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Inner Detector: 

•  innermost part of ATLAS 

•  situated in a 2T solenoidal magnetic 
field 

•  barrel and disk regions 

•  hermetically coverage 

Components: 

•  Pixel Detector (PD/PIXEL) 

•  4 space-points 

•  Strip Detector (SCT) 

•  4  space-points 

•  Transition Radiation Tracker (TRT) 

•  36 space-points 

The	present	ATLAS	pixel	detector	
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Silicon	hybrid	pixel	detectors	

Detection mechanism: 

•  Apply high voltage in reverse direction to deplete the silicon 

bulk 

•  Charged particles generate electron/hole pairs 

•  Electrons move towards the n+ electrode, holes towards 

backside  inducing a signal 

•  Signal is read-out via an attached front-end chip 

à hybrid pixel detector 
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•  Hybrid pixel detectors are composed of sensor and read-out 
chip connected by solder bump-bonds 

•  Monolithic pixel detectors combine read-out and sensor in 
one chipà evaluated for HL-LHC 

•  Hybrid approach is powerful in terms of speed and radiation 
tolerance 

Silicon	hybrid	pixel	detectors	

Analogue block: sensor charge signal is amplified and 
compared  to a programmable threshold by a discriminator. 

Digital part: calculates and transfers  the the 'time over 
threshold’ to chip periphery, together with a hit pixel address 
and  time stamp 

ATLAS chips working principle 
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Pixel cell size in IBL: 50x250 µm2 

 

 

 

 

 

 

   

§  New sensor technologies for IBL: 

§  200 µm thin planar sensors with reduced inactive 
edges 

§  3D sensors operating for the first time in HEP! 

First	upgrade	of	the	present	ATLAS	pixel	detector	

5 
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The	High	Luminosity	LHC:	Roadmap	

The LHC will be upgraded to the High Luminosity-LHC (HL-LHC) to 

produce up to 4000 fb-1 of integrated luminosity until 2035 

– benefits precision measurements in many physics channels 

– allows studies of rare processes 6 
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ITk	Pixel	requirements	

Sustain / improve excellent 
performance of ATLAS Run2 also 
in HL-LHC environment 

Radiation environment  

§  Ultimate integrated luminosity considered ~ 4000 fb-1 

§  Non-ionizing energy loss (NIEL) in the innermost layer: Φeq ≈ ~(2.5-3)x1016 cm-2  

§  At least one replacement needed for the two innermost pixel layers 

§  Radiation hard sensors and new read-out electronics 
7 
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ITk	Pixel	requirements	

§  Luminosity of up to 7.5x1034 cm-2s-1,  

§   up to 200 interactions / 25 ns bunch crossing  

          à   Higher track density 

§  Goal: Maintain occupancy at ≈ % (strips) and ‰ level (pixel),  and increase 
spatial resolution 

• Higher granularity to keep occupancies low: 50x50 or 25x100 µm2 pixels 

• Larger readout bandwidth capabilities 

•  ID-TRT would have 100% occupancy at HL-
LHC 

•  ID readout links would  be saturated at HL-
LHC 

§  A replacement of the present detector  is by far not enough! 

8 
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S
tri
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ATLAS ITk 

ITk	Pixel	layout		
 

§  Innermost central layer structure 
needs to cover full pseudo-rapidity 
range up to  |η|=4 

§  5 pixel layers à robustness against  
missing single hit 

 

§  Innermost central layer structure needs to cover full pseudo-rapidity 
range down to  |η|=4 

§  5 pixel layers à robustness against  missing single hit 
9 
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ITk	Pixel	inclined	layout		

 

§  More hits per layer for one track 

§   Barrel and end-cap transition moved out in z à reduced  material induced performance 
degradation 

§  Minimization of amount of silicon needed and of data rates In
cl

in
ed

 la
yo

ut
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End-Caps Outer Barrel 

Inner Layers 

Local	Supports	

11 
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Local	Supports	in	the	Barrel	

 

§  Intense prototyping program : 

§  Validation thermal and mechanical performance of local support concepts  

§  Qualify loading procedures 

§  Electrical tests for serial powering, read-out systems and multi-module operations 

Pixel modules supported on 
longeron like structure: 

|η|<1.2 Modules installed flat 

|η|>1.2 Modules installed 
inclined, 56o with respect to 
beam direction 

 

12 



A.
 M

ac
ch

io
lo

,  
Th

e 
AT

LA
S 

IT
k 

Pi
xe

l D
et

ec
to

r 
 

Pixel rings cover the high η region 
• The number of rings and positions in z are optimised for 
hermetic coverage of tracks for each pixel layer, separately 

• The pixels rings gives flexibility in location and number 
without large engineering changes 

Local	Supports	in	the	Pixel	End-caps	

§  Services routed on support structures 

§  Designed to minimize mass of ring system and to 
improve tracking at high eta 

13 
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After optimisation of tracker layout, innovations on delivering electrical power 

to sensors, and support mechanics, a significant reduction in the total radiation length 

• ITk silicon surface area (165m2) is 2.6 times large than the current ID, but the 

maximum radiation length reduced from 5.5X0 to 2X0 

Material	budget	

14 



A.
 M

ac
ch

io
lo

,  
Th

e 
AT

LA
S 

IT
k 

Pi
xe

l D
et

ec
to

r 
 

•  Particle identification performance comparable 
to or better than in Run-2,  even with µ~200, for 
ITk Inclined layout 

•  Shows that our reconstruction algorithms are 
performing well in this challenging environment, 
and correct choices have been made in terms 
of optimal layout geometry  

Examples	of	performance	with	ITk	

15 
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Read-out	chip	and	sensor	technologies	

16 
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The	RD53	read-out	chip	for	the	ITk	pixels		 

•  Joint effort between CMS-ATLAS communities to deliver a large scale 
front-end 

•  ASIC prototype for Pixel-Phase 2 detectors. 

•  Full scale prototype RD53A:  first wafers ready and are now being tested 
• 65nm CMOS design 

• 50 µm x 50 µm grid à drives the sensor design 

§  20x11.8 mm2 à 400 columns x 192 rows of 50x50 
µm2 pixels  

§  Final ATLAS Pixel chip size  à 400 columns x 384 
rows à 10% larger than the FE-I4 (IBL) chip 

17 
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The	ATLAS	read-out	chip	for	the	ITk	pixels		

§  Reduce data volume by grouping together 
group of pixels (2x2 or 1x4, matching cluster 
shape) 

§  Radiation hardness 500 Mrad: only lower limit, it will be measured on the full scale 
prototype 

 

§  In-time threshold <1200 e 
 

§  Serial output lines at 1.28, 2.56, 5.12 Gb/s, depending on the module location 
 

§  Support of serial powering with implementation of regulators 

18 
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–  3D sensors – radiation hard 
–  Planar - reduced cost 
–  CMOS - lower material budget, power consumption and cost 

3D
 

Pl
an

ar
 

Sensor technologies for ITk 

CMOS 

19 
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Hybrid	pixel	module	concept	

Around 10k  modules 
needed for ITk pixel system 

•   Basic building block is the pixel module: 

•  Bare module assembly consisting of sensor and FE chip 

•  Flex hybrid for interconnection of data, LV, HV  

•  Intense quad pixel module prototyping  with 4 FE-I4 chips  

•  Bump-bond 

•  Assembly of bare module and readout flex advanced 

•   Irradiation study of glues and composite materials started 20 
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Thin planar sensors – 100-150 
µm  

3D sensors – 150 µm  

  

Comparison	between	the	sensor	baseline	technologies		

					Smaller distance between the electrodes leads to higher radiation tolerance: 
 

à  Higher electric field for the same applied Voltage à saturation of the drift velocity 

à   Smaller drift time and reduced effect of the trapping on the charge carriers 

21 
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Thin planar sensors – 100-150 
µm  

3D sensors – 150 µm  

  

Comparison	between	the	sensor	baseline	technologies		

									Thin planar sensors (n-in-p): 
•  Lower power dissipation than thicker planar 

sensors 

•  Simple production process than 3D 

        Drawbacks: 

•  Smaller initial signal (76 e-/µm) 

				 3D sensors: 
•  Low power dissipation thanks to  

reduced operational Vbias 

   Drawbacks: 
•  Higher capacitance 

•  Lower yield, higher cost 
22 
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Different	3D	technologies	

6” wafers at FBK 

Single‐sided process 
• “Thin” active layer (130 µm): Si-Si or SOI 
• Ohmic columns depth > active layer 
• Junction columns depth < active layer 
• Column diameter ~ 5 um 
• Holes partially filled with poly 
• Very slim edge (100 µm) 
 R. Mendicino, 12th Trento Workshop on 
Advanced Silicon Radiation Detectors 

§  Double sided (available on 4” at CNM) 

§   IBL/AFP proven technology 

§  No handling wafer needed à thickness limited to ≥200 
µm 

23 
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24 

§  25x100 µm2 can be difficult in 2E 
configuration: 

§   Place bumps on ohmic column 

§  Study radiation hardness of 1E 
configuration  

	

50x50 µm2 can be designed with 
relaxed distances between bump 
and columns  

 

3D	sensor	design	for	ITk	geometries	
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§  Hit efficiency of 130 µm thin 3D FBK sensors: FE-I4 
modules where a fraction of columns have a modified 
geometry with RD53 cell sizes 

§  The efficiency reaches ~95% for HV>80V up to a 
fluence of 1016 neq/cm2  

 

12 

Results	with	3D	sensors	at	FBK	

H. Oide. 
11th Hiroshima Symposium HSTD 11 

25 
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Results	with	CNM	3D	sensors	

Results with 230 µm thin sensors, double sided technology, non passing through columns 

§  98% plateau efficiency @ 1ke threshold  reached also at a fluence of 2.7x1016 neq/cm2  

§  Lower operational bias voltages for new geometries J. Lange 11th Hiroshima Symposium  HSTD11 

IBL 

26 
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•  n-in-p sensors are the baseline choice for ATLAS Pixels L1-L4 

•  Single sided processing à cost reduction and  easier handling 

From	n-in-n	to	n-in-p	sensors	

HV on the 
sensor edge 

G
ro

un
d 

po
te

nt
i

al
 o

n 
th

e 
ch

ip
 

§  Sensor coated with BCB have 
shown HV stability after 
interconnection  up to 900-1000V 

§  Now MPP is also investigating the 
feasibility of BCB deposited on chip 
wafers  

•  Possible drawback  

•  Sparks between chip at ground and sensor edges at HV  
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q  Backside	cavities	etching		à	no	need	of	
handle	wafer	

q  SOI	technology	as	a	
reliable	method	to	
obtain	thin	sensors	

q  Different		
productions	with	
RD53	compatible	
sensors	and	
sensors	for	quad	
module	
prototyping	

Technologies	for	thin	planar	pixel	sensor	productions	

28 



A.
 M

ac
ch

io
lo

,  
Th

e 
AT

LA
S 

IT
k 

Pi
xe

l D
et

ec
to

r 
 

Comparison	of	hit	efficiencies	for	100	-	150	µm	thick	sensors	
§  Hit efficiency saturation at lower voltages for the modules with 100 µm thick 

sensor compared to mdoules with 130- 150 µm thick sensor. 

§  Lower operation bias voltages at high fluence results in lower power dissipation and 
helps to relax the requirements on the cooling system 

Baseline choice:  100 µm thin sensors in L1 -  Option for L2 pixel layers  29 
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Φ=5e15 

Estimation	of	the	hit	efficiency	for	a	50x50	µm2	pixel	

§  Modified FE-I4 sensors to create  50x50 or 
25x100 µm2 pixel cells 

§  Higher effect of charge sharing and eff. 
decrease due to the biasing structures à need 
lower threshold ~600-800 e expected for the 
RD53A chip  

Vbias=500 V 

N. Unno, 12th Trento meeting, 2017 

Φ=3e15 

30 
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50	x	50	µm2	 25	x	100	µm2		

•  Optimization of biasing structures 

•  Development of temporary metal 

technology to test the sensor without 

the need of implementing a biasing 

rail 

RD53	planar	sensor	design	

HPK-poly-silicon resistors  31 
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§  Applications for ATLAS need to optimize the charge collection for 

§  Fast charge collection to avoid trapping after irradiation and be 25 ns in-time efficient 

§  Large depletion region for high(er) signals 

§  Higher rate capability 

§  Enabling Technologies: High voltage process and high resistive 
wafers 

CMOS	sensors	for	ATLAS	ITk	

•  Much less elaborate assembly process (e.g. no hybridization) 

•  Much lower cost (factor 4 compared to hybrid pixel modules) 

•  Fast turn-around production at large volume producers 

•   Pixel size 50x50 µm2 and smaller (25x25 µm2 achievable) 

•  Thin modules (100 µm) 

32 
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Large	vs.	small	fill	factor	CMOS	sensors	

Electronics inside charge collection well 

• Collection node with large fill factor à rad. hard 

• Large sensor capacitance (DNW/PW junction!)à  x-
talk, 

noise & speed (power) penalties 

• Full CMOS with isolation between NW and DNW 

Electronics outside charge collection well 

• Very small sensor capacitanceà low 
power 

• Potentially less rad. hard (longer drift 
lengths) 

• Full CMOS with additional deep p-implant 

T. Hemperek, Vertex Workshop 2017 33 
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Modified	process	for	small	fill	factor	CMOS	sensors	

W. Snoeys et al. DOI 10.1016/j.nima.2017.07.046  

 

•  Modified process at Towerjazz 

•  Novel modified process developed in collaboration with the foundry 

•  Adding a low dose planar n-type layer significantly improves depletion under deep PWELL 

•  Increased depletion volume → fast charge collection by drift 

I. Berdalovic, PSD conference 2017 

§  Better time resolution 

§  Reduced probability of charge 
trapping 

98.5% ± 1.5% (stat.) ± 1.2% (syst.) 

34 
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Large	vs	small	fill	factor	–	Monolithic	submissions	
Lfoundry (150 nm) 
Resistivity > 2000 Ohm cm 

Monopix01 

• Received Apr. 2017 

• “Demonstrator size” 

• 50 x 250 µm2 pixels 

• Fast standalone R/O 

Towerjazz (180 nm) 
• Two large scale demonstrators 
MALTA and Monopix: 

– Asynchronous/synchronous  matrix 
readout 

– Focus on small  pixels < 50x50 µm2  

AMS aH18 (180 nm) 
Resistivity 50-1100 Ohm 
cm 

ATLASpix 

• 4well CMOS process 

• 56 x 56 µm2 pixels 

Asynchronous read-out to 
periphery 

35 
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Passive	CMOS	sensors		
LFoundry 150 nm CMOS technology 

• 2kΩcm p-type material, CZ 8’’ 

• Passive pixel, i.e collecting  node w/o electronic 

• 100/300µm thick, backside processed 

• Bump bonded to ATLAS FE-I4 

• Pixel size: 50 µm x 250 µm 

§  Multiple metal layers, poly-silicon layers, 
metal-insulator-metal (MIM) capacitors 
à special sensor features as AC 
coupling,  redistribution of bump 
connections for inter-chip pixels … 

§  Excellent radiation hardness properties 
demonstrated at 1015 neq cm-2 

D. –L. Pohl et al, Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line   
36 
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Conclusions	and	Outlook	

Many exciting opportunities for precision measurements and new discoveries with the HL-LHC 

• Extreme environment poses many challenges 

• Many years of work have now resulted in the design of an all-silicon tracking detector for 
ATLAS that is able to tackle these challenges 

• Currently working on the finalization of the pixel detector layout  

• A lot of R&D is currently on-going : 

• Sensors and Front-End chips 

• Readout 

• Powering and protection 

• Layout and mechanics 

• An enormous amount of work to do before installation in a bit less than 10 years time! 

37 
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Additional	material	

38 
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Lessons	learned	from	present	detector	
																																													Annealing	effects	

§  Large influence of annealing on the measured and 
predicted Vdepl    J. Beyer, 12th Trento Workshop 

§   Need to maintain cooling on as continuously as 
possible 

§  Study annealing effects on pixel sensors at Itk fluences 
in realistic scenarios  à outermost layers will be at RT  
during innermost section exchange 

4-5 months of 
annealing at RT 

 

~1 year of 
annealing 
(accelerated) 

39 
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Power	distribution	and	read-out	electronics	

40 
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§  HV protection: one line per module? Fuse? HV switch?  

Serial	powering	for	ITk	pixel	modules		

§  Serial powering of pixel modules with up to 16 modules per chain – average 8 

§  DCS functionality integrated in concept: 

§  PSPP chip: monitor and control of module (by-passing) 

§  Independent power and communication lines for the DCS 

 

•  Constant current source 

•  Shunt low-dropout 
regulator to control 
voltage across pixel 
module  

41 
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42 

Pixel	read-out	electronics	

§  Connection between on- and off-detector via electrical-optical link: 

§  Currently defining opto-converter location (rad.level @ innermost 
layer: ~10 MGy!) 

§  Difficult to find laser diodes sufficiently radiation-hard 

§  Present assumption is to have the optical conversion stage in 
a place accessible during long LHC shutdown 

§  From FE-chip to end of inner detector electrically (5-7 m) à 

§  Due to serial powering electrical  data transmission lines are 
AC coupled 

§  Then optically towards the off-detector electronics (~80 m) 

§  Flex 
cables 

§  Micro-twisted 
pairs 
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Pixel	read-out	electronics	

§  Uplink: Large bandwidth spread between inner 
and outer layers: 

§  5.12 Gb/s per FE for innermost layer (3.3 
Gb/s for innermost ring) from the 160 Mb/
s of the present detector (IBL) 

         à on-
chip data compression is anyhow necessary  

§  640 Mb/s per FE for outer layer (1 Gb/s 
for outermost ring) 

§  Combining lines is done to optimize the 
material . 

               

43 
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Trigger	design	

Complete ITk readout on L0 with 1 MHz rate 
and 10 µs latency or 

• Partial ITk readout on L0 with 4 MHz/10 µs 
and full readout at L1 with 800 kHz/35 µs 

– outer pixel layers can provide full data on L0 

– inner layers can’t due to bandwidth limitation 
of 5 Gb/s 

à fast clear on L0, wait for L1 

44 
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3D	sensors	at	CNM	

J.Lange ,3D Silicon Pixel detectors for HL-LHC, 
8th international Workshop on Semiconductor Pixel Detectors 

§  New productions on 4” SOI or Si-Si substrates 
100 and150 µm active thickness 

§  Leave ~100 µm of handle wafer  

RD53 compatible devices 

§  At the moment only availability of 230 µm thick 
FE-I4 compatible sensors with a fraction of the 
pixel cells of 50x50 µm2 geometry 
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BCB	isolation	on	chips	

§  Two different implementations on a single wafer: 

§  BCB only on the chip edges where the chip faces the not active area of 
the sensor at HV potential 

§  BCB everywhere except on the bumps à option now disfavored by IZM  

BCB	

bum
ps	

BCB	with		
opening	on	the	
bumps	

§  Further tests foreseen with BCB deposited on a daisy chain run on 12” 
wafers again at IZM in preparation for the RD53A processing 
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BCB	isolation	on	chips	

§  Two different implementations on a single wafer: 

§  BCB only on the chip edges where the chip faces the not active area of 
the sensor at HV potential 

§  BCB everywhere except on the bumps à option now disfavored by IZM  

§  Further tests foreseen with BCB deposited on a daisy chain run on 12” 
wafers again at IZM in preparation for the RD53A processing 

BCB	with		
opening	on	the	
bumps	

§  But first module 
measured 
shows a very 
good 
interconnection 
efficiency … HLL SOI3 sensor 100 um thick 
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New	Bias	Ring	designs	
§  Some sensors without bumps on BR:  

§  Investigate if it is possible to reduce the effect of PT on hit efficiency after 

irradiation leaving the BR floating 

§  Drawback: currents from the edges will flow directly into edge columns 
§  Second bias ring design: decouple the testing functionality before 

interconnection from the grounding after flip-chipping 

§  Bias rails are all linked to a metal line not connected 
through contacts to the implant  

§   bumps on BR are in contact to the BR implant 

Bumps in contact 
with the BR 
implant 

Testing metal line floating 
on the BR implant 

R
. 

R
icht

er 
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49 

•  Modules	with	50	µm	thin	sensors	and	Cu-Au	UBM	show	a	perfect	
interconnection	efficiency	

ADVACAM:	50	µm	thick	sensors	

Voltage
0 20 40 60 80 100 120
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m thick, active edgeµ50 

m thick, slim edgeµ100 

m thick, slim edgeµ150 

			Occupancy	map	from	Cd	scan	of	a	module	
with	a	50	µm	sensor		

•  Collected	charge	by	90Sr	scans	agrees	with	expectations		for	the	three	
thickness	

•  50	µm	thin	sensors	needs	a	special	tuning	to	very	low	thresholds	≤	
1000 e	

50
 µ

m
 

§  Active edge sensors produced on SOI wafers at ADVACAM  
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•  August	+	October		test-beam	at	CERN:	systematic	comparison	of	different	sensor	thicknesses	

Hit	efficiencies	for	active	edge	devices	

50  

50
  

§  New	measurements	with	50	µm	thin	sensors	at	lower	threshold	then	presented	before	(600	e-	nominal	instead	
of	800	e-)	

§  Higher		efficiency	on	pixel	implant	with	lower	threshold	(~98.8%)	but	still	worse	edge	eff.	with	respect	to	thicker	
sensors	

§  Very	good	performance	up	to	
the	edge	of	100-150	µm	thick	
sensors	
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FE-I4	sensors	in	CIS	6”	wafers	and	SOI4	production	

§  FE-I4 quad with common PT and 3 ganged rows 
each chip à 180 µm distance between physical 
edges of the chips 

§  400 µm long pixels per side  

q  Quad with standard PT and 4 ganged rows 
à 280 µm distance between chips 

q  450 µm long pixels per side  

q  FE-I4	compatible	sensors	with	half	the	cells	
of	50x50	µm2	pitch	and	no	biasing	
structures	

q  Especially	important	to	study	post-
irradiation	performance	of	small	cell	sizes	
while	waiting	for	the	RD53A	chip	 51 
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Power

IV	curve	of	bare	FE-I4	sensor	at	-25˚C	
irradiated	to	1x1016	neq/cm2		after	11	
days	of	annealing,	as	measured	in	
direct	thermal	contact	in	a	probe-
station	

Estimated	power	dissipation	per	cm2	at	-25˚C	for	a	100	µm	
thin	sensor	irradiated	to	1x1016	neq/cm2	

Resulting	power	dissipation	is	
~25-45	mW/cm2	at	500-700V	

•  The	possible	range	of	operation	bias	voltage	for	a	pixel	module	with	a	100	µm	thick	
sensor	is	500-700	V	

•  The	resulting	power	dissipation	at	500-700	V	is	~25-50	mW/cm2	at	1x1016	neq/cm2	
irradiation	

Power	dissipation	for	thin	planar	sensors	at	high	fluences	

52 


