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SPT phases classification of spin-charge decoupled
SG models
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beyond 1D case: the 2D Mott insulator



Can order be described just by local
observables?

e characterization of long range order: two point correlation function
of a local observables non-zero in the thermodynamic limit

C(z —y) =< O (2)O(y) > > const
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e O(x) orders in the low temperature phase -> SSB: <O(x)> local
order parameter goes to zero at phase transition

e true also for quantum 1D systems upon replacing local operators
with nonlocal strings

O(CL‘) _ Hj<xeia5(y)5(x)



Haldane string order in spin 1 models

e Haldane conjecture: the Heisenberg model is gapped for integer
spin, gapless otherwise (83)

e Den Nijs and Rommelse (89): in the gapped phase, the non
vanishing correlation functions are nonlocal strings, built from SU(2)

symmetry generators

Oflying = Im w(—S} exp| in z S{JSE).
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e rigorously proved for a similar S=1 model, the AKLT model (87), an
integrable bilinear biquadratic Heisenberg model



Some microscopic DOF order in the background of the others

00 -1060010-1,., ignoring 0’s
+1 and -1 are
QN 5109 |- alternated

Order parameter breaks a hidden Z2xZ2 discrete symmetry of the

Hamiltonian. Kennedy Tasaki ('92)

Q: when different spin 1 Hamiltonian (for instance Heisenberg &
AKLT) have same gapped Haldane phases?

A: when they can be deformed continuously into each other without
breaking the symmetries



Extended Bose Hubbard as spin 1 model
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low energy regime-> 3 occupations per site, only particle-hole conserving terms.
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e U andt (J) terms can be tuned independently in optical lattices

Haldane Insulator
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® in situ imaging allows to observe on site density fluctuations and to measure

experimentally the average value of nonlocal parity operator (pure Bose Hubbard)

Endres et al.
Science 2011
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The Hubbard model: Mott and Luther-
Emery Liquid gapped phases

Is there nonlocal order in the Hubbard model for 1D fermions?

H = _Z(C;raciﬂ,a T C;r—l-l,a'CiO') T UZ”iT”il
Lo [

more symmetries-> more possible nonlocal orders?

two gapped phases: Mott insulator (U>0, half-filling, open charge
gap), Luther Emery liquid (U<0, zero magnetization, open spin gap)

BKT (-> infinite order) quantum phase transitions



The Hubbard Model: spin and charge parity

e Haldane-like string correlations are vanishing (Anfuso Rosh, PRB 2008)
e \What happens to nonlocal parity correlations?

® |ntroduce nonlocal charge and spin parity operators
(v)
O(V) H 29mS 2,

® their correlation functlon reads.

1+
(V)
C(V) H 2imwS v =, s

Sicz) =5 (mig + iy = 1) Sisz) N 3 (nip = ny)

->charge parity ->spin parity



The Hubbard model: bosonization

® bosonized Hamiltonian decouples spin and charge dof in two sine-
Gordon models. In the charge channel:

1
H = [a2e| Konll? + o (0,0,
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® due to particle-hole symmetry, substituting U->-U and c->s one obtains
also Hs at arbitrary-filling and zero magnetization

® For U>0 a charge gap opens (M) when the charge field pins to 0. For
U<0 the same holds for the spin gap (LEL) and field.



® charge and spin parity correlations (r continuum) become:

CY(r) = (cos[v2D,(r)] cos[v2P,(0)])

e forlocked ®,, = (0 then Og) + (), 0in the unlocked case

® the parity correlation functions configure as order parameters for
the gapped phases

AM, M Roncaglia (PRL, 2012)




Cartoon: parity orders

e \ott insulator: the sum on each site of fluctuations from half-
filling should remain as close as possible to zero-> holon-
doublon pairs of finite correlation length

doublon-
holon pairs \
[ 1027 L1210 >+ 1200 12 [0 1>+
® | uther Emery Liquid: the same holds for fluctuations with

respect to zero magnetization-> correlated pairs of single
electrons with up and down spin

-
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\up-down pairs



Sine-Gordon model and 1D fermionic
systems

® |ow energy behavior of many 1D interacting quantum systems in the
continuum limit described by 2 decoupled spin and charge SG models

H = Z (H<”>+ (;ga) / dz cos|g, V8 P, (z )]) Z 1)

® |nteraction may a gap in two ways in each channel (charge/spin),
depending on sign of gc/gs (for spin preserving Hamiltonian gs<0)

e to analyze the full phase diagram bosonize also spin and charge string
correlators,
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example: phases classification with SU(2)
spin symmetry

® parity and/or string non-local order parameters can be non-zero in

TDL when the bosonic fields pins to appropriate values
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L. Barbiero, AM, and M. Roncaglia, PRB 2013
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Application: DMRG investigation of nonlocal
order in extended Hubbard model at half-filling
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example: Haldane charge order

e describes an insulator different from conventional Mott-Hubbard

e at half-filling in extended Hubbard models with correlated hopping, or in
presence of 3- and 4-body terms

® charge field pins to nonzero value
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Symmetry protection of phases of 2
decoupled SG models

In each channel, the U(1) symmetry implies 2 gapped+1 gapless
phases

Q: when the two gapped phases are distinct?

A: when symmetry prevents passing from one to the other
without closing the gap

-> avoid terms proportional to sin (g,

particle-hole (&time reversal in spin channel) symmetry protects
the Haldane phase:

g B
PP~ = —¢,
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Fractional edge modes

V2d, = ::g -> non-vanishing string order

fractionalized edge modes appears also in the SG model, at the
interface x with the trivial phase

S o 1
limgo+[S5(x) = Si(x —a@)]. = lim —=l9,0) — du(x —a)] = £

(I)z/ — Qﬁqbu
kink with half spin/charge of the corresponding dof

degeneracy in energy at half-filling/zero magnetization



In each gapped phase 1/ -parity on the chain of length | can be
factorized in its left and right components:

PV = O (1) = iV2rle()=6.(0)] = prpv X = LR
f T
in the Haldane phase V2%» = —9 these components have
anomalous commutation relation with P:
PP% = —P%P

whereas for ¢, =0

PP% = PYP



Group cohomology classification

( )

PP% = \PLP , A\, =+l
\_ J

-1 and +1 denote the non trivial and trivial phases respectively

anomalous commutation relations at the edge <-> 2 distinct projective
representations of the symmetry group G

G =U(l) x Zs,

semidirect product denotes the nontrivial commutation relation
PU,(p)=U,(—p)P.

the two projective representations are distinct elements (under symmetry
protection) of the second cohomology group->phases are distinct



SPT phases classification of
spin+charge SG, U(1)+U(1) symm

S
i
-~ -
-.--

VTP, /8w NLO SP GCC

LE u 0 Oy triv Ay = 1

ML U U Op .. tﬂV}‘C? 1 spin and
________ HLE u -y fS P,T )\.S — “;.1.-"""..~ Charge

HL +7 u S P CAe= ol " non-trivial

BOW 0 TTTTTTC 0 05,0577V Ay =1=A, phases

CDW =JT 0 g», O% P )»S =] = —)»C

SDW 0) 7T 0763, O3 PT A =1 =—A;

BSDW 7T 7T 5, Og P A, =—1 = A,

AM et al., PRB 2017

even in absence of p-h symmetry
of the microscopic Hamiltonian



Trivial and non-trivial phases

non trivial phase: particle-hole symmetry implies to flip simultaneously
the parity at the two edges -> nonlocal nature of the state

a trivial state can be connected by symmetry preserving transformations
to a separable state; otherwise it is non trivial

both trivial and non trivial states in 1D can be written as MPS -> unique
ground state of parent Hamiltonian

phases are distinct when they cannot be connected by transformations
preserving symmetries of the Hamiltonian

to which extent previous classification holds at the level of microscopic
Hamiltonians? -> classification of phases in the strong coupling limit



Results on 2D case

® Bose-Hubbard model: product of site parities within area D
decays exponentially to zero with a perimeter law in M| phase,
with super-exponential decay in SF phase
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e the physical mechanism is expected to be the same as in 1D: is
it possible to characterize M| phase with non-zero order
parameter in 2D?

® introduce rung parity Pr(M) = ei@Nr 5NR:§:5HR,]'
j=1
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e > brane parity Cp(r,M) =< || Pr(M) >



2D parity

CP(M) — }i_)n(}on(T, M)

Cp = lim Cp(M)

e |eaking from borders: multiple broken holon-doublon pairs change

arbitrarily the phase -> decay to zero

® normalize the phase -> fractional brane parity
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S. Fazzini, F. Becca, AM,
PRL ‘17
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e tosecondorder: Cu (r,M)~e = NOID 5N () = Z ONR
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® assuming 9 <« M~* the 2D fractional parity vanishes in the SF

phase
1
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e for o — () perimeter law decay is recovered

® tis finite in Ml phase for [05
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Conclusions and perspectives

Low temperature phases of 1D quantum systems can be
described by the non-vanishing of appropriate non-local orders

Their number and type depends on the symmetries of the
Hamiltonian preserved in the low temperature phase

Non trivial phases remain distinct from trivial ones under
appropriate symmetry protection

-> higher D: phase diagram and non-local orders built from
symmetries of strong coupling Hamiltonian

-> parity orders in ladders & 2D: Mott and d-wave phases of
Hubbard model



