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• Nonlocal orders in spin 1 & extended Bose Hubbard 
models 

• Parity and string orders in 1D Hubbard model 

• SPT phases classification of spin-charge decoupled 
SG models 

• Correspondence with group cohomology classification  

• beyond 1D case: the 2D Mott insulator

Plan of the talk



Can order be described just by local 
observables?

• characterization of long range order: two point correlation function 
of a local observables non-zero in the thermodynamic limit 

• O(x) orders in the low temperature phase -> SSB: <O(x)> local 
order parameter goes to zero at phase transition 

• true also for quantum 1D systems upon replacing local operators 
with nonlocal strings

< O†(x)O(y) >
|x-y| !1

constC(x� y) =

O(x) =
Y

j<x
ei↵S(y)S(x)



Haldane string order in spin 1 models

• Haldane conjecture: the Heisenberg model is gapped for integer 
spin, gapless otherwise (83) 

• Den Nijs and Rommelse (89): in the gapped phase, the non 
vanishing correlation functions are nonlocal strings, built from SU(2) 
symmetry generators 

• rigorously proved for a similar S=1 model, the AKLT model (87),  an 
integrable bilinear biquadratic Heisenberg model



Order parameter breaks a hidden Z2xZ2 discrete symmetry of the 
Hamiltonian. 

Kennedy Tasaki (’92)

ignoring 0’s  
+1 and -1 are 

alternated

Some microscopic DOF order in the background of the others

Q: when different spin 1 Hamiltonian (for instance Heisenberg & 
AKLT) have same gapped Haldane phases? 

A: when they can be deformed continuously into each other without 
breaking the symmetries



Extended Bose Hubbard as spin 1 model
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low energy regime-> 3 occupations per site, only particle-hole conserving terms.  

= �ni

lambda-D model 

string order

6= 06= 0

parity order

CS = CP =

Symmetries:



• U and t (J) terms can be tuned independently in optical lattices 

• in situ imaging allows to observe on site density fluctuations and to measure 
experimentally the average value of nonlocal parity operator (pure Bose Hubbard)

6.2. Non-local order in the Bose-Hubbard model
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Figure 6.2.: Numerical calculation of the string-order parameter. O2
P(l) as a function of

J/U calculated with DMRG for a homogeneous chain (n̄ = 1, T = 0) of total length 216.
Lines show O2

P(l) for selected lengths l (black to red colors). Dashed line shows first-order
strong coupling result O2

P(l) = 1 � 16(J/U)2. Inset: Extrapolated value O2
P = liml!• O2

P(l)
together with a fit (black line) of the form O2

P µ exp
�
� A

⇥
(J/U)1d

c � (J/U)
⇤�1/2 �. The fitted

(J/U)c ⇡ 0.3 is compatible with the known numerical value (Ch. 2).

Fig. 6.3b-d. As expected, the fitted correlation length x = 1/m̃ (6.3b) increases with
J/U, although we find no divergence at J/U ⇡ 0.3, which we attribute to the finite
system size.
The fit also yields a value for the Luttinger-liquid parameter K (6.3c). We find an
increasing value of K with J/U and K ⇡ 2 at J/U ⇡ 0.3, which is compatible with
the known critical values. We interpret a small systematic shift to be the result of the
finite system size. A thorough finite-size scaling for this analysis is, however, beyond
the scope of this thesis. We conclude that the result from the Bosonization analysis
in Eq. 6.21 gives a good description of the functional dependence of O2

P(l) on l even
close to the critical point, which might be surprising considering the fact that the
result is based on a harmonic approximation of the cosine term in Eq. 6.20.
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that one expects in one dimension (14, 15). From
the fit, we find (J /U )1dc = 0:295 − 0:320, which
is compatible with previously computed values
(26, 27, 24). The fact that OP ¼ 0 in the SF and
OP > 0 in the MI as well as the agreement with
the expected scaling show that OP serves as an
order parameter for the MI phase in one dimen-
sion (14). Additionally, the simulations demon-
strate thatOP(l) is well suited to characterize the
SF-MI transition even for finite l.

Our experimentally obtained values of O2
P(l)

for string length l ≤ 8 (Fig. 4A) agree qual-
itatively well with in-trap MPS calculations at
T = 0.09 U/kB (Fig. 4B). We observe a stronger
decay of O2

P(l ) with l compared to the T = 0
case, because at finite temperature thermal fluc-
tuations lead to minus signs at random posi-
tions of the chain and reduce the average value
ofO2

P(l ). Despite that, we still see a strong growth
ofO2

P(l ), once the transition from the SF to the
MI is crossed, with a similar behavior as in
Fig. 3.

For a completely uncorrelated state, O2
P(l )

factorizes to ∏k≤ j ≤ k þl〈 %sj〉, and in a homoge-
neous systemwewould expect a decaywith string
length of the form 〈 %sj〉lþ1, which can be slow
provided the mean on-site parity 〈 %sj〉 is close
to one. To rule out that our experimental data
shows only such a trivial behavior, we define a
new quantity Õ2

P(l) that more naturally reflects
the underlying correlations:

Õ2
P(l) = O2

P(l) − ∏
k ≤ j ≤ kþ l

〈 %sj〉 ð3Þ

First, we notice thatÕ
2
P(l ) for l = 1 is equal

to the two-site correlation function C(d= 1).

Second, Õ2
P(l )≈O

2
P(l ) for long distances l

because ∏k≤j≤kþl〈 %sj〉 eventually decays to zero
(except for the singular case J/U = 0 and T = 0).
The correlation function Õ2

P(l) can therefore be
understood as an extension of the two-site cor-
relation function that essentially captures the phys-
ics behind string order in one-dimensional MIs.

Experimental and theoretical values for
Õ2

P(l) are shown in Fig. 4, C and D. For small
J/U, Õ2

P(l) is reduced compared with O2
P(l) be-

cause few particle-hole pairs exist andO2
P(l) is

close to its factorized form for short values of l.
In the case of vanishing J/U, we even expect
Õ2

P(l) = 0 because all sites are completely de-
coupled. For intermediate J/U ≈0.1, Õ2

P(l)
grows rapidly with l showing a strong deviation
from the factorized form. Lastly, in the SF re-
gime, Õ2

P(l) becomes indiscernible from zero for
large lengths in contrast to the nearest-neighbor
two-site correlation function. Furthermore, our
data show a genuine three-site correlation, which
we revealed after subtracting all two-site correla-
tors in addition to local terms (24).

We have shown direct measurements of non-
local parity-parity correlation functions on the
single–lattice-site and single-atom level, and
we demonstrated that a one-dimensional MI is
characterized by nonlocal string order. A nat-
ural extension of our work would be to reveal,
for example, topological quantum phases such as
the Haldane insulator of bosonic atoms (13, 14).
A Haldane insulator exhibits a hidden antiferro-
magnetic ordering and is expected to occur in
one-dimensional quantum gases in the presence
of longer ranged interactions, which could be
realized in our experiment by using Rydberg
atoms (31).

References and Notes
1. D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005).
2. M. Lewenstein et al., Adv. Phys. 56, 243 (2007).
3. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80,

885 (2008).
4. M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher,

Phys. Rev. B 40, 546 (1989).
5. D. Jaksch, C. Bruder, J. I. Cirac, C. Gardiner, P. Zoller,

Phys. Rev. Lett. 81, 3108 (1998).
6. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I. Bloch,

Nature 415, 39 (2002).
7. T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger,

Phys. Rev. Lett. 92, 130403 (2004).
8. I. B. Spielman, W. D. Phillips, J. V. Porto, Phys. Rev. Lett.

98, 080404 (2007).
9. F. Gerbier et al., Phys. Rev. Lett. 95, 050404 (2005).

10. A. B. Kuklov, B. V. Svistunov, Phys. Rev. Lett. 90, 100401
(2003).

11. L.-M. Duan, E. Demler, M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

12. S. Trotzky et al., Science 319, 295 (2008); 10.1126/
science.1150841.

13. E. G. Dalla Torre, E. Berg, E. Altman, Phys. Rev. Lett. 97,
260401 (2006).

14. E. Berg, E. Dalla Torre, T. Giamarchi, E. Altman,
Phys. Rev. B 77, 245119 (2008).

15. T. Kühner, H. Monien, Phys. Rev. B 58, R14741 (1998).
16. M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709

(1989).
17. E. Kim, G. Fáth, J. Sólyom, D. Scalapino, Phys. Rev. B 62,

14965 (2000).
18. F. Anfuso, A. Rosch, Phys. Rev. B 75, 144420 (2007).
19. D. Pérez-García, M. M. Wolf, M. Sanz, F. Verstraete,

J. I. Cirac, Phys. Rev. Lett. 100, 167202 (2008).
20. X. Chen, Z.-C. Gu, X.-G. Wen, Phys. Rev. B 83, 035107

(2011).
21. N. Schuch, D. Pérez-García, J. I. Cirac, (2010); http://

arxiv.org/abs/1010.3732.
22. W. S. Bakr et al., Science 329, 547 (2010); 10.1126/

science.1192368.
23. J. F. Sherson et al., Nature 467, 68 (2010).
24. Materials and methods are available as supporting

material on Science Online.
25. E. Kapit, E. Mueller, Phys. Rev. A 82, 013644

(2010).
26. T. D. Kühner, S. R. White, H. Monien, Phys. Rev. B 61,

12474 (2000).
27. V. Kashurnikov, A. Krasavin, B. Svistunov, JETP Lett. 64,

99 (1996).
28. F. Verstraete, J. J. García-Ripoll, J. I. Cirac, Phys. Rev. Lett.

93, 207204 (2004).
29. M. Zwolak, G. Vidal, Phys. Rev. Lett. 93, 207205

(2004).
30. B. Capogrosso-Sansone, S. Söyler, N. Prokof'ev,

B. Svistunov, Phys. Rev. A 77, 015602 (2008).
31. M. Saffman, T. Walker, K. Mølmer, Rev. Mod. Phys. 82,

2313 (2010).
Acknowledgments: We acknowledge helpful discussions with

E. Altman, E. Dalla Torre, M. Rizzi, and I. Cirac. This work
was supported by Max-Planck-Gesellschaft, Deutsche
Forschungsgemeinschaft, European Union (NAMEQUAM,
AQUTE, and Marie Curie Fellowship to M.C.), and Japan
Society for Promotion of Science (Postdoctoral Fellowship
for Research Abroad to T.F.). L.P. is supported by the
Swiss National Science Foundation under grant
PZ00P2-131892/1. DMRG simulations were performed
with use of code released within the PwP project
(www.qti.sns.it). QMC calculations were performed on
the Brutus cluster at ETH Zurich.

Supporting Online Material
www.sciencemag.org/cgi/content/full/334/6053/200/DC1
Materials and Methods
SOM Text
Figs. S1 to S3
Table S1
References (32–42)

2 June 2011; accepted 15 August 2011
10.1126/science.1209284

Fig. 4. String correlators. (A) Experimental values ofO2
P(l) for 0 ≤ l≤ 8. (B) In-trap MPS calculations

at T = 0.09 U/kB. (C) Experimentally determined string correlator Õ2
P(l) as defined in Eq. 3 for

lengths 1 ≤ l≤ 8 (D) In-trap MPS calculations at T = 0.09 U/kB. The laxes in (C) and (D) have been
inverted.
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The Hubbard model: Mott and Luther-
Emery Liquid gapped phases

• Is there nonlocal order in the Hubbard model for 1D fermions? 

• more symmetries-> more possible nonlocal orders? 

• two gapped phases: Mott insulator (U>0, half-filling, open charge 
gap), Luther Emery liquid (U<0, zero magnetization, open spin gap) 

•  BKT (-> infinite order) quantum phase transitions

Nonlocal Order Parameters for the 1D Hubbard Model

Arianna Montorsi and Marco Roncaglia
Institute for Condensed Matter Physics and Complex Systems, DISAT,

Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
(Received 23 July 2012; published 5 December 2012)

We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through

correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities

order in the corresponding gapped phases and vanish at the critical point Uc¼ 0, thus configuring as

hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-

Emery phase turn into electron pairs with opposite spins, both unbinding at Uc. The behavior of the parity

correlators is captured by an effective free spinless fermion model.

DOI: 10.1103/PhysRevLett.109.236404 PACS numbers: 71.10.Hf, 05.30.Rt, 71.10.Fd

The Hubbard model and its extensions have been widely
used to investigate the behavior of strongly correlated
electrons in several condensed-matter systems ranging
from Mott insulators (MI) to high-Tc superconducting
materials. Recently, progress in ultracold gas experiments
that use fermionic atoms trapped in optical lattices has
opened the way to the direct simulation of the Hubbard
model and the observation of the predicted MI phase [1].
Since the Mott transition in one dimension (1D) is known
to be of Berezinskii-Kosterlitz-Thouless (BKT) type [2],
the order parameter cannot be local; instead, the transition
point should correspond to the vanishing of some topo-
logical order. On general grounds, it was shown that the
vanishing of conductivity can be related to the nonvanish-
ing of nonlocal quantities [3– 6]. Nevertheless, an order
parameter for solely the MI phase has not yet been iden-
tified. Progress has been achieved in the related field of the
bosonic Hubbard models, where the correspondence of the
bosonic system with spin-1 Hamiltonians at low energy
near integer filling has allowed characterization in 1D MI
and Haldane insulator phases by means of nonlocal string
parameters [7– 10]. One of these is related to the parity

correlator OPðrÞ ¼ he2i!!iþ r
j¼iSz;ji, with Sz;i ¼ 1

2 ðni % "Þ
measuring the parity of the deviation of the occupation
number ni with respect to the filling " in a string starting
from the site i, ending to the site i þ r. The nonvanishing
value of the parity parameter OP ¼ limr!1OPðrÞ in the
insulating phase has been observed with in situ imaging in
experiments on ultracold bosonic 87Rb atoms [11].

In this Letter, we show that two parity string correlators
work as order parameters for the two gapped phases of the
fermionic Hubbard model in 1D. In this case, the expected
role of antiferromagnetic (AFM) correlations has so far
driven the attention mainly to the study of Haldane-type
string correlators; these were found to vanish algebraically,
together withOPðrÞ in the Luttinger liquid regime [12]. On
the other hand, at half-filling in the large Coulomb repul-
sion limit the Hubbard Hamiltonian is known to reduce to
the AFM Heisenberg Hamiltonian, for which the parity

string correlator is identically 1, the wave function being
frozen to the sector with only one electron per site. At finite
Coulomb repulsion instead, in the MI phase the number of
doubly occupied sites (doublons) and empty sites (holons)
is nonvanishing (as also observed experimentally [1]).
Hence, an appropriate parity parameter should characterize
the transition from the Heisenberg to the Luttinger liquid
limit, marking the existence of the whole MI phase.
The local four-dimensional vector space on which an

electron Hamiltonian acts is typically generated by appli-
cation to the vacuum operators forming a su(4) algebra,
with three Cartan generators. Consequently, we can intro-

duce two independent parity correlators Oð"Þ
P , defined as

Oð"Þ
P ðrÞ ¼

D
e2i!

P
iþ r
j¼i

Sð"Þz;j

E
; (1)

with index " ¼ c, s, namely, the ‘‘charge’’ and ‘‘spin’’

generalizations of the parity correlator OPðrÞ. Here, Sð"Þz;i

are the spin and pseudospin operators defined respectively

as SðsÞz;i ¼ 1
2 ðni;" % ni;#Þ and SðcÞz;i ¼ 1

2 ðni;" þ ni;# % 1Þ, with
ni# ¼ cyi#ci#, # ¼ " , # , cyi# creating a fermion at site i
with spin #. By means of bosonization and density matrix
renormalization group (DMRG) analysis, we will show

that each Oð"Þ
P orders in the corresponding gapped phase:

MI for " ¼ c, with open charge gap, and Luther-Emery

(LE) for " ¼ s, with open spin gap. The Oð"Þ
P vanish with

the gap at the BKT transition point where the correlation
length becomes infinite. Notice that the two parameters
collapse into a single one in the spin-1 case.
The Hubbard model is described by the Hamiltonian

H ¼%
X

i#

ðcyi#ciþ 1;# þ cyiþ 1;#ci#Þ þ U
X

i

ni"ni# (2)

where the overlap integral U gives the on-site contribution
of Coulomb repulsion and energy is expressed in units of
the tunneling amplitude.
The bosonized form of the half-filled Hubbard

Hamiltonian at low energy is known to give rise to two

PRL 109, 236404 (2012) P HY S I CA L R EV I EW LE T T E R S
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The Hubbard Model: spin and charge parity 

• Haldane-like string correlations are vanishing (Anfuso Rosh, PRB 2008) 

• What happens to nonlocal parity correlations? 

• Introduce nonlocal charge and spin parity operators  

• their correlation function reads:

Nonlocal Order Parameters for the 1D Hubbard Model
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The Hubbard model and its extensions have been widely
used to investigate the behavior of strongly correlated
electrons in several condensed-matter systems ranging
from Mott insulators (MI) to high-Tc superconducting
materials. Recently, progress in ultracold gas experiments
that use fermionic atoms trapped in optical lattices has
opened the way to the direct simulation of the Hubbard
model and the observation of the predicted MI phase [1].
Since the Mott transition in one dimension (1D) is known
to be of Berezinskii-Kosterlitz-Thouless (BKT) type [2],
the order parameter cannot be local; instead, the transition
point should correspond to the vanishing of some topo-
logical order. On general grounds, it was shown that the
vanishing of conductivity can be related to the nonvanish-
ing of nonlocal quantities [3– 6]. Nevertheless, an order
parameter for solely the MI phase has not yet been iden-
tified. Progress has been achieved in the related field of the
bosonic Hubbard models, where the correspondence of the
bosonic system with spin-1 Hamiltonians at low energy
near integer filling has allowed characterization in 1D MI
and Haldane insulator phases by means of nonlocal string
parameters [7– 10]. One of these is related to the parity

correlator OPðrÞ ¼ he2i!!iþ r
j¼iSz;ji, with Sz;i ¼ 1

2 ðni % "Þ
measuring the parity of the deviation of the occupation
number ni with respect to the filling " in a string starting
from the site i, ending to the site i þ r. The nonvanishing
value of the parity parameter OP ¼ limr!1OPðrÞ in the
insulating phase has been observed with in situ imaging in
experiments on ultracold bosonic 87Rb atoms [11].

In this Letter, we show that two parity string correlators
work as order parameters for the two gapped phases of the
fermionic Hubbard model in 1D. In this case, the expected
role of antiferromagnetic (AFM) correlations has so far
driven the attention mainly to the study of Haldane-type
string correlators; these were found to vanish algebraically,
together withOPðrÞ in the Luttinger liquid regime [12]. On
the other hand, at half-filling in the large Coulomb repul-
sion limit the Hubbard Hamiltonian is known to reduce to
the AFM Heisenberg Hamiltonian, for which the parity

string correlator is identically 1, the wave function being
frozen to the sector with only one electron per site. At finite
Coulomb repulsion instead, in the MI phase the number of
doubly occupied sites (doublons) and empty sites (holons)
is nonvanishing (as also observed experimentally [1]).
Hence, an appropriate parity parameter should characterize
the transition from the Heisenberg to the Luttinger liquid
limit, marking the existence of the whole MI phase.
The local four-dimensional vector space on which an

electron Hamiltonian acts is typically generated by appli-
cation to the vacuum operators forming a su(4) algebra,
with three Cartan generators. Consequently, we can intro-

duce two independent parity correlators Oð"Þ
P , defined as

Oð"Þ
P ðrÞ ¼

D
e2i!

P
iþ r
j¼i

Sð"Þz;j

E
; (1)

with index " ¼ c, s, namely, the ‘‘charge’’ and ‘‘spin’’

generalizations of the parity correlator OPðrÞ. Here, Sð"Þz;i

are the spin and pseudospin operators defined respectively

as SðsÞz;i ¼ 1
2 ðni;" % ni;#Þ and SðcÞz;i ¼ 1

2 ðni;" þ ni;# % 1Þ, with
ni# ¼ cyi#ci#, # ¼ " , # , cyi# creating a fermion at site i
with spin #. By means of bosonization and density matrix
renormalization group (DMRG) analysis, we will show

that each Oð"Þ
P orders in the corresponding gapped phase:

MI for " ¼ c, with open charge gap, and Luther-Emery

(LE) for " ¼ s, with open spin gap. The Oð"Þ
P vanish with

the gap at the BKT transition point where the correlation
length becomes infinite. Notice that the two parameters
collapse into a single one in the spin-1 case.
The Hubbard model is described by the Hamiltonian

H ¼%
X

i#

ðcyi#ciþ 1;# þ cyiþ 1;#ci#Þ þ U
X

i

ni"ni# (2)

where the overlap integral U gives the on-site contribution
of Coulomb repulsion and energy is expressed in units of
the tunneling amplitude.
The bosonized form of the half-filled Hubbard

Hamiltonian at low energy is known to give rise to two
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The Hubbard model and its extensions have been widely
used to investigate the behavior of strongly correlated
electrons in several condensed-matter systems ranging
from Mott insulators (MI) to high-Tc superconducting
materials. Recently, progress in ultracold gas experiments
that use fermionic atoms trapped in optical lattices has
opened the way to the direct simulation of the Hubbard
model and the observation of the predicted MI phase [1].
Since the Mott transition in one dimension (1D) is known
to be of Berezinskii-Kosterlitz-Thouless (BKT) type [2],
the order parameter cannot be local; instead, the transition
point should correspond to the vanishing of some topo-
logical order. On general grounds, it was shown that the
vanishing of conductivity can be related to the nonvanish-
ing of nonlocal quantities [3– 6]. Nevertheless, an order
parameter for solely the MI phase has not yet been iden-
tified. Progress has been achieved in the related field of the
bosonic Hubbard models, where the correspondence of the
bosonic system with spin-1 Hamiltonians at low energy
near integer filling has allowed characterization in 1D MI
and Haldane insulator phases by means of nonlocal string
parameters [7– 10]. One of these is related to the parity

correlator OPðrÞ ¼ he2i!!iþ r
j¼iSz;ji, with Sz;i ¼ 1

2 ðni % "Þ
measuring the parity of the deviation of the occupation
number ni with respect to the filling " in a string starting
from the site i, ending to the site i þ r. The nonvanishing
value of the parity parameter OP ¼ limr!1OPðrÞ in the
insulating phase has been observed with in situ imaging in
experiments on ultracold bosonic 87Rb atoms [11].

In this Letter, we show that two parity string correlators
work as order parameters for the two gapped phases of the
fermionic Hubbard model in 1D. In this case, the expected
role of antiferromagnetic (AFM) correlations has so far
driven the attention mainly to the study of Haldane-type
string correlators; these were found to vanish algebraically,
together withOPðrÞ in the Luttinger liquid regime [12]. On
the other hand, at half-filling in the large Coulomb repul-
sion limit the Hubbard Hamiltonian is known to reduce to
the AFM Heisenberg Hamiltonian, for which the parity

string correlator is identically 1, the wave function being
frozen to the sector with only one electron per site. At finite
Coulomb repulsion instead, in the MI phase the number of
doubly occupied sites (doublons) and empty sites (holons)
is nonvanishing (as also observed experimentally [1]).
Hence, an appropriate parity parameter should characterize
the transition from the Heisenberg to the Luttinger liquid
limit, marking the existence of the whole MI phase.
The local four-dimensional vector space on which an

electron Hamiltonian acts is typically generated by appli-
cation to the vacuum operators forming a su(4) algebra,
with three Cartan generators. Consequently, we can intro-

duce two independent parity correlators Oð"Þ
P , defined as

Oð"Þ
P ðrÞ ¼

D
e2i!

P
iþ r
j¼i

Sð"Þz;j

E
; (1)

with index " ¼ c, s, namely, the ‘‘charge’’ and ‘‘spin’’

generalizations of the parity correlator OPðrÞ. Here, Sð"Þz;i

are the spin and pseudospin operators defined respectively

as SðsÞz;i ¼ 1
2 ðni;" % ni;#Þ and SðcÞz;i ¼ 1

2 ðni;" þ ni;# % 1Þ, with
ni# ¼ cyi#ci#, # ¼ " , # , cyi# creating a fermion at site i
with spin #. By means of bosonization and density matrix
renormalization group (DMRG) analysis, we will show

that each Oð"Þ
P orders in the corresponding gapped phase:

MI for " ¼ c, with open charge gap, and Luther-Emery

(LE) for " ¼ s, with open spin gap. The Oð"Þ
P vanish with

the gap at the BKT transition point where the correlation
length becomes infinite. Notice that the two parameters
collapse into a single one in the spin-1 case.
The Hubbard model is described by the Hamiltonian

H ¼%
X

i#

ðcyi#ciþ 1;# þ cyiþ 1;#ci#Þ þ U
X

i

ni"ni# (2)

where the overlap integral U gives the on-site contribution
of Coulomb repulsion and energy is expressed in units of
the tunneling amplitude.
The bosonized form of the half-filled Hubbard

Hamiltonian at low energy is known to give rise to two
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The Hubbard model and its extensions have been widely
used to investigate the behavior of strongly correlated
electrons in several condensed-matter systems ranging
from Mott insulators (MI) to high-Tc superconducting
materials. Recently, progress in ultracold gas experiments
that use fermionic atoms trapped in optical lattices has
opened the way to the direct simulation of the Hubbard
model and the observation of the predicted MI phase [1].
Since the Mott transition in one dimension (1D) is known
to be of Berezinskii-Kosterlitz-Thouless (BKT) type [2],
the order parameter cannot be local; instead, the transition
point should correspond to the vanishing of some topo-
logical order. On general grounds, it was shown that the
vanishing of conductivity can be related to the nonvanish-
ing of nonlocal quantities [3– 6]. Nevertheless, an order
parameter for solely the MI phase has not yet been iden-
tified. Progress has been achieved in the related field of the
bosonic Hubbard models, where the correspondence of the
bosonic system with spin-1 Hamiltonians at low energy
near integer filling has allowed characterization in 1D MI
and Haldane insulator phases by means of nonlocal string
parameters [7– 10]. One of these is related to the parity

correlator OPðrÞ ¼ he2i!!iþ r
j¼iSz;ji, with Sz;i ¼ 1

2 ðni % "Þ
measuring the parity of the deviation of the occupation
number ni with respect to the filling " in a string starting
from the site i, ending to the site i þ r. The nonvanishing
value of the parity parameter OP ¼ limr!1OPðrÞ in the
insulating phase has been observed with in situ imaging in
experiments on ultracold bosonic 87Rb atoms [11].

In this Letter, we show that two parity string correlators
work as order parameters for the two gapped phases of the
fermionic Hubbard model in 1D. In this case, the expected
role of antiferromagnetic (AFM) correlations has so far
driven the attention mainly to the study of Haldane-type
string correlators; these were found to vanish algebraically,
together withOPðrÞ in the Luttinger liquid regime [12]. On
the other hand, at half-filling in the large Coulomb repul-
sion limit the Hubbard Hamiltonian is known to reduce to
the AFM Heisenberg Hamiltonian, for which the parity

string correlator is identically 1, the wave function being
frozen to the sector with only one electron per site. At finite
Coulomb repulsion instead, in the MI phase the number of
doubly occupied sites (doublons) and empty sites (holons)
is nonvanishing (as also observed experimentally [1]).
Hence, an appropriate parity parameter should characterize
the transition from the Heisenberg to the Luttinger liquid
limit, marking the existence of the whole MI phase.
The local four-dimensional vector space on which an

electron Hamiltonian acts is typically generated by appli-
cation to the vacuum operators forming a su(4) algebra,
with three Cartan generators. Consequently, we can intro-

duce two independent parity correlators Oð"Þ
P , defined as

Oð"Þ
P ðrÞ ¼

D
e2i!

P
iþ r
j¼i

Sð"Þz;j

E
; (1)

with index " ¼ c, s, namely, the ‘‘charge’’ and ‘‘spin’’

generalizations of the parity correlator OPðrÞ. Here, Sð"Þz;i

are the spin and pseudospin operators defined respectively

as SðsÞz;i ¼ 1
2 ðni;" % ni;#Þ and SðcÞz;i ¼ 1

2 ðni;" þ ni;# % 1Þ, with
ni# ¼ cyi#ci#, # ¼ " , # , cyi# creating a fermion at site i
with spin #. By means of bosonization and density matrix
renormalization group (DMRG) analysis, we will show

that each Oð"Þ
P orders in the corresponding gapped phase:

MI for " ¼ c, with open charge gap, and Luther-Emery

(LE) for " ¼ s, with open spin gap. The Oð"Þ
P vanish with

the gap at the BKT transition point where the correlation
length becomes infinite. Notice that the two parameters
collapse into a single one in the spin-1 case.
The Hubbard model is described by the Hamiltonian

H ¼%
X

i#

ðcyi#ciþ 1;# þ cyiþ 1;#ci#Þ þ U
X

i

ni"ni# (2)

where the overlap integral U gives the on-site contribution
of Coulomb repulsion and energy is expressed in units of
the tunneling amplitude.
The bosonized form of the half-filled Hubbard

Hamiltonian at low energy is known to give rise to two
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The Hubbard model: bosonization
• bosonized Hamiltonian decouples spin and charge dof in two sine-

Gordon models. In the charge channel: 

• due to particle-hole symmetry, substituting U->-U and c->s one obtains 
also Hs at arbitrary-filling and zero magnetization 

• For U>0 a charge gap opens (MI) when the charge field pins to 0.  For 
U<0 the same holds for the spin gap (LEL) and field.

continuum models separately describing the spin and
charge sectors [2]. The latter is described by the
Hamiltonian

Hc ¼
Z

dx
!
vc

2!

"
Kc!!

2
c þ

1

Kc
ð@x"cÞ2

#

% 2U

ð2!"Þ2 cosð
ffiffiffi
8

p
"cÞ

%
(3)

with

vc ¼ vF

&
1þ U

!vF

'
1=2

; Kc ¼
&
1þ U

!vF

'%1=2
: (4)

Here, "c is the compactified boson describing the charge
excitations with velocity vc, and !c ¼ @x#c=! is its
conjugate momentum (" is a cutoff). At the BKT transition
pointU ¼ 0, we haveKc ¼ 1. The bosonic field in the spin
sector "s is governed by equations that can be obtained
from Eqs. (3) and (4) by replacing U ! %U and c! s.
The spin-charge transformation cj# ! ð%1Þjcyj#, which

implies SðcÞz;j ! SðsÞz;j, in the present bosonization analysis

corresponds simply to the change "c $ "s. In fact, we
have used the continuum prescriptions used in

Ref. [2] where SðsÞz ðxÞ ¼ @x"sðxÞ=ð
ffiffiffi
2

p
!Þ and SðcÞz ðxÞ ¼

@x"cðxÞ=ð
ffiffiffi
2

p
!Þ.

For U > 0, we get Ks > 1: the cosine term in Hs is
(marginally) irrelevant, and the spin excitations are gapless
and governed by an ordinary Gaussian model. Meanwhile,
Kc < 1, and a charge gap is generated by the relevant
cosine term inHc. As a consequence, the field"c is pinned
in one of the classical minima of the cosine term, i.e.,"c ¼
ð2!mÞ=

ffiffiffi
8

p
, m 2Z, while "s does not order. For U < 0,

just the same occurs with inverted roles "c $ "s. In the
continuum limit, one can realize that the parity operators
become [9,13]

Oð#Þ
P ðrÞ & hcos½

ffiffiffi
2

p
"#ðrÞ( cos½

ffiffiffi
2

p
"#ð0Þ(i:

Hence, in the MI phase at U > 0, OðcÞ
P turns out to be

nonvanishing. In the U < 0 case instead the LE phase is

characterized by nonzero OðsÞ
P . The two Haldane-type

string correlators

Oð#Þ
S ðrÞ ¼

D
Sð#Þz;i e

2i!
P

iþr
j¼i

Sð#Þz;j Sð#Þz;iþr

E

give insteadOð#Þ
S ðrÞ & hsin½

ffiffiffi
2

p
"#ðrÞ( sin½

ffiffiffi
2

p
"#ð0Þ(i, where

the same argument suggests that these are both asymptoti-
cally vanishing in the two gapped phases. From the above
derivation, we can conjecture that a necessary and sufficient
condition for having an asymptotically nonvanishing charge
(spin) parity correlator in the Hubbard model is the opening

of a gap in the charge (spin) sector, so thatOð#Þ
P do configure

as order parameters for the gapped phases of the Hubbard
model.

Below, we support our previous argument providing a
quantitative estimation of the parity string parameter in
the MI phase. This is achieved by means of numerical
analysis using the DMRG algorithm on finite size chains
with periodic boundary conditions (PBCs). The analysis
requires very precise and reliable data; in fact, the comput-
ing effort is significant due to both the slowdown caused
by PBCs and the high sensitivity of the correlations con-

tained in Oð#Þ
P ðrÞ with respect to numerical errors. Hence,

we have chosen to consider chain sizes from L ¼ 10 to

L ¼ 50 and 1024 DMRG states. The curves of OðcÞ
P ðrÞ

plotted in Fig. 1 for L ¼ 50 clearly make evident a fast
convergence to the asymptotic values for high interactions
as well as a progressive increase of the parity order withU.
The presence of two sequences for even and odd r that tend
toward the same asymptotic limit also signals that the spin

parity correlator OðsÞ
P ðrÞ ¼ ð%1ÞrOðcÞ

P ðrÞ has a uniform part

½OðsÞ
P ð2rþ 1Þ þOðsÞ

P ð2rÞ(=2 that goes smoothly to zero for
U > 0. The opposite mechanism holds for negative values
of the interaction.
Exactly at U ¼ 0 both parity orders are absent and

OðcÞ
P ðrÞ ¼ OðsÞ

P ðrÞ as required by the spin-charge symmetry.

Here, an analytic calculation of Oð#Þ
P ðrÞ can be performed

independently for both spin species by using the Wick
theorem and evaluating Toeplitz determinants. An

estimation of the asymptotic behavior gives OðcÞ
P ðrÞ ) r%1

at U ¼ 0 [14].

We have explicitly evaluated the order parameter OðcÞ
P in

the MI phase and plotted it in Fig. 2 for several values ofU.
The asymptotic values have been extrapolated from the

finite-size scaling of the quantity OðcÞ
P ðL=2Þ in a periodic

chain of length L. For the fits, we have made use of
functionsOPðrÞ ¼ OP þ Ar%$e%r=% obtaining a good con-
vergence. Interestingly, as evidenced in the inset of Fig. 2,
for small U we get $ ¼ 1 and A > 0, and for strong
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FIG. 1 (color online). Parity correlator OðcÞ
P ðrÞ for a periodic

chain with L ¼ 50 as a function of the string length r. The
sequences of data refer to U ¼ 0:1, 1.0, 2.0, 3.0, 5.0, 10.0
(in ascending order).
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• charge and spin parity correlations (r continuum) become: 

• for locked                  then                      , 0 in the unlocked case 

• the parity correlation functions configure as order parameters for 
the gapped phases

continuum models separately describing the spin and
charge sectors [2]. The latter is described by the
Hamiltonian

Hc ¼
Z

dx
!
vc

2!

"
Kc!!

2
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1
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ffiffiffi
8

p
"cÞ

%
(3)
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: (4)

Here, "c is the compactified boson describing the charge
excitations with velocity vc, and !c ¼ @x#c=! is its
conjugate momentum (" is a cutoff). At the BKT transition
pointU ¼ 0, we haveKc ¼ 1. The bosonic field in the spin
sector "s is governed by equations that can be obtained
from Eqs. (3) and (4) by replacing U ! %U and c! s.
The spin-charge transformation cj# ! ð%1Þjcyj#, which

implies SðcÞz;j ! SðsÞz;j, in the present bosonization analysis

corresponds simply to the change "c $ "s. In fact, we
have used the continuum prescriptions used in
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ffiffiffi
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!Þ.

For U > 0, we get Ks > 1: the cosine term in Hs is
(marginally) irrelevant, and the spin excitations are gapless
and governed by an ordinary Gaussian model. Meanwhile,
Kc < 1, and a charge gap is generated by the relevant
cosine term inHc. As a consequence, the field"c is pinned
in one of the classical minima of the cosine term, i.e.,"c ¼
ð2!mÞ=

ffiffiffi
8

p
, m 2Z, while "s does not order. For U < 0,

just the same occurs with inverted roles "c $ "s. In the
continuum limit, one can realize that the parity operators
become [9,13]
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Hence, in the MI phase at U > 0, OðcÞ
P turns out to be

nonvanishing. In the U < 0 case instead the LE phase is

characterized by nonzero OðsÞ
P . The two Haldane-type
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the same argument suggests that these are both asymptoti-
cally vanishing in the two gapped phases. From the above
derivation, we can conjecture that a necessary and sufficient
condition for having an asymptotically nonvanishing charge
(spin) parity correlator in the Hubbard model is the opening

of a gap in the charge (spin) sector, so thatOð#Þ
P do configure

as order parameters for the gapped phases of the Hubbard
model.

Below, we support our previous argument providing a
quantitative estimation of the parity string parameter in
the MI phase. This is achieved by means of numerical
analysis using the DMRG algorithm on finite size chains
with periodic boundary conditions (PBCs). The analysis
requires very precise and reliable data; in fact, the comput-
ing effort is significant due to both the slowdown caused
by PBCs and the high sensitivity of the correlations con-

tained in Oð#Þ
P ðrÞ with respect to numerical errors. Hence,

we have chosen to consider chain sizes from L ¼ 10 to

L ¼ 50 and 1024 DMRG states. The curves of OðcÞ
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plotted in Fig. 1 for L ¼ 50 clearly make evident a fast
convergence to the asymptotic values for high interactions
as well as a progressive increase of the parity order withU.
The presence of two sequences for even and odd r that tend
toward the same asymptotic limit also signals that the spin
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P ðrÞ has a uniform part
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P ð2rÞ(=2 that goes smoothly to zero for
U > 0. The opposite mechanism holds for negative values
of the interaction.
Exactly at U ¼ 0 both parity orders are absent and
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P ðrÞ as required by the spin-charge symmetry.

Here, an analytic calculation of Oð#Þ
P ðrÞ can be performed

independently for both spin species by using the Wick
theorem and evaluating Toeplitz determinants. An

estimation of the asymptotic behavior gives OðcÞ
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at U ¼ 0 [14].

We have explicitly evaluated the order parameter OðcÞ
P in

the MI phase and plotted it in Fig. 2 for several values ofU.
The asymptotic values have been extrapolated from the

finite-size scaling of the quantity OðcÞ
P ðL=2Þ in a periodic

chain of length L. For the fits, we have made use of
functionsOPðrÞ ¼ OP þ Ar%$e%r=% obtaining a good con-
vergence. Interestingly, as evidenced in the inset of Fig. 2,
for small U we get $ ¼ 1 and A > 0, and for strong
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FIG. 1 (color online). Parity correlator OðcÞ
P ðrÞ for a periodic

chain with L ¼ 50 as a function of the string length r. The
sequences of data refer to U ¼ 0:1, 1.0, 2.0, 3.0, 5.0, 10.0
(in ascending order).
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interactions we obtain ! ¼ 1=2 and A < 0; for intermedi-
ate values, the best fit seems to be a combination of the two
functions.

The nonvanishing of OðcÞ
P implies the existence of bound

doublon-holon pairs (see Ref. [9]); their correlation length
increases by decreasing U becoming infinite at the transi-
tion, when pairs finally unbind. The quasi-long-range AFM
order of the MI phase suggests that such pairs
are diluted in an AFM background of single electrons.
The spin-charge transformation that maps positive U
Hamiltonian at half-filling into negative U case at zero
magnetization allows one to extend the same type of analy-
sis to the LE phase, which is then characterized at any filling
by bound pairs of single electrons with opposite spins.

On the basis of the above scenario, we construct an
approximation scheme that aims at isolating the relevant
degrees of freedom (charges) to describe the actual role of

Oð"Þ
P in the Hubbard model. Since the operator ei#nj ¼

ð$1Þnj changes sign whenever the site j is singly occupied,
no matter its spin orientation, we choose to represent the

original electronic creation operators cyi$ in terms of a

spinless fermion fyi and Pauli operators $a
i , a ¼ x, y, z

acting on a spin part. The mapping, schematized in Table I,
is identified by the unitary transformation

cyi" ¼ cyi"ð1$ ni#Þ þ cyi"ni# ¼ fyi P
þ
i þ ð$1ÞifiP$

i ;

cyi# ¼ cyi#ð1$ ni"Þ þ cyi#ni" ¼ ½fyi $ ð$1Þifi'$$
i ;

with P(
i ¼ 1( $z

i

2 . Interestingly, the interaction term for the
c fermions simply becomes a chemical potential shift for f

fermions, namely, U
P

ini"ni# ¼ UðN $P
in

f
i Þ=2, where

N ¼ P
i;$ni$. According to this picture, the spin and pseu-

dospin operators are SðsÞ
j ¼ fyj fj!j and SðcÞ

j ¼ fjf
y
j !j;

conversely, we have !j ¼ Sj þ Jj.
After the mapping, the model in Eq. (2) becomes

H ¼ $
X

hiji

h
fyi fjQij $ 2ð$1Þifyi fyj Rij þ H:c:

i

þU

2

!
N $

X

i

fyi fi

"
; (5)

where Qij ¼ ð!i ) !j þ 1Þ=2 is just the swap operator in
the $-spin state and Rij ¼ ð1$ !i ) !jÞ=4 is the projector
onto the singlet. Notice that Eq. (5) is invariant under
global $-spin rotations.
The form (5) for the Hubbard model holds in arbitrary

dimension, and its terms are quadratic with respect to f

fermions. Since Oð"Þ
P can be entirely expressed in terms of

fi, a possible strategy consists of tracing out the $ spins by
some mean-field approximation. In fact, by exploiting the
symmetries of the Hubbard model one can easily realize
that hQiji ¼ 1=2 is an exact identity on the states with
nonvanishing hopping term in (5). Moreover, we set the
parameter % * hRiji in a phenomenological way by equat-
ing the ground-state (GS) energy obtained from the spin-
less quadratic model with the exact energy coming from
the Bethe-ansatz solution [15]. Within this approximation,
Eq. (5) is diagonalized in Fourier space (see Supplemental
Material [16]), obtaining

H ¼
X

k2BZ

!k

#
&y
k&k $

1

2

$
þUð2N $ LÞ

4
;

with spectrum !k ¼ $ cosk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16%2cos2k þU2=4

p
,

and where &k are the new fermionic modes. In the
thermodynamical limit (TL), the energy density
eGS at half-filling " ¼ 1 is given by eGS¼U

4$
1
2#

R#=2
$#=2dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16%2cos2kþU2=4

p
. It is interesting to observe

that the model is gapless only for U ¼ 0, where for % ¼ 1
eGS assumes the exact value of the noninteracting case.
For U > 0, the number of singly occupied states "f is
increasing and the pair-singlet states start to interact.
We are interested in calculating the parity operator

OðcÞ
P ðrÞ ¼ hei#"iþr

j¼iðn
f
j$1Þi that can be rewritten as
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FIG. 2 (color online). Charge parity order parameter measured

at half chain OðcÞ
P ðL=2Þ as a function of the local interaction U.

We have considered PBCs and finite chain lengths from L ¼ 10
to L ¼ 50 in steps of 4, a sequence for which the ground state of
the Hubbard model is unique. We have plotted the curves for
L ¼ 10 (up triangles), L ¼ 14 (circles), L ¼ 18 (down tri-
angles), L ¼ 26 (rhombuses). The filled squares represent the
finite size scaling values to L ¼ 1 obtained by the fits shown in
the inset.

TABLE I. Mapping from electrons to spinless fermions and
$ spins.

Spinful fermion j0i j "i j #i j "#i
Spinless fermion + $ spin j0ijþi j1ijþi j1ij$i j0ij$i
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Cartoon:  parity orders

• Mott insulator: the sum on each site of fluctuations from half-
filling should remain as close as possible to zero-> holon-
doublon pairs of finite correlation length 

• Luther Emery Liquid: the same holds for fluctuations with 
respect to zero magnetization-> correlated pairs of single 
electrons with up and down spin

| " 0 2 " # " 2 # 0 " #> +| " 2 0 # " 2 # 0 # "> + . . .

|2 0 0 " 0 # 2 0 # "> +|2 0 # " 2 0 2 " 0 #> + . . .

doublon-
holon pairs

up-down pairs



Sine-Gordon model and 1D fermionic 
systems

• low energy behavior of many 1D interacting quantum systems in the 
continuum limit described by 2 decoupled spin and charge SG models 

• interaction may a gap in two ways in each channel (charge/spin), 
depending on sign of gc/gs (for spin preserving Hamiltonian gs<0) 

• to analyze the full phase diagram bosonize also spin and charge string 
correlators, 

How Hidden Orders Generate Gaps in 1D Fermionic Systems
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We demonstrate that hidden long range order is always present in the gapped phases of interacting
fermionic systems on one dimensional lattices. It is captured by correlation functions of appropriate
nonlocal charge and/or spin operators, which remain asymptotically finite. The corresponding
microscopic orders are classified. The results are confirmed by DMRG numerical simulation of the
phase diagram of the extended Hubbard model, and of a Haldane insulator phase.

PACS numbers: 71.10.Hf, 75.10.Pq, 71.10.Fd

The behavior of strongly correlated electron systems
has been widely investigated to understand the physics
of several phenomena in condensed matter, ranging from
the insulating regime to high-Tc superconductivity. Due
to the many degrees of freedom involved, many aspects
of the micro- and macroscopic behavior of these systems
remain unclear. Recently their simulation by means of ul-
tracold gases of two-component fermionic atoms trapped
onto optical lattices has opened new possibilities, lead-
ing for instance to the direct observation of the predicted
magnetic [1] and Mott insulating (MI) phases [2]. The
latter is efficiently modeled by the Hubbard Hamiltonian.
In this case, it has been noticed quite recently [3] that in
one dimension (1D) it is possible to identify a nonlocal or-
der parameter in the MI phase, which displays long-range
order (LRO); a result that is in agreement with Coleman-
Hohenberg-Mermin-Wagner theorem [4] since no contin-
uous symmetry of the system has been broken. The dis-
covery envisaged a description of the underlying parity
charge order, whose microscopic configurations are de-
picted below in the second cartoon of Fig.1: the Mott
phase consists of a chain of single fermions with up and
down spin, where fluctuations of pairs of empty and dou-
bly occupied sites (holons and doublons) are bounded.
The behavior is reminiscent of that observed in the insu-
lating regime of a degenerate gas of bosonic atoms [5].

In general, the observation of gapped phases in 1D
systems is not believed to be necessarily related to the
presence of some type of LRO, since the strong quan-
tum fluctuation are expected to destroy any such order.
In this Letter we show that LRO is instead hidden in ev-
ery gapped phase of one dimensional correlated fermionic
systems. The result is achieved by means of a general
analysis of the bosonization treatment applied on a pro-
totype lattice model Hamiltonian for these systems. We
identify in the lattice the nonlocal parity and string op-
erators responsible for the different types of LRO. As a
byproduct, both charge and spin excitations turn out to
be independently ordered, while local operators intrin-
sically generate both. It is tempting to conclude that
nonlocal operators are “more fundamental” with respect

to the usual local ones, at least for the description of
the possible orders in the ground state phase diagram of
these systems. To test our results we perform a density
matrix renormalization group (DMRG) analysis at half-
filling and zero temperature of the standard extended
Hubbard case, focusing on the insulating phases.

We start from the general class of lattice model Hamil-
tonians introduced in Ref.[6] to describe the effects of
Coulomb repulsion among electrons on their behavior,
the standard Hubbard model being the most familiar
example. The low energy behavior of these models is
described by an effective Hamiltonian H obtained by
bosonization treatment (see [7] and references therein).
Upon neglecting terms of higher scaling dimension (see
also [8]), H turns out to be the sum of two decoupled
sine-Gordon models. Explicitly, we have

H =

X

⌫=c,s

✓
H(⌫)

0 +
2g⌫

(2⇡↵)2

ˆ
dx cos[q⌫

p

8 �⌫(x)]

◆
, (1)

with H(⌫)
0 =

v⌫
2⇡

´
dx[K⌫(⇡⇧⌫)

2
+K�1

⌫ (@x�⌫)
2
]. Here �⌫

is the compactified boson describing the charge (⌫ = c)
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coupling K⌫ and conjugate momentum ⇧⌫ = @x⇥⌫/⇡; ↵
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Umklapp processes being non-vanishing only at commen-
surate fillings n = p/q (p, q integer; we assume p = 1);
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The cosine terms in (1) become irrelevant in the renor-
malization group (RG) flow equations unless the fields �⌫
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opening of a charge gap �c; whereas a spin gap �s can
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LL u u 0 0 none
LE u 0 0 open O

(s)
P

MI 0 u open 0 O
(c)
P

HI ⇡/2 u open 0 O
(c)
S

BOW 0 0 open open O
(c)
P , O

(s)
P

CDW ⇡/2 0 open open O
(c)
S , O

(s)
P

Table I: Correspondence between ground state quantum
phases and nonlocal operators that manifest LRO. We in-
dicate with u when fields are unlocked.

open only for gs < 0, due to the SU(2) spin symmetry
of the Hubbard class of Hamiltonians. To resume, in all
systems described by H it is possible to observe up to
6 phases (shown in Table I). In most phases the known
dominant correlations of two-point local operators decay
to zero with distance following a power law, in agreement
with bosonization predictions. Only in charge-density
and bond-ordered wave (CDW and BOW respectively)
phases – appearing when just onsite and nearest neigh-
bors diagonal Coulomb interactions are present – LRO
was identified with the non-vanishing in the asymptotic
limit of appropriate two-point correlators of local opera-
tors [7]. Quite recently it was noticed that for the stan-
dard Hubbard model LRO in MI and Luther Emery (LE)
liquid phases is described instead by two-points correla-
tors of suitable nonlocal operators [3]. In the present
work we extend the idea of nonlocal order to all possible
gapped phases of Table I for the general Hamiltonian H.

First of all, we define for the lattice model the parity
and string operators at a given site j as
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respectively, with ⌫ = c, s, and S(c)
j = (nj � 1), S(s)

j =

(nj" � nj#). Here nj� is the number operator count-
ing the electrons with spin � (� =", #) at site j, namely
nj� ⌘ c†j�cj�, cj� being the operator which annihilates
one electron of this type and c†j� its Hermitian conjugate;
moreover nj ⌘ nj" + nj#. The related two-point correla-
tors C(⌫)
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can be approximated in the continuum limit according
to the analysis outlined in Ref. [3, 9], exploiting symme-
try or antisymmetry under a particle-hole transforma-
tion. This gives
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where h i stands for the average evaluated in the ground
state. From the above result one can realize that at least
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Figure 1: Cartoon illustrating the possible orders in pres-
ence of fluctuations. The blue continuos (dashed) lines show
the correlated pairs of up-down spin (holon-doublon) allowing
hO(s)

P i (hO(c)
P i) to remain non vanishing. The green and red

circles show the alternation of sites occupied by doublons and
holons in the chain of single fermions preserving hO(c)

S i 6= 0.

one of the parity or string correlators is non-vanishing for
x ! 1 in every gapped phase. Indeed these take place
when some �⌫ is pinned to a fixed values, as shown in
Table I. In that case we observe:

lim
x!1

C(⌫)
↵ (x) = hO(⌫)

↵ i
2
⌘ C(⌫)

↵ , ↵ = P, S

and an order parameter hO(⌫)
↵ i emerges.

In Table I, LL stands for the gapless Luttinger Liquid
phase, which is the only case without LRO, as both the
bosonic fields �⌫ are unlocked. LE is the conducting
phase with open spin gap which takes place for �s = 0,
and is characterized by a nonzero hO(s)

P i. Charge-gapped
phase with �s = 0 can open for a) �c = 0 (MI), in
which case hO(c)

P i 6= 0 [3]; b) for �c = ⇡/
p

8, which case
we indicate as Haldane insulator (HI) since the Haldane-
like string order hO(c)

S i is non-vanishing. Finally, BOW
and CDW phases are fully gapped phases with two finite
hO(⌫)

↵ i’s. Only in these latter cases, the two nonlocal
order parameters combine to form a local LRO, namely
the BOW and CDW orders mentioned above [7, 9].

The non-vanishing of the parity and/or string correla-
tors gives further physical insight about the kind of mi-
croscopic orders underlying the phases. These are illus-
trated schematically in Fig.1. At half-filling a non-zero
value of the charge (spin) parity correlator implies the
formation of bound pairs of holons and doublons (up and
down spins) in a background of single electrons (holons
and doublons) as it occurs in the MI (LE) phase [3].
Whereas a finite value of the charge (spin) string cor-
relator amounts to a holon (spin up) always followed by
a doublon (spin down) site on the holon-doublon (single
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tors gives further physical insight about the kind of mi-
croscopic orders underlying the phases. These are illus-
trated schematically in Fig.1. At half-filling a non-zero
value of the charge (spin) parity correlator implies the
formation of bound pairs of holons and doublons (up and
down spins) in a background of single electrons (holons
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example: phases classification with SU(2) 
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In Table I, LL stands for the gapless Luttinger Liquid
phase, which is the only case without LRO, as both the
bosonic fields �⌫ are unlocked. LE is the conducting
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↵ i’s. Only in these latter cases, the two nonlocal
order parameters combine to form a local LRO, namely
the BOW and CDW orders mentioned above [7, 9].

The non-vanishing of the parity and/or string correla-
tors gives further physical insight about the kind of mi-
croscopic orders underlying the phases. These are illus-
trated schematically in Fig.1. At half-filling a non-zero
value of the charge (spin) parity correlator implies the
formation of bound pairs of holons and doublons (up and
down spins) in a background of single electrons (holons
and doublons) as it occurs in the MI (LE) phase [3].
Whereas a finite value of the charge (spin) string cor-
relator amounts to a holon (spin up) always followed by
a doublon (spin down) site on the holon-doublon (single
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Application: DMRG investigation of nonlocal 
order in extended Hubbard model at half-filling3

electrons) sublattice created in a background of up and
down electrons (holons and doublons). The microscopic
configurations in the different phases unveil the mecha-
nisms at the basis of the formation of charge and spin
gaps. With respect to the perfect MI of singly occupied
sites, the Mott charge gap at half-filling is maintained by
adding localized pairs formed by a doublon and a holon;
whereas a HI charge gap takes place when the added dou-
blons and holons do alternate into the sublattice they
occupy. The LE case illustrates how an open spin gap,
ideally amounting to a configuration with holons and
doublons only, is preserved when single electrons are ar-
ranged in localized pairs with up and down spins; the ob-
servation giving a microscopic interpretation to the fact
that superconducting correlations are dominant in such
phase. Finally, combinations of the above possibilities
determines the structures of the two fully gapped phases
(CDW, and BOW).

In order to support our predictions, we present below
a numerical analysis of LRO parameters given by (5), (6)
for the insulating phases of the extended Hubbard model
at half-filling in case of repulsive interactions. In this
case the lattice Hamiltonian reads

H = �t
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+U
X

j

nj"nj# + V
X

j
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where U and V represent the diagonal on-site and neigh-
boring sites contribution of the interaction potential; we
fix the energy scale t = 1. Such model is of fundamen-
tal relevance in condensed matter (see [7, 10, 11] and
references therein) and in the younger field of ultracold
systems. Indeed, recent experiments with Fermi gas of
magnetic atoms [12] or polar molecules [13] allow to quan-
titatively simulate the Hamiltonian (7); both the interac-
tions parameters can be tuned independently, by chang-
ing the direction of the dipoles with external fields, or
by means of the transverse frequency of the laser used to
create the lattice. In particular, we explore at half-filling
the regime of positive values of U and V , for which the
phase diagram amounts to three insulating phases.
The analysis is performed using a DMRG algorithm on
finite size chains with periodic boundary conditions. We
have chosen to consider small system sizes, from L = 12

to 48, with up to 1600 DMRG states and six sweeps in
order to have a good precision on our quantities.
The parity and string operators introduced above are ex-
pected to behave as order parameters for the three in-
sulating phases. In details (see Table I), the asymptotic
value of hO(c)

P i should be the only non-vanishing param-
eter for the MI phase; whereas in the BOW phase also
hO(s)

P i should become different from zero at the MI-BOW
transition. Finally, at the BOW-CDW transition hO(c)

s i

should become finite, while hO(c)
P i becomes vanishing.
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Figure 2: Lower panel: Nonlocal order parameters C
(⌫)
↵ (L/2)

for L ! 1 in the insulating phases of the extended Hub-
bard model (7) at U = 3. The dashed lines locate the critical
points with uncertainty determined from the numerical anal-
ysis shown in the upper panels. Upper-left panel: Ks vs V

at various L and in thermodynamic limit (TDL), the latter
obtained by using a second order polynomial function. Con-
tinuous lines are guides for the eye. Upper-right panel: Kc vs
V at various L. Numerical errors on the finite size data are
of the order 10�6, so the error magnitudes in the TDL turn
out to be smaller than the symbol size.
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totic values have been evaluated at the mid point r =

L/2, upon an extrapolation in the thermodynamic limit
(TDL) L !1. Special care must be payed in separating
the uniform and staggered parts of the parity operator,
since the relation C(c)

P (r) = (�1)
rC(s)

P (r) holds. Fig.2
collects our numerical results, showing a clear evidence
of the expected behavior. Our findings can be compared
with those obtained in [14] by considering the expecta-
tion value of a different nonlocal operator, namely the
exponential position operator zL. Since in bosonization
analysis such value takes the form hcos

p
8�ci, it is differ-

ent from zero for both pinned values of �c allowed in an
insulating phase, hence vanishing only at the conducting
point where the BOW-CDW transition takes place [15].
To enforce our analysis we also computed the Luttinger
constants K⌫ defined as K⌫ ⇠ limq!0 ⇡S⌫(q)/q, with
S⌫(q) =
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kl e
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(hS⌫

k,zS
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TDL. These give precise information regarding the pres-
ence of gaps [9]. In particular the SDW-BOW belongs
to the Berezinskii-Kosterlitz-Thouless universality class
since a spin gap takes place entering in the fully gapped
BOW phase, while maintaining a full rotational spin sym-
metry. The Luttinger theory predicts Ks = 1 in the gap-
less and Ks = 0 in the gapped phase. Numerically it is
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nisms at the basis of the formation of charge and spin
gaps. With respect to the perfect MI of singly occupied
sites, the Mott charge gap at half-filling is maintained by
adding localized pairs formed by a doublon and a holon;
whereas a HI charge gap takes place when the added dou-
blons and holons do alternate into the sublattice they
occupy. The LE case illustrates how an open spin gap,
ideally amounting to a configuration with holons and
doublons only, is preserved when single electrons are ar-
ranged in localized pairs with up and down spins; the ob-
servation giving a microscopic interpretation to the fact
that superconducting correlations are dominant in such
phase. Finally, combinations of the above possibilities
determines the structures of the two fully gapped phases
(CDW, and BOW).

In order to support our predictions, we present below
a numerical analysis of LRO parameters given by (5), (6)
for the insulating phases of the extended Hubbard model
at half-filling in case of repulsive interactions. In this
case the lattice Hamiltonian reads

H = �t
X

j�

(c†j�cj+1,� + H.c.)

+U
X

j

nj"nj# + V
X

j

njnj+1 (7)

where U and V represent the diagonal on-site and neigh-
boring sites contribution of the interaction potential; we
fix the energy scale t = 1. Such model is of fundamen-
tal relevance in condensed matter (see [7, 10, 11] and
references therein) and in the younger field of ultracold
systems. Indeed, recent experiments with Fermi gas of
magnetic atoms [12] or polar molecules [13] allow to quan-
titatively simulate the Hamiltonian (7); both the interac-
tions parameters can be tuned independently, by chang-
ing the direction of the dipoles with external fields, or
by means of the transverse frequency of the laser used to
create the lattice. In particular, we explore at half-filling
the regime of positive values of U and V , for which the
phase diagram amounts to three insulating phases.
The analysis is performed using a DMRG algorithm on
finite size chains with periodic boundary conditions. We
have chosen to consider small system sizes, from L = 12

to 48, with up to 1600 DMRG states and six sweeps in
order to have a good precision on our quantities.
The parity and string operators introduced above are ex-
pected to behave as order parameters for the three in-
sulating phases. In details (see Table I), the asymptotic
value of hO(c)

P i should be the only non-vanishing param-
eter for the MI phase; whereas in the BOW phase also
hO(s)

P i should become different from zero at the MI-BOW
transition. Finally, at the BOW-CDW transition hO(c)

s i

should become finite, while hO(c)
P i becomes vanishing.
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Figure 2: Lower panel: Nonlocal order parameters C
(⌫)
↵ (L/2)

for L ! 1 in the insulating phases of the extended Hub-
bard model (7) at U = 3. The dashed lines locate the critical
points with uncertainty determined from the numerical anal-
ysis shown in the upper panels. Upper-left panel: Ks vs V

at various L and in thermodynamic limit (TDL), the latter
obtained by using a second order polynomial function. Con-
tinuous lines are guides for the eye. Upper-right panel: Kc vs
V at various L. Numerical errors on the finite size data are
of the order 10�6, so the error magnitudes in the TDL turn
out to be smaller than the symbol size.

We have calculated C(⌫)
P (r) = hexp(i⇡

Pj+r
l=j S(⌫)

l )i and
C(⌫)

S (r) = hS(⌫)
j exp(i⇡

Pj+r�1
l=j+1 S(⌫)

l )S(⌫)
j+ri; their asymp-

totic values have been evaluated at the mid point r =

L/2, upon an extrapolation in the thermodynamic limit
(TDL) L !1. Special care must be payed in separating
the uniform and staggered parts of the parity operator,
since the relation C(c)

P (r) = (�1)
rC(s)

P (r) holds. Fig.2
collects our numerical results, showing a clear evidence
of the expected behavior. Our findings can be compared
with those obtained in [14] by considering the expecta-
tion value of a different nonlocal operator, namely the
exponential position operator zL. Since in bosonization
analysis such value takes the form hcos

p
8�ci, it is differ-

ent from zero for both pinned values of �c allowed in an
insulating phase, hence vanishing only at the conducting
point where the BOW-CDW transition takes place [15].
To enforce our analysis we also computed the Luttinger
constants K⌫ defined as K⌫ ⇠ limq!0 ⇡S⌫(q)/q, with
S⌫(q) =

1
L

P
kl e

iq(k�l)
(hS⌫

k,zS
⌫
l,zi � hS

⌫
k,zihS

⌫
l,zi) in the

TDL. These give precise information regarding the pres-
ence of gaps [9]. In particular the SDW-BOW belongs
to the Berezinskii-Kosterlitz-Thouless universality class
since a spin gap takes place entering in the fully gapped
BOW phase, while maintaining a full rotational spin sym-
metry. The Luttinger theory predicts Ks = 1 in the gap-
less and Ks = 0 in the gapped phase. Numerically it is
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hard task to get exactly these values since in the gapless
phase logarithmic corrections affect the results, while in
the gapped region really large system sizes are necessary
in order to get Ks = 0. It is customary to locate the tran-
sition point where Ks takes values smaller than 1 in the
TDL. As shown in Fig.2, the transition point obtained
in this way is in good agreement with the one predicted
by O(s)

P . The BOW-CDW transition requires particular
care since its nature can be either second or first order,
depending on the value of U . Here we consider the re-
gion U < 4 where the transition is known to be second
order. As shown in [11], while the two phases are fully
gapped, due to the competition between the onsite and
nearest-neighbor interactions the charge gap is minimal
at the transition point, where it takes the value 0. Hence
the theory predicts a Luttinger parameter Kc 6= 0 only
at the gapless point and Kc = 0 elsewhere. In Fig.2 we
see that Kc develops a peak slightly dependent on the
system size, where we locate the gapless point. Extrap-
olations in the TDL confirm the transition in the order
parameters hO(c)

P i and hO(c)
S i.

The scenario of Table I is completed by identifying
the HI phase, where only O(c)

S is predicted to have fi-
nite LRO. The ground state phase diagram of the model
(7) does not show such a phase [16]. Nevertheless, in
Refs.[7, 17] a charge gapped phase corresponding to the
pinned value �c = ⇡/

p
8 was identified by adding to the

Hamiltonian (7) further correlated hopping terms of the
form X

P
hiji�(c†i�cj� +H.c.)(ni�̄�nj�̄)

2 for an appropri-
ate range of values of U and V . Such phase was denoted
as bond-spin-density wave (BSDW), albeit the spin order
cannot show LRO due to the unbroken SU(2) symmetry.
On the basis of our analysis, since �s is unpinned, we
expect such a phase to exhibit the searched HI order.
We have numerically estimated the nonlocal correlators
C(⌫)

↵ (L/2) at various L in a single point inside the phase
(X = 0.25, U = 1, V = 0.5). The results shown in
Fig.3 demonstrate that, within the numerical errors, in
the asymptotic limit (and in the TDL) the only operator
that supports LRO is O(c)

S , as expected.
Further nonlocal orders may appear in fermionic sys-

tems as a consequence of reduced symmetries. For in-
stance, relaxing the SU(2) spin symmetry to U(1)⇥Z2,
may allow for the appearance of the value �s = ⇡/

p
8 in

Eq.(1), giving rise to Haldane-like correlations in the z-
component of the spin. Further breaking of the two U(1)
symmetries related to particle number conservation and
spin rotation in the xy plane, open the way to a pinning of
the dual fields ⇥c and ⇥s, respectively. As a consequence
the correlators related to the operators cos(

p
2⇥⌫) and

sin(
p

2⇥⌫) are also finite, thus generating a transverse
Haldane-type order, similarly to what happens in spin-1
chains [18] or in the bosonic case [19, 20]. This simple ar-
gument suggests that, in order to observe a Haldane order
in all directions in fermionic systems, one must extend
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Figure 3: Nonlocal LRO in the Haldane insulator phase, at
U = 1, V = 0.5 for the model (7) plus a correlated hopping
term with X = 0.25 (see text). As predicted from Table I all
correlation functions C

(⌫)
↵ (L) vanish asymptotically except for

C
(c)
S . Continuous lines represent nonlinear fits for estimating

the asymptotic limit.

interacting models like Eq.(7) by including pair creation
terms of the kind

P
j�(c†j�c†j+1,�� + H.c.). In addition,

the partial particle-hole transformation cj# ! (�1)
jc†j#

(that changes U ! �U in the ordinary Hubbard model)
establishes a link between spin and charge sectors [3].
Such analyses represents an intriguing topic per se that
goes beyond the scopes of the present work and will be
addressed elsewhere.

In this Letter, we have proved that nonlocal LRO un-
derlies all the gapped phases of a large class of lattice
model Hamiltonians, describing 1D correlated fermionic
systems. Our results give precise indications for detecting
LRO, outlining the appropriate two-points nonlocal cor-
relators to seek for in experiments with trapped dipolar
atoms [21]. These are directly accessible to experimen-
tal detection in optical lattices via single site resolution
imaging [5, 22].

The generality of the analysis here described suggests
the presence of a universal mechanism extendable to any
system in 1D, stating the presence of appropriate LRO
in every phase that shows a gap in the excitation spec-
trum. This property appears to be restricted to fermions,
and not extendable to spin models, where a nonlocal or-
der may become local, for instance after a Jordan-Wigner
transformation. A related interesting topic still under de-
bate concerns the relationship of non locality with topo-
logical phases [23], duality [24], and long distance entan-
glement [25].

The possible presence of the discussed types of nonlo-
cal orders in higher dimension could be addressed with
the help of the cartoons in Fig.1. In principle, the parity
LRO can be extended from strings to membranes in ar-
bitrary dimension. At variance, O⌫

S seems more difficult

HI phase
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in terms of their gaps, field pinning values, and NLO
parameters. We emphasize that the well known phase diagram
is purely obtained from the RG analysis of the asymptotic
behavior of the sine-Gordon model, without invoking any
topological argument. In this section we shall now provide
the topological characterization of the phases. As mentioned
above, topological features may emerge under appropriate
symmetry protection.

We start by recalling that the tenfold way classifica-
tion of distinct topological phases, proposed by Altland
and Zirnbauer [11,12] for noninteracting gapped systems
described by a bilinear fermionic Hamiltonian with some
symmetry, becomes unstable in the presence of two-body
interaction [32,33]. The role of instability is the reduction of
the noninteracting classification to a finite number of phases
in each class, which can be identified depending on the group
G of symmetries of the Hamiltonian and of the symmetry
group G′ ⊆ G of the ground state. Such phases are distinct
under the symmetry protection of G′ as long as they cannot
be reduced to the trivial one by any adiabatic transformation
which preserves G′. Given the symmetry groups of both the
Hamiltonian and its ground state, the SPT phase classification
for interacting systems holds in the strong coupling limit,
providing a general classification of the distinct phases of
these systems. In particular, for 1D systems an extremely
powerful SPT phase classification method is the so called
group cohomology theory [20], based on the inspection of
the local projective representations of G′ on the low-energy
edge states. This classification, which is also closely related
to the entanglement properties on the two ending sites of a
chain bipartition [19,34], predicts the existence of phases that
are nontrivial from the topological point of view, the most
striking feature being the existence of degenerate protected
edge modes. Distinct phases can be recognized also in the
absence of topological properties, and are known as trivial
SPT phases.

Our strategy is based on the observation that the non-
interacting fermionic case may as well describe a gapless
system with no topological properties, at variance with the
noninteracting topological superconductor/insulator. In this
case it is the interaction which could drive the system to open
gaps. This happens for instance for the sine-Gordon model
HSG, whose noninteracting limit describes free massless Dirac
fermions [2,3]. Hence we first exploit the symmetries of HSG

to prove that all the massive phases are distinct under symmetry
protection. Then, we identify the presence of degenerate
symmetry-protected edge modes in the phases characterized by
nonvanishing Haldane NLO. Finally, we apply the group coho-
mology theory to classify the SPT phases in the strong coupling
limit, establishing a one-to-one correspondence between the
gapped phases identified by RG classification (left-hand side
of Table I), and their topological classification obtained by
means of group cohomology. These results, summarized on
the right-hand side of Table I, enable us to distinguish on
general grounds topologically trivial and nontrival phases in
the RG classification, and in turn to associate a NLO parameter
to each of the topological phases of group cohomology
classification (GCC). Here below the detailed analysis is
presented.

A. Symmetries

The HamiltonianHSG has both time-reversal T and particle-
hole P discrete symmetries. Indeed, since in real space
T ψασ T − 1 = σψᾱσ̄ and Pψασ P − 1 = ψ†

ασ , one can derive
from the bosonized expression of the fermionic fields given
above the action of both symmetries on the bosonic fields
φν(x), θν(x) as

T φνT
− 1 = δνφν, T θνT

− 1 = − δνθν, (7)

PφνP
− 1 = − φν, P θνP

− 1 = − θν, (8)

with δc = 1, δs = − 1. From the above relations it is easily
verified that T and P are symmetries of both Hν(x)’s.

It must be stressed that, in fact, at variance with the
lattice model which could possibly break these symmetries,
their presence is a feature of the noninteracting spectrum
linearized around the Fermi points in the continuum limit,
namely vF

∑
k(nkRσ − nkLσ ). Indeed, the action of T and P

on right and left movers reads T : ckασ → σc− kᾱσ̄ , and P :
ckασ → c

†
− kασ , with σ̄ = − σ (P 2 = 1 = − T 2, [T ,P ] = 0).

Hence our considerations apply to a larger class of models
with respect to those which exhibit these symmetries already
on the lattice Hamiltonian. Notice that for specific cases, such
as, e.g., the Hubbard model itself, the invariance under T and
P turns out to be a feature of the full spectrum, beyond the
low-energy limit, with T: cjσ → σcj σ̄ and P: cjσ → (− )j c†jσ ,
the symmetries holding at zero magnetization/half filling,
respectively. However, still within the class of Hubbard-like
microscopic Hamiltonians, important cases such as those with
correlated and/or next nearest neighbor hopping, and those
with three- and four-body terms, do not exhibit P symmetry.
Nevertheless, the symmetries arise at low energies in the
corresponding bosonized Hamiltonian HSG [2]. Notice that
P symmetry could hold also when right and left movers
have different linearized dispersion relations around the Fermi
points, as it may happen for instance in the presence of a
magnetic field.

Apart from the above discrete Z2 symmetries, HSG turns
out to have a U(1) × U(1) continuous symmetry under θν →
θν + const. Indeed both total charge and total z-component of
spin, namely Sz

ν(L)—where L is the length of the 1D system
and Sz

ν(x) is defined in Eq. (4)—are conserved quantities. For
the underlying one-dimensional lattice models these quantities
read Sz

ν

.=
∑

j sνj , where sνj have been defined in terms of
on-site fermionic operators in the previous section. Notice
that the global symmetry can be realized locally, a fact which
was both crucial in the construction of NLO operators in the
previous section, and will be important in the implementation
of the group cohomology classification in this section.

In fact, in many cases the lattice Hamiltonians also have full
rotational SU(2) symmetry, which implies on the bosonized
model that Ks and ms cannot vary independently: in the weak
coupling limit, a gapped spin phase may appear only for
ms < 0. This is the case for instance for the Hubbard model.
For the sake of generality, we release such constraint so that
the spin rotational symmetry reduces from SU(2) to U(1),
in principle allowing the dynamical opening of a spin gap
also for ms > 0. This may happen in the presence of Rashba

245108-4
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type spin-orbit coupling [9,10,30], which arises, e.g., in InAs
wires [35] and dots [36], and can also be mimicked in optical
lattices by dephasing two one-dimensional lattices of spin 1/2
atoms in a transverse magnetic field [37].

Obviously, both charge and spin fermion parity, !ν =
(−)2Sz

ν , are also preserved.

B. Symmetry protection and edge modes

Given the symmetries of the Hamiltonian, we now argue
whether these are capable of protecting the robustness of
the different phases with respect to symmetry preserving
transformations. In fact, it was observed [38] that in the case
of fermionic systems phases characterized by Haldane NLO
may become fragile (i.e., not distinct from the phase with
parity NLO) under appropriate choice of interaction. Such
behavior originates from the presence—at any finite value
of interaction—of quantum fluctuations which may end up
in adiabatically connecting the two phases [39]. This is not
the case here. Indeed, the assumed spin-charge separation
prevents by definition the possibility that quantum fluctuations
in one (spin or charge) channel connect phases which appear
distinct in the other channel. Moreover, in each channel the
interaction, when relevant, induces the opening of a gap in
two distinct ways, due to the pinning of the corresponding
bosonic field

√
8πφν to one of the two values 0,π . Hence the

phases will remain distinct as far as it is not possible to change
adiabatically one value into the other by a transformation.
This is guaranteed by symmetry protection, since terms
proportional to

sin(
√

8πφν), (9)

which would force the fields to pin to intermediate values,
are not allowed. In particular, from Eqs. (7) and (8) we see
that P symmetry prevents such terms in the charge channel,
whereas both P and T symmetries protect the distinct trivial
and nontrivial phases in the spin channel. We thus realize that
the phases reported on the left-hand side of Table I are actually
distinct SPT phases protected by T and/or P symmetries.

Having shown that the phases obtained within RG analysis
are robust, we now discuss whether some of them host pro-
tected edge modes. Upon generalizing the argument proposed
in Refs. [9,10], one sees that, when the bosonic field in ν
channel is pinned to the value ±

√
π
8 , a kink sν of fractional

charge/spin accumulates at the interface between such phase
and the trivial one (φν = 0). Explicitly, upon defining sν(x) =
lima→0+ [Sz

ν(x) − Sz
ν(x − a)], with Sz

ν(x) given by (4), one
obtains

sν(x) = lim
a→0+

1√
2π

[φν(x) − φν(x − a)] = ±1
4
. (10)

The latter identity holds at the edge between the two phases,
where it is the hallmark of the presence of half the charge/spin
of an electron. When the two configurations with different
sν are degenerate in energy—as for instance may happen
for lattice models at half filling and zero magnetization—
two degenerate protected fractionalized edge modes are thus
realized, corresponding to φν = ±

√
π
8 .

The above results are summarized in the fourth column
of Table I, where the possible symmetries protecting each of

the phases with fractionalized edge modes are indicated. The
remaining phases are denoted as trivial.

C. Group cohomology classification

The one-dimensional symmetry-protected RG phases iden-
tified in the two previous subsections—with and without
fractionalized edge modes—can be put in one to one cor-
respondence with the SPT phases classification one would
obtain in the framework of group cohomology [18,20–22]. In
order to derive the latter, one should inspect the projective
representations of the symmetry group G of the Hamiltonian
HSG on its degenerate edge states. As discussed in Sec. IV A,
each ν = c,s channel of the Hamiltonian is characterized by a
continuous U(1) symmetry, preserving the total charge (ν = c)
and spin-z component (ν = s) operators. An element of the
U(1) symmetry group can be rewritten as Uν(β) = eiβν2Sz

ν (L)

with βν ∈ [0,2π ). Furthermore, the Hamiltonian of each
channel also exhibits two discrete symmetries, T and P. From
the right hand side of Table I, however, we notice that while
P protects all phases, T guarantees protection within the spin
channel only. We thus focus on P as discrete symmetry. The
symmetry group in each channel is then G ≡ U(1) ! Z2, where
the semidirect product is due to the fact that Sz

ν(L) and P do
not commute. Indeed from Eqs. (4) and (8) one has

P Uν(β) = Uν(−β) P. (11)

To apply the group cohomology classification, a further
important requirement on G is that its elements should be
“local symmetries,” meaning that the generators have a local
representation at each x. For P this is ensured by the fact that
its action on the fields φν , given in Eq. (8), is in fact local.
As for Uν(β), we first notice that in the lattice representation
it would read Uν(β) =

∏
j Uν(β,j ) with Uν(β,j ) = ei2βsνj .

In the continuum model, where x = ja and sνj → sν(x)
[see right equality in Eq. (10)], one has Uν(β,x) = eiβ2sν (x).
In particular, at the edge, sν = n

2 for φν = 2n
√

π/8, and
sν = (2m + 1)/4 for φν = (2m + 1)

√
π/8, with n,m ∈ Z. We

can now inspect the projective representations M of U(1) ! Z2
on the two corresponding degenerate edge (E) states [22,40].
Explicitly, dropping the subscript ν and denoting UE(β) ≡
U (β,x = E), in each channel we may choose

M[UE(β)] = ei β
2 n

(
1 0
0 ei β

2 m

)
(12)

and

M(P ) =
(

0 1
1 0

)
, (13)

with [M(P )]2 = I2. Other choices are also possible. When
inserting the above representation in Eq. (11), the latter
becomes

M(P )M[UE(β)] = eiβ(n+ m
2 )M[UE(−β)]M(P ), (14)

which differs from (11) by a phase factor. Only for even m
such phase factor can be gauged away upon redefinition of
the overall phase in Eq. (12), M̃[UE(β)] = ei β

2 κM[UE(β)],
with κ ∈ Z. Thus, depending on whether m is even or
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type spin-orbit coupling [9,10,30], which arises, e.g., in InAs
wires [35] and dots [36], and can also be mimicked in optical
lattices by dephasing two one-dimensional lattices of spin 1/2
atoms in a transverse magnetic field [37].

Obviously, both charge and spin fermion parity, !ν =
(−)2Sz

ν , are also preserved.

B. Symmetry protection and edge modes

Given the symmetries of the Hamiltonian, we now argue
whether these are capable of protecting the robustness of
the different phases with respect to symmetry preserving
transformations. In fact, it was observed [38] that in the case
of fermionic systems phases characterized by Haldane NLO
may become fragile (i.e., not distinct from the phase with
parity NLO) under appropriate choice of interaction. Such
behavior originates from the presence—at any finite value
of interaction—of quantum fluctuations which may end up
in adiabatically connecting the two phases [39]. This is not
the case here. Indeed, the assumed spin-charge separation
prevents by definition the possibility that quantum fluctuations
in one (spin or charge) channel connect phases which appear
distinct in the other channel. Moreover, in each channel the
interaction, when relevant, induces the opening of a gap in
two distinct ways, due to the pinning of the corresponding
bosonic field

√
8πφν to one of the two values 0,π . Hence the

phases will remain distinct as far as it is not possible to change
adiabatically one value into the other by a transformation.
This is guaranteed by symmetry protection, since terms
proportional to

sin(
√

8πφν), (9)

which would force the fields to pin to intermediate values,
are not allowed. In particular, from Eqs. (7) and (8) we see
that P symmetry prevents such terms in the charge channel,
whereas both P and T symmetries protect the distinct trivial
and nontrivial phases in the spin channel. We thus realize that
the phases reported on the left-hand side of Table I are actually
distinct SPT phases protected by T and/or P symmetries.

Having shown that the phases obtained within RG analysis
are robust, we now discuss whether some of them host pro-
tected edge modes. Upon generalizing the argument proposed
in Refs. [9,10], one sees that, when the bosonic field in ν
channel is pinned to the value ±

√
π
8 , a kink sν of fractional

charge/spin accumulates at the interface between such phase
and the trivial one (φν = 0). Explicitly, upon defining sν(x) =
lima→0+ [Sz

ν(x) − Sz
ν(x − a)], with Sz

ν(x) given by (4), one
obtains

sν(x) = lim
a→0+

1√
2π

[φν(x) − φν(x − a)] = ±1
4
. (10)

The latter identity holds at the edge between the two phases,
where it is the hallmark of the presence of half the charge/spin
of an electron. When the two configurations with different
sν are degenerate in energy—as for instance may happen
for lattice models at half filling and zero magnetization—
two degenerate protected fractionalized edge modes are thus
realized, corresponding to φν = ±

√
π
8 .

The above results are summarized in the fourth column
of Table I, where the possible symmetries protecting each of

the phases with fractionalized edge modes are indicated. The
remaining phases are denoted as trivial.

C. Group cohomology classification

The one-dimensional symmetry-protected RG phases iden-
tified in the two previous subsections—with and without
fractionalized edge modes—can be put in one to one cor-
respondence with the SPT phases classification one would
obtain in the framework of group cohomology [18,20–22]. In
order to derive the latter, one should inspect the projective
representations of the symmetry group G of the Hamiltonian
HSG on its degenerate edge states. As discussed in Sec. IV A,
each ν = c,s channel of the Hamiltonian is characterized by a
continuous U(1) symmetry, preserving the total charge (ν = c)
and spin-z component (ν = s) operators. An element of the
U(1) symmetry group can be rewritten as Uν(β) = eiβν2Sz

ν (L)

with βν ∈ [0,2π ). Furthermore, the Hamiltonian of each
channel also exhibits two discrete symmetries, T and P. From
the right hand side of Table I, however, we notice that while
P protects all phases, T guarantees protection within the spin
channel only. We thus focus on P as discrete symmetry. The
symmetry group in each channel is then G ≡ U(1) ! Z2, where
the semidirect product is due to the fact that Sz

ν(L) and P do
not commute. Indeed from Eqs. (4) and (8) one has

P Uν(β) = Uν(−β) P. (11)

To apply the group cohomology classification, a further
important requirement on G is that its elements should be
“local symmetries,” meaning that the generators have a local
representation at each x. For P this is ensured by the fact that
its action on the fields φν , given in Eq. (8), is in fact local.
As for Uν(β), we first notice that in the lattice representation
it would read Uν(β) =

∏
j Uν(β,j ) with Uν(β,j ) = ei2βsνj .

In the continuum model, where x = ja and sνj → sν(x)
[see right equality in Eq. (10)], one has Uν(β,x) = eiβ2sν (x).
In particular, at the edge, sν = n

2 for φν = 2n
√

π/8, and
sν = (2m + 1)/4 for φν = (2m + 1)

√
π/8, with n,m ∈ Z. We

can now inspect the projective representations M of U(1) ! Z2
on the two corresponding degenerate edge (E) states [22,40].
Explicitly, dropping the subscript ν and denoting UE(β) ≡
U (β,x = E), in each channel we may choose

M[UE(β)] = ei β
2 n

(
1 0
0 ei β

2 m

)
(12)

and

M(P ) =
(

0 1
1 0

)
, (13)

with [M(P )]2 = I2. Other choices are also possible. When
inserting the above representation in Eq. (11), the latter
becomes

M(P )M[UE(β)] = eiβ(n+ m
2 )M[UE(−β)]M(P ), (14)

which differs from (11) by a phase factor. Only for even m
such phase factor can be gauged away upon redefinition of
the overall phase in Eq. (12), M̃[UE(β)] = ei β

2 κM[UE(β)],
with κ ∈ Z. Thus, depending on whether m is even or

245108-5

�⌫ = 2
p
⇡�⌫

p
2�⌫ = ±⇡

2



• in each gapped phase     -parity on the chain of length l can be 
factorized in its left and right components: 

• in the Haldane phase                         these components have 
anomalous commutation relation with P: 

• whereas for                       

⌫

X = L,R

PP⌫
X = �P⌫

XP

P
⌫ .
= O

⌫
P (l) = ei

p
2⇡[�⌫(l)��⌫(0)] ⌘ P

⌫
LP

⌫
R

�⌫ = 0

PP⌫
X = P⌫

XP

p
2�⌫ = ±⇡

2



Group cohomology classification

• -1 and +1 denote the non trivial and trivial phases respectively 

• anomalous commutation relations at the edge <-> 2 distinct projective 
representations of the symmetry group G 

• semidirect product denotes the nontrivial commutation relation 

• the two projective representations are distinct elements (under symmetry 
protection) of the second cohomology group->phases are distinct

PP⌫
X = �⌫P⌫

XP , �⌫ = ±1

SYMMETRY-PROTECTED TOPOLOGICAL PHASES OF ONE- . . . PHYSICAL REVIEW B 95, 245108 (2017)

type spin-orbit coupling [9,10,30], which arises, e.g., in InAs
wires [35] and dots [36], and can also be mimicked in optical
lattices by dephasing two one-dimensional lattices of spin 1/2
atoms in a transverse magnetic field [37].

Obviously, both charge and spin fermion parity, !ν =
(−)2Sz

ν , are also preserved.

B. Symmetry protection and edge modes

Given the symmetries of the Hamiltonian, we now argue
whether these are capable of protecting the robustness of
the different phases with respect to symmetry preserving
transformations. In fact, it was observed [38] that in the case
of fermionic systems phases characterized by Haldane NLO
may become fragile (i.e., not distinct from the phase with
parity NLO) under appropriate choice of interaction. Such
behavior originates from the presence—at any finite value
of interaction—of quantum fluctuations which may end up
in adiabatically connecting the two phases [39]. This is not
the case here. Indeed, the assumed spin-charge separation
prevents by definition the possibility that quantum fluctuations
in one (spin or charge) channel connect phases which appear
distinct in the other channel. Moreover, in each channel the
interaction, when relevant, induces the opening of a gap in
two distinct ways, due to the pinning of the corresponding
bosonic field

√
8πφν to one of the two values 0,π . Hence the

phases will remain distinct as far as it is not possible to change
adiabatically one value into the other by a transformation.
This is guaranteed by symmetry protection, since terms
proportional to

sin(
√

8πφν), (9)

which would force the fields to pin to intermediate values,
are not allowed. In particular, from Eqs. (7) and (8) we see
that P symmetry prevents such terms in the charge channel,
whereas both P and T symmetries protect the distinct trivial
and nontrivial phases in the spin channel. We thus realize that
the phases reported on the left-hand side of Table I are actually
distinct SPT phases protected by T and/or P symmetries.

Having shown that the phases obtained within RG analysis
are robust, we now discuss whether some of them host pro-
tected edge modes. Upon generalizing the argument proposed
in Refs. [9,10], one sees that, when the bosonic field in ν
channel is pinned to the value ±

√
π
8 , a kink sν of fractional

charge/spin accumulates at the interface between such phase
and the trivial one (φν = 0). Explicitly, upon defining sν(x) =
lima→0+ [Sz

ν(x) − Sz
ν(x − a)], with Sz

ν(x) given by (4), one
obtains

sν(x) = lim
a→0+

1√
2π

[φν(x) − φν(x − a)] = ±1
4
. (10)

The latter identity holds at the edge between the two phases,
where it is the hallmark of the presence of half the charge/spin
of an electron. When the two configurations with different
sν are degenerate in energy—as for instance may happen
for lattice models at half filling and zero magnetization—
two degenerate protected fractionalized edge modes are thus
realized, corresponding to φν = ±

√
π
8 .

The above results are summarized in the fourth column
of Table I, where the possible symmetries protecting each of

the phases with fractionalized edge modes are indicated. The
remaining phases are denoted as trivial.

C. Group cohomology classification

The one-dimensional symmetry-protected RG phases iden-
tified in the two previous subsections—with and without
fractionalized edge modes—can be put in one to one cor-
respondence with the SPT phases classification one would
obtain in the framework of group cohomology [18,20–22]. In
order to derive the latter, one should inspect the projective
representations of the symmetry group G of the Hamiltonian
HSG on its degenerate edge states. As discussed in Sec. IV A,
each ν = c,s channel of the Hamiltonian is characterized by a
continuous U(1) symmetry, preserving the total charge (ν = c)
and spin-z component (ν = s) operators. An element of the
U(1) symmetry group can be rewritten as Uν(β) = eiβν2Sz

ν (L)

with βν ∈ [0,2π ). Furthermore, the Hamiltonian of each
channel also exhibits two discrete symmetries, T and P. From
the right hand side of Table I, however, we notice that while
P protects all phases, T guarantees protection within the spin
channel only. We thus focus on P as discrete symmetry. The
symmetry group in each channel is then G ≡ U(1) ! Z2, where
the semidirect product is due to the fact that Sz

ν(L) and P do
not commute. Indeed from Eqs. (4) and (8) one has

P Uν(β) = Uν(−β) P. (11)

To apply the group cohomology classification, a further
important requirement on G is that its elements should be
“local symmetries,” meaning that the generators have a local
representation at each x. For P this is ensured by the fact that
its action on the fields φν , given in Eq. (8), is in fact local.
As for Uν(β), we first notice that in the lattice representation
it would read Uν(β) =

∏
j Uν(β,j ) with Uν(β,j ) = ei2βsνj .

In the continuum model, where x = ja and sνj → sν(x)
[see right equality in Eq. (10)], one has Uν(β,x) = eiβ2sν (x).
In particular, at the edge, sν = n

2 for φν = 2n
√

π/8, and
sν = (2m + 1)/4 for φν = (2m + 1)

√
π/8, with n,m ∈ Z. We

can now inspect the projective representations M of U(1) ! Z2
on the two corresponding degenerate edge (E) states [22,40].
Explicitly, dropping the subscript ν and denoting UE(β) ≡
U (β,x = E), in each channel we may choose

M[UE(β)] = ei β
2 n

(
1 0
0 ei β

2 m

)
(12)

and

M(P ) =
(

0 1
1 0

)
, (13)

with [M(P )]2 = I2. Other choices are also possible. When
inserting the above representation in Eq. (11), the latter
becomes

M(P )M[UE(β)] = eiβ(n+ m
2 )M[UE(−β)]M(P ), (14)

which differs from (11) by a phase factor. Only for even m
such phase factor can be gauged away upon redefinition of
the overall phase in Eq. (12), M̃[UE(β)] = ei β

2 κM[UE(β)],
with κ ∈ Z. Thus, depending on whether m is even or
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B. Symmetry protection and edge modes
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the different phases with respect to symmetry preserving
transformations. In fact, it was observed [38] that in the case
of fermionic systems phases characterized by Haldane NLO
may become fragile (i.e., not distinct from the phase with
parity NLO) under appropriate choice of interaction. Such
behavior originates from the presence—at any finite value
of interaction—of quantum fluctuations which may end up
in adiabatically connecting the two phases [39]. This is not
the case here. Indeed, the assumed spin-charge separation
prevents by definition the possibility that quantum fluctuations
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interaction, when relevant, induces the opening of a gap in
two distinct ways, due to the pinning of the corresponding
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which would force the fields to pin to intermediate values,
are not allowed. In particular, from Eqs. (7) and (8) we see
that P symmetry prevents such terms in the charge channel,
whereas both P and T symmetries protect the distinct trivial
and nontrivial phases in the spin channel. We thus realize that
the phases reported on the left-hand side of Table I are actually
distinct SPT phases protected by T and/or P symmetries.

Having shown that the phases obtained within RG analysis
are robust, we now discuss whether some of them host pro-
tected edge modes. Upon generalizing the argument proposed
in Refs. [9,10], one sees that, when the bosonic field in ν
channel is pinned to the value ±
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8 , a kink sν of fractional
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obtains

sν(x) = lim
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The latter identity holds at the edge between the two phases,
where it is the hallmark of the presence of half the charge/spin
of an electron. When the two configurations with different
sν are degenerate in energy—as for instance may happen
for lattice models at half filling and zero magnetization—
two degenerate protected fractionalized edge modes are thus
realized, corresponding to φν = ±

√
π
8 .

The above results are summarized in the fourth column
of Table I, where the possible symmetries protecting each of

the phases with fractionalized edge modes are indicated. The
remaining phases are denoted as trivial.

C. Group cohomology classification

The one-dimensional symmetry-protected RG phases iden-
tified in the two previous subsections—with and without
fractionalized edge modes—can be put in one to one cor-
respondence with the SPT phases classification one would
obtain in the framework of group cohomology [18,20–22]. In
order to derive the latter, one should inspect the projective
representations of the symmetry group G of the Hamiltonian
HSG on its degenerate edge states. As discussed in Sec. IV A,
each ν = c,s channel of the Hamiltonian is characterized by a
continuous U(1) symmetry, preserving the total charge (ν = c)
and spin-z component (ν = s) operators. An element of the
U(1) symmetry group can be rewritten as Uν(β) = eiβν2Sz

ν (L)

with βν ∈ [0,2π ). Furthermore, the Hamiltonian of each
channel also exhibits two discrete symmetries, T and P. From
the right hand side of Table I, however, we notice that while
P protects all phases, T guarantees protection within the spin
channel only. We thus focus on P as discrete symmetry. The
symmetry group in each channel is then G ≡ U(1) ! Z2, where
the semidirect product is due to the fact that Sz

ν(L) and P do
not commute. Indeed from Eqs. (4) and (8) one has

P Uν(β) = Uν(−β) P. (11)

To apply the group cohomology classification, a further
important requirement on G is that its elements should be
“local symmetries,” meaning that the generators have a local
representation at each x. For P this is ensured by the fact that
its action on the fields φν , given in Eq. (8), is in fact local.
As for Uν(β), we first notice that in the lattice representation
it would read Uν(β) =

∏
j Uν(β,j ) with Uν(β,j ) = ei2βsνj .

In the continuum model, where x = ja and sνj → sν(x)
[see right equality in Eq. (10)], one has Uν(β,x) = eiβ2sν (x).
In particular, at the edge, sν = n

2 for φν = 2n
√

π/8, and
sν = (2m + 1)/4 for φν = (2m + 1)

√
π/8, with n,m ∈ Z. We

can now inspect the projective representations M of U(1) ! Z2
on the two corresponding degenerate edge (E) states [22,40].
Explicitly, dropping the subscript ν and denoting UE(β) ≡
U (β,x = E), in each channel we may choose

M[UE(β)] = ei β
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(
1 0
0 ei β
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)
(12)

and

M(P ) =
(

0 1
1 0

)
, (13)

with [M(P )]2 = I2. Other choices are also possible. When
inserting the above representation in Eq. (11), the latter
becomes

M(P )M[UE(β)] = eiβ(n+ m
2 )M[UE(−β)]M(P ), (14)

which differs from (11) by a phase factor. Only for even m
such phase factor can be gauged away upon redefinition of
the overall phase in Eq. (12), M̃[UE(β)] = ei β

2 κM[UE(β)],
with κ ∈ Z. Thus, depending on whether m is even or
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TABLE I. Left-hand side: classification of massive phases for
HSG. The first two columns denote the pinning values for the charge
(c) and spin (s) fields φν(x) (ν = c,s), respectively, with u staying for
“unpinned,” while the third column denotes the nonvanishing NLO
parameters Oν

A. Right-hand side: the topological characterization
of the phases obtained in Sec. IV. In the fourth column the RG
phase without topological features are denoted by “triv,” whereas
we report the type of symmetry (T or P) protecting the RG phases
with degenerate edge modes. The last column describes the trivial
(λν = +1) and nontrivial (λν = −1) SPT phases obtained within the
group cohomology classification (GCC).

√
8πφc

√
8πφs NLO SP GCC

LE u 0 Os
P triv λs = 1

MI 0 u Oc
P triv λc = 1

HLE u ±π Oc
S P,T λs = −1

HI ±π u Oc
S P λc = −1

BOW 0 0 Oc
P , Os

P triv λs = 1 = λc

CDW ±π 0 Oc
S ,Os

P P λs = 1 = −λc

SDW 0 ±π Oc
P , Os

S P,T λc = 1 = −λs

BSDW ±π ±π Oc
S , Os

S P λs = −1 = λc

being the HLE phase: within bosonization, this is reached for
instance by adding a further spin-orbit coupling term [9,10,30]
(see also Sec. IV A).

Nonlocal order parameters. The standard way of charac-
terizing the physical features of different ordered phases is to
analyze the asymptotic behavior of correlation functions of
appropriate local operators. In 1D, they asymptotically decay
to zero with a power or exponential law: the “order” of the
phase is described by the correlation function which decays
slower. In the case of fully gapped phases with spontaneously
broken symmetries, one of the correlation functions does
remain finite, thus capturing the long range order of the phase
through a local operator, whose expectation value can be
regarded as an order parameter.

Recently it has been realized [7,8,31] that, even when none
of the Hamiltonian symmetries is broken (as in a partly gapped
phase), order parameters can be identified with appropriate
operators, the average value of which is nonzero in these
phases and vanishes at the phase transition. Importantly, such
operators have to be nonlocal in the lattice representation. They
can be built by means of the on site charge and spin operators
sνj as scj = (nj↑ + nj↓ − 1)/2 and ssj = (nj↑ − nj↓)/2, with
njσ

.= c
†
jσ cjσ being the fermion number operator at site j with

spin σ. The NLO operators can now be expressed as Oν
P (r) =

exp[2π i
∑r−1

j=1 sνj ], and Oν
S (r) = exp[2π i

∑r−1
j=1 sνj ](2sνr ). In

the continuum limit, the argument of the exponential acquires
the form

Sz
ν(r) =

∫ r

dx ρν(x), (4)

where the densities ρν(x) are related to the bosonic fields
through ρν(x) = ∂xφν/

√
2π . Then Oν

A(r), with A = P,S
obtained respectively as the symmetric and antisymmetric
form of exp[i2πSz

ν(r)] [31]. Explicitly,

Oν
P ∼ cos(

√
2πφν), Oν

S ∼ sin(
√

2πφν), (5)

generating the four asymptotic correlation functions

Cν
A = lim

r→∞

〈
Oν†

A (0) Oν
A(r)

〉
. (6)

In each channel, these are also known as parity and Haldane
string correlators, respectively. They all vanish when the fields
are unpinned (LL phase). However, when at least one of the
fields φν is pinned to one of the two values reported in the
left-hand side of Table I, in each channel one of the correlation
functions Cν

P ∝ ⟨cos
√

2πφν⟩2, Cν
S ∝ ⟨sin

√
2πφν⟩2 remains

finite [7] identifying a long-range NLO, whereas the other
one still vanishes. The average values of Oν

A (A = P,S) are
thus identified as order parameters in the ν channel for the
two possible gapped phases. In this way the bosonization
description is able to associate appropriate NLO parameters
to each partly or fully gapped phase, as emphasized in the
last column of the left-hand side of Table I. In particular, in
the Table we denoted the phases characterized by only one
nonvanishing Haldane string correlator, namely A = S in the
ν channel, as HLE (ν = s) and HI (ν = c), respectively.

The discrete lattice expressions for sνj , when inserted into
the nonlocal operators Oν

A, clarify the different microscopic
arrangements within the two partly gapped phases which may
take place in each channel. In fact, the charge degrees of
freedom may be identified with the local configurations with
scj ̸= 0, i.e., empty sites (holons) and doubly occupied sites
(doublons). Whereas the spin degrees of freedom are those
configurations for which ssj ̸= 0, i.e., sites occupied by a single
fermion with either up or down spin. The finiteness of the
Haldane string correlator (6) implies that for ν = c in the HI
phase holons and doublons are alternated (i.e., between two
successive doublons there is always a holon) and intercalated
by an arbitrary number of single fermions. In contrast, for
ν = s the Haldane LE liquid phase is metallic: the alternated
(up and down) single spins dilute in the background of holons
and doublons. In the latter case the results here complement
and generalize the findings of Refs. [9,10], where it was shown
that the addition of spin-orbit coupling to a metal may generate
topological effects: this will happen when the string Haldane
NLO becomes nonvanishing. The parent ground states for
these phases are reached in the strong coupling limit when
the string order parameter saturates to the value 1; in this case
ν degrees of freedom form singlets on neighboring sites.

A nonvanishing value of the parity operators denotes instead
a state which—in the strong coupling classical limit where
Cν
P = 1 (parent ground states)—is a direct product of on-site

singlet states in the ν-channel, and is highly degenerate. For
ν = c, it describes an insulator of strictly singly occupied
sites, as in the case of the infinite-U repulsive Hubbard
model, whereas for ν = s the parent ground state consists
solely of holons and doublons, as in the case of the attractive
infinite-U Hubbard model. In both cases at finite coupling
strength entangled parity breaking pairs appear, removing the
degeneracy of the states.

IV. CLASSIFICATION OF SYMMETRY-PROTECTED
TOPOLOGICAL PHASES

The various phases described in the previous section and
summarized on the left-hand side of Table I are characterized
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Trivial and non-trivial phases

• non trivial phase: particle-hole symmetry implies to flip simultaneously 
the  parity at the two edges -> nonlocal nature of the state 

• a trivial state can be connected by symmetry preserving transformations 
to a separable state; otherwise it is non trivial 

• both trivial and non trivial states in 1D can be written as MPS -> unique 
ground state of parent Hamiltonian 

• phases are distinct when they cannot be connected by transformations 
preserving symmetries of the Hamiltonian 

• to which extent previous classification holds at the level of microscopic 
Hamiltonians? -> classification of phases in the strong coupling limit



Results on 2D case

• Bose-Hubbard model: product of site parities within area D 
decays exponentially to zero with a perimeter law in MI phase, 
with super-exponential decay in SF phase

Figure 1: (Color online) Illustration of how the order parameter is reduced from unity for d = 2. The
grid lines indicate the lattice, bosons are represented by small circles. The domain D, here taken to
be a square, is shaded in gray. The minus signs from pairs which are completely inside or outside the
domain (yellow ellipses) cancel out so that there is no contribution while pairs which are separated by
the domain boundary (red ellipse) contribute a minus sign which leads to a reduction of hO2(L)i.

up to second order in J/U ⌧ 1. Clearly the expansion is well defined only in d = 1,
while in higher dimensions the effective expansion parameter (J/U)2 Ld�1 is small only
up to system sizes of order (U/J)2/(d�1).

Further insight into the origin of the perimeter law for the decay of the parity order
can be gained by assuming that the expectation value in (3) may be calculated within a
Gaussian approximation such that

hO
2(L)i ⇡ eh(i⇡

P
i2D �n̂i)

2
i/2 = e�⇡

2
h�N̂

2
i/2 , (5)

where �n̂i = n̂i � n̄. Within this approximation, � lnhO2(L)i is simply a measure of the
total number fluctuations h�N̂2

i in a domain of size L as part of an infinite system. Now,
the standard thermodynamic relation h�N̂2

i = kBT @N(µ)/@µ in this effectively grand
canonical situation seems to indicate that these fluctuations vanish at zero temperature
which would imply a trivial result hO

2(L)i ⌘ 1 in the Gaussian approximation. This
is not true, however, because the relation only applies in the thermodynamic limit and
neglects boundary terms. For a careful calculation of h�N̂2

i at zero temperature and in a
finite system, we generalize the analysis of Giorgini et al. ([28], see also [29, 30]) for Bose
gases in a d = 3 continuum to arbitrary dimensions. The particle number fluctuations

h�N̂2
i = Sd

Z 2L

0
dr rd�1⌧(r)n̄⌫(r) , (6)

in a spherical domain of radius L can then be calculated from the pair distribution
function

⌫(r) = �(r) + n
⇣
g(2)(r)� 1

⌘
=

Z
ddq

(2⇡)2
eiq·rS(q) (7)

5
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a non-local observable which behaves in a characteristically different manner in both
phases. By a straightforward generalization of the parity order in 1d introduced by Berg
et al. [11], the non-local order is defined as

hO
2(D)i =

D
ei⇡

P
i2D(n̂i�n̄)

E
=

*
Y

i2D

(�1)n̄p̂i

+
, (3)

where D is a spatial domain, i.e., an interval in d = 1 and an area in d = 2, and
p̂i = (�1)n̂i is the parity operator on lattice site i. There are two important proper-
ties of this observable which should be noted right away: First of all, the observable is
easily accessible in experiments since, due to light-induced collision losses, quantum gas
microscopes directly measure the on-site parity rather than the actual occupation num-
bers [10, 9]. As a second point, the observable must be calculated and measured in an
open domain D which is part of a larger system, otherwise hO

2(D)i ⌘ 1 would trivially
be equal to one due to conservation of particle number. To study the dependence on the
size, we shall characterize the domain D by its linear extension L measured in units of
the lattice spacing. In analogy to the standard definition (1) of long range order, the
parity order parameter (POP) hO

2(L)i exhibits long range order if hO2(1)i is finite.
This kind of order parameter is analogous to those studied in Ising models with a

local gauge invariance, which have no conventional phase transitions to states with long
range order, yet may exhibit different phases distinguished by non-local order parameters
[24, 25, 26] (see also section 8). In the context of cold atoms, a more complicated ’string
order’ parameter was introduced, which characterizes a Haldane insulator that can form
in one dimensional systems with longer range interactions [27]. Our focus is on the
behavior of the parity order parameter at the conventional SF–MI transition, not only in
1d [11, 12] but also in 2d. In particular, we will use a duality transformation to show that
in two dimensions parity order is related to an equal time Wilson loop in a non-trivial
U(1) gauge theory which exhibits different behavior as a function of system size L in the
MI and SF phases.

3. Number fluctuations and area law

To obtain a qualitative understanding of the dependence of the non-local order defined
in (3) on the size L of the domain we start by giving some qualitative arguments for the
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• to second order: 

• assuming                    the 2D fractional parity vanishes in the SF 
phase 

• it is finite in MI phase for 

• for                perimeter law decay is recovered
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x¼0ðn
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x −MnÞ describes the total density

fluctuations on the brane of size r. The latter can be
evaluated generalizing Ref. [12]:

CðθÞ
P ðMÞ ≈

(
lim
r→∞

r−aMθ2 SF;

e−bMθ2 MI;
ð8Þ

where a and b are (positive) constants related to the physical
parameters. Thus, assuming θ ∝M−α, we have that CðθÞ

P ¼
limM→∞C

ðθÞ
P ðMÞ is finite within the MI for α ≥1

2. By
contrast, for θ ¼ π (i.e., α ¼ 0), we recover the perimeter-
law decay found in Ref. [12] (here, 2M is the perimeter of
the brane enclosed in OPðr;MÞ). Within the SF phase
CðθÞ
P ðMÞ is zero at any finite M for arbitrary θ. Noticeably,

the value CðθÞ
P ¼ 0 is independent on the order of the two

limits M → ∞ and r → ∞ (i.e., L → ∞) only for α ≤1
2.

Numerical results.—In the following, by considering
extensive Monte Carlo simulations on ladders with differ-
ent values of M, we will study the actual behavior of
the generalized parity operator (6) for θ ¼ π=Mα and
α ¼ 0, 1=2, and 1 in the bosonic Hubbard model (1).
In order to simplify the notation, for finite values of r and
M, we define

Cαðr;MÞ≡ hOðπ=MαÞ
P ðr;MÞi; ð9Þ

CαðMÞ its limiting value for r → ∞, and Cα≡
limM→∞CαðMÞ. The ground-state properties of the
Hamiltonian are obtained by using the Green’s function
Monte Carlo technique [17]. In particular, we used the
algorithm with a fixed number of walkers; moreover,
observables, such as generalized brane parities, are computed
by using the so-called forward-walking technique [18].
First of all, we study the SF-MI transition by computing

the parity operators for several values ofM. In this way, we

obtain a rather precise determination of the critical value of
Uc when increasing the number of legs, from the one-
dimensional case up to the two-dimensional limit. For a
ladder with fixed L and M, we evaluate Cαðr;MÞ at
r ¼ L=2. We first consider the case of the standard parity,
i.e., α ¼ 0. In Fig. 1, we show its behavior as a function of
U=t for a ladder with M ¼ 2 and L ¼ 120. Here,
C0ðL=2;M ¼ 2Þ is vanishing for small values of the
interaction strength and becomes finite when increasing
U=t, signaling the transition between the SF and the MI
phases. We notice that the transition point signaled in the
figure has been located after having performed the asymp-
totic limit L → ∞, i.e., after having computed C0ðM ¼ 2Þ.
Based on the results on C0ðMÞ, once the thermodynamic
limit L → ∞ (for each value ofM) has been performed, we
can draw a phase diagram in which we report the critical
point Uc for different values of M; see Fig. 2. We would
like to emphasize that the transition point is monotonically
increasing with M and converges quite rapidly to the
value obtained in two dimensions [10,19]. Indeed, we find
that Uc=t ¼ 1.8ð1Þ in one dimension, while it is already

FIG. 2. Phase diagram of the bosonic Hubbard model for
n ¼ 1: the critical interaction strengthUc at which the superfluid-
Mott transition occurs is reported as a function of the number of
legs M of the ladder.

FIG. 3. Size scaling of brane parity C0ðMÞ (i.e., θ ¼ π) with M
for U=t ¼ 12. The fit is performed by using Eq. (8) with
b ¼ t2=ð2U2Þ. The results have been obtained for ladders with
L ¼ 30, after having verified that the calculations do not change
sensibly for larger values of L.

FIG. 4. Brane parity correlator C1ðr;MÞ (i.e., θ ¼ π=M),
evaluated at r ¼ L=2, as a function of U=t for ladders with
M ¼ 2 and various lengths L.
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Uc when increasing the number of legs, from the one-
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r ¼ L=2. We first consider the case of the standard parity,
i.e., α ¼ 0. In Fig. 1, we show its behavior as a function of
U=t for a ladder with M ¼ 2 and L ¼ 120. Here,
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phases. We notice that the transition point signaled in the
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totic limit L → ∞, i.e., after having computed C0ðM ¼ 2Þ.
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limit L → ∞ (for each value ofM) has been performed, we
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point Uc for different values of M; see Fig. 2. We would
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increasing with M and converges quite rapidly to the
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Uc=t ¼ 8.1ð1Þ forM ¼ 4, to be compared with the value of
Uc=t ¼ 8.5ð1Þ that has been obtained in two dimensions.
Even though C0ðMÞ is finite in the MI for any finite value

ofM, its value decreases to zerowhenM → ∞, in agreement
with what has been predicted in Ref. [12]. For example, in
Fig. 3we report the size scaling ofC0ðMÞ forU=t ¼ 12 deep
inside the MI. There, the results have been obtained for
ladders with L ¼ 30, after having verified that the calcu-
lations do not change sensibly for large values of L.
In particular, we find that our data can be fitted by using
Eq. (8) with b ¼ t2=ð2U2Þ. In this respect, a totally different
scenario appears when considering the brane parity with
α ¼ 1. We still obtain that for any finite values ofM C1ðMÞ
vanishes within the SF regime, while it is finitewithin theMI
(see Figs. 4 and 5). Most importantly, C1ðMÞ remains finite
within the MI also when increasing the number of legsM to
the two-dimensional limit, as shown in the right panel of
Fig. 5 where C1 is extrapolated. In fact, we numerically
verified that C1 ¼ 1 for each value of U in the MI phase, as

suggested again by the Gaussian approximation of Eq. (8).
The latter also predicts that, in the caseα ¼ 1=2,C1=2 is finite
in the two-dimensional MI phase, in this case with a non-
trivial dependence on U, e.g., C1=2 ¼ e−π

2b. Our numerical
simulations confirm this behavior, as shown in Fig. 6 in
which we compare the two cases with α ¼ 1 and α ¼ 1=2
in the two-dimensional limit. We would like to mention
that, within the SF phase, the modified parity operator
C1ðr ¼ L=2;MÞ shows very large size effectswhen extrapo-
latingL → ∞ (at fixedM); these size effects are indeedmuch
larger than those observed for the standard parity (e.g.,
compare Figs. 4 and 1). This fact is again in agreement
with Eq. (8).
Conclusions.—We have addressed the issue of character-

izing the MI and the transition to the SF phase in more than
one-dimensional systems. In particular, we explored the
capability of generalized brane parity operators to capture
the order present in the MI phase. By performing
Monte Carlo simulations on the bosonic Hubbard model
on rectangular clusters with L rungs and M legs, we have
investigated the asymptotic limit L → ∞, when passing
from one dimension (M ¼ 1) to the two-dimensional case
(M → ∞). We have shown that the average value of the
standard brane parity operator C0ðMÞ works as an order
parameter for the MI at any finiteM. However, it decays to
zero with a perimeter law when considering two spatial
dimensions [12], thus rendering elusive its experimental
measure. By contrast, exploiting the fact that in the MI
small fluctuations around the average density n take place,
and pairs with n þ 1 and n−1 are strongly correlated, we
have argued that a generalized brane parity operator Cα
is nonzero in two dimensions for any α ≥1=2. In fact,
in the Mott phase, the Gaussian approximation predicts
that Cα ¼ 1 for α > 1=2; by contrast, C1=2 ≈e−ðt

2=2U2Þ,
thus enlightening the role of interaction in driving the
Mott transition. Moreover, C1=2 ¼ 0 is obtained within the
SF. These facts suggest that the proper order parameter to
describe the MI-SF transition could be C1=2. Indeed, our
numerical results show a very good agreement with the
predictions [20]. Presently in situ density fluctuations can
be measured in cold atom experiments by means of high-
resolution imaging [4]. Our results provide a unique tool
to probe in these systems the presence of a MI, and its
interaction induced evolution up to the transition to the
SF phase.
Finally, we would like to make a remark on fermionic

Hubbard-like models. In one dimension, the MI phase takes
place in the charge degrees of freedom, whereas a corre-
sponding Luther-Emery phase, with possibly dominant
superconducting correlation, may take place in the spin
channel. It has already been noticed [7] that such phase is
captured by a parity NLO in which density fluctuations
are replaced by magnetization ones. We expect that
generalized brane parity operators in both density and spin
channels, together with their Haldane counterparts [8,16],

FIG. 5. Left panel: Finite-size scaling ofC1ðL=2;MÞ forM ¼ 2
with increasing L, deep inside the SF regime (i.e., U=t ¼ 2).
Right panel: Finite size-scaling of C1ðMÞ with increasing the
number of legs M of the ladder, deep inside the MI phase (i.e.,
U=t ¼ 12). Here, the results have been obtained for ladders with
L ¼ 30, after having verified that the calculations do not change
sensibly for larger values of L.

FIG. 6. Two-dimensional brane parity Cα as a function of U=t
for α ¼ 1 (i.e., θ ¼ π=M) and α ¼ 1=2 (i.e., θ ¼ π=

ffiffiffiffiffi
M

p
).
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where δN ¼
Pr−1

x¼0ðn
rung
x −MnÞ describes the total density

fluctuations on the brane of size r. The latter can be
evaluated generalizing Ref. [12]:

CðθÞ
P ðMÞ ≈

(
lim
r→∞

r−aMθ2 SF;

e−bMθ2 MI;
ð8Þ

where a and b are (positive) constants related to the physical
parameters. Thus, assuming θ ∝M−α, we have that CðθÞ

P ¼
limM→∞C

ðθÞ
P ðMÞ is finite within the MI for α ≥1

2. By
contrast, for θ ¼ π (i.e., α ¼ 0), we recover the perimeter-
law decay found in Ref. [12] (here, 2M is the perimeter of
the brane enclosed in OPðr;MÞ). Within the SF phase
CðθÞ
P ðMÞ is zero at any finite M for arbitrary θ. Noticeably,

the value CðθÞ
P ¼ 0 is independent on the order of the two

limits M → ∞ and r → ∞ (i.e., L → ∞) only for α ≤1
2.

Numerical results.—In the following, by considering
extensive Monte Carlo simulations on ladders with differ-
ent values of M, we will study the actual behavior of
the generalized parity operator (6) for θ ¼ π=Mα and
α ¼ 0, 1=2, and 1 in the bosonic Hubbard model (1).
In order to simplify the notation, for finite values of r and
M, we define

Cαðr;MÞ≡ hOðπ=MαÞ
P ðr;MÞi; ð9Þ

CαðMÞ its limiting value for r → ∞, and Cα≡
limM→∞CαðMÞ. The ground-state properties of the
Hamiltonian are obtained by using the Green’s function
Monte Carlo technique [17]. In particular, we used the
algorithm with a fixed number of walkers; moreover,
observables, such as generalized brane parities, are computed
by using the so-called forward-walking technique [18].
First of all, we study the SF-MI transition by computing

the parity operators for several values ofM. In this way, we

obtain a rather precise determination of the critical value of
Uc when increasing the number of legs, from the one-
dimensional case up to the two-dimensional limit. For a
ladder with fixed L and M, we evaluate Cαðr;MÞ at
r ¼ L=2. We first consider the case of the standard parity,
i.e., α ¼ 0. In Fig. 1, we show its behavior as a function of
U=t for a ladder with M ¼ 2 and L ¼ 120. Here,
C0ðL=2;M ¼ 2Þ is vanishing for small values of the
interaction strength and becomes finite when increasing
U=t, signaling the transition between the SF and the MI
phases. We notice that the transition point signaled in the
figure has been located after having performed the asymp-
totic limit L → ∞, i.e., after having computed C0ðM ¼ 2Þ.
Based on the results on C0ðMÞ, once the thermodynamic
limit L → ∞ (for each value ofM) has been performed, we
can draw a phase diagram in which we report the critical
point Uc for different values of M; see Fig. 2. We would
like to emphasize that the transition point is monotonically
increasing with M and converges quite rapidly to the
value obtained in two dimensions [10,19]. Indeed, we find
that Uc=t ¼ 1.8ð1Þ in one dimension, while it is already

FIG. 2. Phase diagram of the bosonic Hubbard model for
n ¼ 1: the critical interaction strengthUc at which the superfluid-
Mott transition occurs is reported as a function of the number of
legs M of the ladder.

FIG. 3. Size scaling of brane parity C0ðMÞ (i.e., θ ¼ π) with M
for U=t ¼ 12. The fit is performed by using Eq. (8) with
b ¼ t2=ð2U2Þ. The results have been obtained for ladders with
L ¼ 30, after having verified that the calculations do not change
sensibly for larger values of L.

FIG. 4. Brane parity correlator C1ðr;MÞ (i.e., θ ¼ π=M),
evaluated at r ¼ L=2, as a function of U=t for ladders with
M ¼ 2 and various lengths L.
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where a and b are (positive) constants related to the physical
parameters. Thus, assuming θ ∝M−α, we have that CðθÞ

P ¼
limM→∞C
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P ðMÞ is finite within the MI for α ≥1

2. By
contrast, for θ ¼ π (i.e., α ¼ 0), we recover the perimeter-
law decay found in Ref. [12] (here, 2M is the perimeter of
the brane enclosed in OPðr;MÞ). Within the SF phase
CðθÞ
P ðMÞ is zero at any finite M for arbitrary θ. Noticeably,

the value CðθÞ
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limits M → ∞ and r → ∞ (i.e., L → ∞) only for α ≤1
2.

Numerical results.—In the following, by considering
extensive Monte Carlo simulations on ladders with differ-
ent values of M, we will study the actual behavior of
the generalized parity operator (6) for θ ¼ π=Mα and
α ¼ 0, 1=2, and 1 in the bosonic Hubbard model (1).
In order to simplify the notation, for finite values of r and
M, we define
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CαðMÞ its limiting value for r → ∞, and Cα≡
limM→∞CαðMÞ. The ground-state properties of the
Hamiltonian are obtained by using the Green’s function
Monte Carlo technique [17]. In particular, we used the
algorithm with a fixed number of walkers; moreover,
observables, such as generalized brane parities, are computed
by using the so-called forward-walking technique [18].
First of all, we study the SF-MI transition by computing

the parity operators for several values ofM. In this way, we

obtain a rather precise determination of the critical value of
Uc when increasing the number of legs, from the one-
dimensional case up to the two-dimensional limit. For a
ladder with fixed L and M, we evaluate Cαðr;MÞ at
r ¼ L=2. We first consider the case of the standard parity,
i.e., α ¼ 0. In Fig. 1, we show its behavior as a function of
U=t for a ladder with M ¼ 2 and L ¼ 120. Here,
C0ðL=2;M ¼ 2Þ is vanishing for small values of the
interaction strength and becomes finite when increasing
U=t, signaling the transition between the SF and the MI
phases. We notice that the transition point signaled in the
figure has been located after having performed the asymp-
totic limit L → ∞, i.e., after having computed C0ðM ¼ 2Þ.
Based on the results on C0ðMÞ, once the thermodynamic
limit L → ∞ (for each value ofM) has been performed, we
can draw a phase diagram in which we report the critical
point Uc for different values of M; see Fig. 2. We would
like to emphasize that the transition point is monotonically
increasing with M and converges quite rapidly to the
value obtained in two dimensions [10,19]. Indeed, we find
that Uc=t ¼ 1.8ð1Þ in one dimension, while it is already

FIG. 2. Phase diagram of the bosonic Hubbard model for
n ¼ 1: the critical interaction strengthUc at which the superfluid-
Mott transition occurs is reported as a function of the number of
legs M of the ladder.

FIG. 3. Size scaling of brane parity C0ðMÞ (i.e., θ ¼ π) with M
for U=t ¼ 12. The fit is performed by using Eq. (8) with
b ¼ t2=ð2U2Þ. The results have been obtained for ladders with
L ¼ 30, after having verified that the calculations do not change
sensibly for larger values of L.

FIG. 4. Brane parity correlator C1ðr;MÞ (i.e., θ ¼ π=M),
evaluated at r ¼ L=2, as a function of U=t for ladders with
M ¼ 2 and various lengths L.
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r ! 1

H ¼ − t
2

X

hR;R0i
b†RbR0 þ H:c:þ U

2

X

R

nRðnR − nÞ; ð1Þ

where hR;R0i indicates nearest-neighbor sites, b†R (bR)
creates (destroys) a boson on the site R, and nR ¼ b†RbR
is the density on the site R. The density per site is fixed to
be n ¼ Nb=Ns, where Nb and Ns ¼ L ×M are the number
of bosons and sites, respectively. In the following, we
concentrate on the case with n ¼ 1. We indicate the
coordinates of the sites with R ¼ ðx; yÞ and consider
periodic-boundary conditions in both directions (except
for the case with M ¼ 1 and 2, for which open-boundary
conditions are considered along the rungs). In order to
assess the properties of the two-dimensional limit, we first
fix M and perform the extrapolations for L → ∞, and
then increase M. Thus, by varying the number of legs M
(and extrapolatingM → ∞), we are able to get insights into
the two-dimensional case.
Brane parities with phases.—In general, we can define

the on-site parity operator PR that describes the density
fluctuations at the site Rwith respect to its average value n,
namely, PR ¼ eiπðnR−nÞ. Depending on the parity of the
boson density nR with respect to n, we have that PR ¼ % 1.
In one dimension (i.e., M ¼ 1), the nonlocal parity is
defined as the string of on-site parity operators (from x ¼ 0
to x ¼ r),

OPðr;M ¼ 1Þ ¼
Y

0≤x<r
Px;0: ð2Þ

This definition can be extended to the case with M > 1 in
various ways. In particular, we can introduce a brane of
on-site parity operators

OPðr;MÞ ¼
Y

0≤x<r

Y

0≤y<M
Px;y ¼

Y

0≤x<r

Prung
x ðMÞ; ð3Þ

where Prung
x is defined in terms of the rung density

nrungx ¼
PM−1

y¼0 nx;y, i.e., P
rung
x ðMÞ ¼ eiπðn

rung
x −MnÞ.

In one dimension (M ¼ 1), the SF and MI phases can be
distinguished by looking at the ground-state expectation
value of OPðr;MÞ:

CPðr;MÞ≡ hOPðr;MÞi ¼ hΨ0jOPðr;MÞjΨ0i; ð4Þ

which coincides with the correlation function hO†
Pð0;MÞ

OPðr;MÞi. Indeed, CPðr; 1Þ is known to give a finite value
for r → ∞ in the MI, while it is vanishing in the SF phase
of bosons [6] or in the metallic phase of fermions [7], thus
playing the role of an order parameter for the MI phase. For
higher spatial dimensions, the situation is more subtle. In
fact, for bosons in two dimensions, it has been argued [12]
that CPðr;MÞ should decay to zero with M and r → ∞ in
both the MI and SF phases; however, a different asymptotic

behavior should appear in these two cases (see below).
Recently, a generalization of the brane parity operator (3)
has been suggested, which has a nonvanishing expectation
value in the MI also in the M → ∞ limit, thanks to a
normalization with the number of legs M of the phase in
Prung
x ðMÞ [13]. In this regard, we observe that the density

fluctuations on a rung of length M can be associated to a
“spin” of length 2M þ 1 (both for fermions and for bosons,
in the latter case when only small fluctuations with n − 1
and nþ 1 particles are considered). Then, the Hamiltonian
on the M-legs ladder can be associated with a spin-M
model on a chain. In analogy with the choice made in the
latter case for the Haldane string operator, [14,16] we can
generalize the brane parity operator by introducing an
arbitrary phase θ, and define

OðθÞ
P ðr;MÞ≡ ½OPðr;MÞ'ðθ=πÞ; ð5Þ

where θ depends on M and possibly the model
Hamiltonian. In particular, in case of the Heisenberg model,
one obtains that θ ¼ ðπ=MÞ maximizes the average value
of the parity string operator, which is also the result found
in Ref. [13] for the MI on a fermionic ladder.
More generally, we suggest that, for appropriate values

of θ, the expectation value of the generalized parity
operator

CðθÞ
P ðMÞ ¼ lim

r→∞
hOðθÞ

P ðr;MÞi ð6Þ

could behave as an order parameter for the SF-MI transition
of the Hubbard model also in two dimensions (i.e., for
M → ∞), remaining asymptotically finite in the MI, while
vanishing in the SF phase. In order to test this conjecture,
we give a first derivation of the behavior of CðθÞ

P ðMÞ for the
bosonic Hubbard model within a Gaussian approximation.
In this case, we obtain

hOðθÞ
P ðr;MÞi≈e−

θ2
2 hδN

2i; ð7Þ

FIG. 1. Brane parity correlator C0ðr;MÞ, evaluated at r ¼ L=2,
as a function of U=t for ladders with M ¼ 2 and L ¼ 120.
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D = 2



Conclusions and perspectives

• Low temperature phases of 1D quantum systems can be 
described by the non-vanishing of appropriate non-local orders 

• Their number and type depends on the symmetries of the 
Hamiltonian preserved in the low temperature phase 

• Non trivial phases remain distinct from trivial ones under 
appropriate symmetry protection 

• -> higher D: phase diagram and non-local orders built from 
symmetries of strong coupling Hamiltonian 

• -> parity orders in ladders & 2D: Mott and d-wave phases of 
Hubbard model


