Constraints of neural computation

e Efficiency and parsimony

An attempt to explain the immense diversity and complexity
of computational architecture in the brain



For the future

More generally, the same ideas turn out to be relevant
for understanding “functional repertoires” in e.g. the
immune system, biochemical circuits in cells.

Coverage by
one antibody

Landscape of pathogens




The End



Stage 3: Densification and disorder increase robustness

Q000

densification

o6l I JoI jele] lo]e,

,; ,5 OO
aversive

classification error

noisy, structured
noisy, no densification
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éa )
: .1 error .2
_ J

| | | | —
20 60 120 140 180 200

readout size (n)




Stage 2: Decorrelation

correlation
-TH il 1
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[The nonlinear transformation decorrelates the receptor responses.
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Animals can learn arbitrary associations from cortex

Choi et al.
Odor Light Activation
of ChR2* Cells
@
e ®%e
o o *
e @
S o .
o ® '. © Piriform Ensemble o
@
0.. 0. ¢
o ~"* .
g ®
Conditioned Behaviors I

2 2 ¥ \) o Jf>
CA‘ «_Af C_A.“ CA»

® Random ensembles
of cortical neurons
can be entrained to
elicit appetitive and
aversive behaviours

® A random ensemble
can go from appetitive
to aversive to
appetitive

® | ocation of the
ensemble in the
piriform does not
seem to matter

® Similar results in fly



Alternative models of connectivity

e Random: a reasonable connection Strength
interpretation of data min T Max

* Secretly Structured: a
possible alternative |oca||y |oca||y

random structured
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Stage 2: Decorrelation and diffusion of responses

firing rate
min Tl max

ORNs

odorants odorants

Odor receptor responses are nonlinearly transformed by circuitry in the
glomeruli of the second stage. Empirical model (divisive normalization)

1.5

AL Rm,a.L ) (RORN)

— 1.5
015+(ROR\ ( ZRO}?\)

e e — e —— S e e — e e i

’ ,z

Responses are spread out more evenly and broadly

——— e — — ——————— e ———— e —— e — i —— R —— —



Transformed responses are easier to decode

ORN responses

- measured
- = scrambled

glomeruli

- modeled
= = SCrambled

decoding error

synthetic
benchmark

---=- Gaussian

|
2 £ 6 3 10 12 14
mixture complexity (K)

e e — - e e e -

Scrambling leaves results unchanged — only the
overall distribution of responses matters

—_ e e ——— S — =




Animals can reversibly learn arbitrary odor associations

\ Choi et al.
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Can a linear classifier (model of a simple
readout neuron) learn arbitrary
assighments of “appetitive” and
“aversive” classes from the neural
responses!



Paradox!? Poor linear classification performance

Assign labels “appetitive” or “aversive” to 50% of 5-component odors and
classify linearly.

5 -
S
Z |
5 aversive
§ 25 - WA/@
A T ORN responses
S R ¢
N 735 O D (measured)
- glomeruli
(modeled)
O —
| | | | | | |
1 100 200 300

number of mixtures

Classification performance with 24 receptors is close to chance with just
|00 mixtures. Thus, information about odors needs to be “untangled” for
linear classification.



Model task: two-way classification of odor classes

Assign labels “appetitive” or “aversive” to 50% of mixtures and classify linearly.

expansion classification
(stage 2—3) (stage 3)

— -1
IDEA: A disordered
densification linear readout | (random) projection
(Stage 2) atetel ¥ into a higher dimension
 Jelelele, .
2932 should make a simple
Q 8 readout (linear |
8 8 p classification) easier
O gé S N
: vy
o X OO
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aversive



classification error

25—

Stage 3: Excellent classification

— 711 =160 cells (15% active)
- = n =80 cells (15% active)

aversive

O 00000

I I I I
100 200 300
number of mixtures



Disorder and the sense of smell

Olfactory circuits employ two kinds of disorder to smell in the real world
* disordered sensing compresses chemical space into receptor space

* decorrelation and disordered expansion reformat information for
flexible learning

* Disorder as an adaptation to the olfactory world

chemotopic space: natural odors: Piriform Cortex (mammal)
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