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B Computing / measuring dynamic aperture (DA) or

particle survival

A. Chao et al., PRL 61, 24, 2752, 1988;
F. Willeke, PAC95, 24, 109, 1989.

B Computation of Lyapunov exponents

F. Schmidt, F. Willeke and F. Zimmermann, PA, 35, 249, 1991;
M. Giovannozi, W. Scandale and E. Todesco, PA 56, 195, 1997

B Variance of unperturbed action (a la Chirikov)

B. Chirikov, J. Ford and F. Vivaldi, AIP CP-57, 323, 1979
J. Tennyson, SSC-155, 1988;
J. Irwin, SSC-233, 1989

B Fokker-Planck diffusion coefficient in actions
T. Sen and J.A. Elisson, PRL 77, 1051, 1996

B Frequency map analysis
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B The most direct way to evaluate the non-linear dynamics
performance of a ring is the computation of Dynamic
Aperture

B Particle motion due to multi-pole errors is generally non-
bounded, so chaotic particles can escape to infinity

B This is not true for all non-linearities (e.g. the beam-beam
force)

B Need a symplectic tracking code to follow particle trajectories
(a lot of initial conditions) for a number of turns (depending
on the given problem) until the particles start getting lost. This
boundary defines the Dynamic aperture

B As multi-pole errors may not be completely known, one has to
track through several machine models built by random
distribution of these errors

B One could start with 4D (only transverse) tracking but
certainly needs to simulate 5D (constant energy deviation)
and finally 6D (synchrotron motion included) 5
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Dynamic Ape

B Dynamic aperture plots show the maximum initial
values of stable trajectories in x-y coordinate space at a
particular point in the lattice, for a range of energy
errors.

2 The beam size can be shown on the same plot.

0 Generally, the goal is to allow some significant margin in the
design - the measured dynamic aperture is often smaller than
the predicted dynamic aperture.
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Dynamic aperture
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X, mm
Including radiation damping and
excitation shows that 0.7% of the
particles are lost during the damping

Certain particles seem to damp away
from the beam core, on resonance
1slands



Genetic Algorit

B MOGA -Multi
Objective Genetic
Algorithms are being 3
recently used to
optimise linear but also _**
non-linear dynamics of
electron low emittance
storage rings

B Use knobs quadrupole
strengths, chromaticity

no

—
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—
T

Dynamics aperture area (m2)

sextupoles and 05|
correctors with some ; 3
constraints 9% 2 25 3 35 4 45 5
Horizontal emittance £, (mm-mrad)
B Target ultra-low
horizontal emittance,

increased lifetime and
high dynamic aperture
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Measuring
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B During LHC design phase,
DA target was 2x higher
than collimator position,
due to statistica
fluctuation, finite mesh,
linear imperfections, short
tracking time, multi-pole
time dependence, ripple
and a 20% safety margin

Better knowledge of the
model led to good
agreement between
measurements and
simulations for actual LHC

Necessity to build an
accurate magnetic model
(from beam based
measurements)

:
Ca

2

DA inferred from measured loss data -

14 Simulations: ICZI=2><10:33 s
| IC'I=4x10" mm
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B Frequency Map Analysis (FMA) is a numerical method
which springs from the studies of J. Laskar (Paris
Observatory) putting in evidence the chaotic motion in
the Solar Systems

)

B FMA was successively applied to several dynamical
systems

Stability of Earth Obliquity and climate stabilization (Laskar,
Robutel, 1993)

4D maps (Laskar 1993)
Galactic Dynamics (Y.P and Laskar, 1996 and 1998)

Accelerator beam dynamics: lepton and hadron rings (Dumas,
Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and
Laskar 2001)
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B Consider an integrable Hamiltonian system of the usual form
H(J7 P 9) — HO(J)

2

. : . : OHo(J)
B Hamilton’s equations give %= ~—5;— =% (J) = @5 = w; (D)t + djo
. 9Ho(J) -
Jj = 96, = (0 = J; = const.

B The actions define the surface of an invariant torus
B |n complex coordinates the motion is described by

Gj(t) = J;(0)e"™ " = zjpe™7*
B For a non-degenerate system det () 0" Ho(J) 20

5 y 5. E
there is a one-to-one correspondence between the actions and

|=det

the frequency, a frequency map
can be defined parameterizing
the tori in the frequency space

F: (I — (w)
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B If a transformation is made to some new variables
(j =1 = z; + €G(z —zj+eg CmZq 2y %z

B The system is still integrable but the tori are distorted
B The motion is then described by

Cj(t) = zjoe™ " + Z ame’ ()t

i.e. a quasi-periodic

function of time, with

Um = € CmZ210 250 - -+ Zpg" and m - w = miwy + Maws + - -+ + Myuwy,

B For a non-integrable Hamiltonian, H(I,0) = Hy(I) + ¢H'(1;i)
and especially if the perturbation is small, most tori persist
(KAM theory)

B In that case, the motion is still quasi-periodic and a
frequency map can be built

B The regularity (or not) of the map reveals stable (or chaotic)
motion 12
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B When a quasi-periodic function f(¢) = q(t) + ip(t) in
the complex domain is given numerically, it is
possible to recover a quasi-periodic approximation

N
f'(t) =) ape™
k=1

in a very precise way over a finite time span |1, T’
several orders of magnitude more precisely than
simple Fourier techniques

Seminar, June 2016
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B This approximation is provided by the Numerical
Analysis of Fundamental Frequencies — NAFF
algorithm

Non-linear beam dynam

B The frequencies w), and complex amplitudes a;, are
computed through an iterative scheme. 13



The NA

()

B The first frequency . is found by the location of the
maximum of

_ / 1ot\ __ 1 g / —10t H\dt
o) = (0.7 = 55 [ 130
where (¢) is a weight function

" Seminar, June 2016

B In most of the cases the Hanning window filter is
used yq(t) =1+ cos(wt/T)
B Once the first term e*“1t is found, its complex

amplitude al is obtained and the process is restarted
on the remaining part of the function

fi(t) = f(t) — aje™n!

W The procedure is continued for the number of desired
terms, or until a required precision is reached

Non-linear beam dynamics, Graduate Studies in Accelerator Physics
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Frequenc

sics” Seminar, June 2016

B Calculating the Fourier integral explicitly

. 1 [T -
- lwt —lwt
p(w) =< (1), " >= T/o ") e™dt  shows that the

B The accuracy of a simple FFT even for a simple
sinusoidal signal is not better than v —vp| =

2

1

T

maximum lies in between the main picks of the FFT

| I/(f) — Sin( ]/?L) 0s | /P\ |p(w)| = |sinC(V —2w)T| |
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Frequenc
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B A more complicated
signal with two
frequencies

f(t) _ alez’wlt 1+ a26iw2t 0_1

shifts slightly the
maximum with
respect to its real
location
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B A window function like the Hanning filter

¢ x1(t) =14 cos(mt/T) kills side-lobs and
E allows a very accurate determination of the
: frequency

% Tr @o(z)

_Sg p1(x)

<é 08

% 0.6 |

g 04

ks 02+

&

£

E 0

E 02}

:—g 1 1 1

§ -10 5 0 3 10
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Precisio

2

B For a general window function of order p
() = 2@
X —
’ (2p)!
Laskar (1996) proved a theorem stating that the
solution provided by the NAFF algorithm
converges asymptotically towards the real KAM
quasi-periodic solution with precision
1
T
B In particular, for no filter (i.e. p = () the precision

(1 + cosmt)P

in Accelerator Physics” Seminar, June 2016

1 , whereas for the Hanning filter (p = 1), the
1= 1
precision is of the order of =i

1S

Non-linear beam dynamics, Graduate Studies
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Aspects of t
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2

B In the vicinity of a resonance the system behaves like a

pendulum

B Passing through the elliptic point for a fixed angle, a fixed
frequency (or rotation number) is observed
B Passing through the hyperbolic point, a frequency jump is

oberved
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B For a 2 degrees of freedom Hamiltonian system, the

frequency space is a line, the tori are dots on this lines, and
the chaotic zones are confined by the existing KAM tori
For a system with 3 or more

-

degrees of freedom, KAM S

tori are still represented by **¢*¢*—* * H’\”_"V
dots but do not prevent 2 /1
chaotic trajectories to diffuse

This topological possibility e . o .

of particles diffl%sing.is ° .?}#-_‘-_:,‘:». :0 .
called Arnold diffusion ¢ o _ .
This diffusion is supposed o ¢ .'.‘, .. o . ‘ ¢

to be extremely small in % .’. T ‘a8 *
their vicinity, as tori act as e * ¢ .
effective barriers Vo IV

(Nechoroshev theory) 2



Building the

2

B Choose coordinates(x;, y;) withp, and p,=0

O

S M Numerically integrate the phase trajectories through the lattice for

@ . .

5 sufficientnumber of turns

£ ® Compute through NAFF Q, and Q, after sufficient number of turns

> W Plot them in the tune diagram
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B Simulation studies
2 Frequency and diffusion maps for the LHC
Beam-beam effect
Folded frequency maps
Magnet fringe-fields
Working point choice
Resonance free lattice
Symplectic integration
Correction schemes evaluation

CO0O00D0O0OO
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Frequency

Y. Papaphilippou, PAC1999
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lequIOn | J. Laskar, PhysicaD, 1993 gu

" Calculate frequencies for two equal and successive time
spans and compute frequency diffusion vector:

D‘t:’r — V‘tG(O,T/Q] o V|t€(7/277]

" Plot the initial condition space color-coded with the norm
of the diffusion vector

" Compute a diffusion quality factor by averaging all
diffusion coefficients normalized with the initial conditions

radius
D]
Dor =
< (]20 L 150)1/2 >R

X
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Diffusion maj

A

Y. Papaphilippou, PAC1999
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Diffusion maps for the target error table (left) and an increased random
skew octupole errorin the super-conducting dipoles (right) .
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Variable Symbol Value

Beam energy E 7 TeV
Particle species protons
Full crossing angle 0. 300 urad
rms beam divergence ol 31.7 prad
rms beam size oy 159 um
Normalized transv.

rms emittance ve 3.75 um
IP beta function B 0.5m
Bunch charge N, (1 X 10"=2 x 10'?)
Betatron tune Qo 0.31

PACMAN bunch PACMAN bunch

long-range
collisions

head-on
collision

long-range
collisions

Ax

Ay

with

A

m [ong range beam-beam interaction
represented by a 4D kick-map

2r,Ny | '+ 0 o
—n p- b Cll1—e %
par 92 ’
t
02
1 1 —e 2%y
0.
/ 02
2Tpr Yy 292t
nparr- —a ]. - 6 z,y
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Head-on vs
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Horizontal Tune

Proved dominant effect of long range beam-beam effect

Dynamic Aperture (around 66) located at the folding of the map
(indefinite torsion)

Dynamics dominated by the 1/r part of the force, reproduced by
electrical wire, which was proposed for correcting the effect

Experimental verification in SPS and installation to the LHC IPs
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Action variance
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Folded fre«
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m For a fixed energy value and even
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» V1 J.Laskar, PAC2003

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

29

det det




2

- Up to now we considered only
transverse fields

g 10000 - . _
. ] * Magnet fringe field is the

g o, i longitudinal dependence of the
2 ' : field at the magnet edges

£ 7000 -

5 © i

£ 3 6000 ) . Important Wheg magnet aspe.ct
- : ratios and/or emittances are big
Z g- ..= 7000 1

;§ E 4000 | 6000 -

z 3000 - .

g i 5000 A

£ 2000 g
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kS 1000 °

E 3000 A
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Quadrupol

General field expansion for a quadrupole magnet:

B ( 1)mm2n 2m+1 [21]
R Z Z (Qn)1(2m+1)' ( )b2n+2m+1—2l

m,n=0 [=0

1)m 2n—|—1 2m

m,n=0 [=0

m,n=0 [=0

and to leading order

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

i . ;
B: = y|b— —(3:1:2 + yQ)b[lz]
T
_ IR 23 [2]
By, = z|b T (3y® + =“)b3
B. = axybil+0()

( 1)mx2n—|—1y2m—|—l m
Z Z (2n + 1)!(2m + 1)! ()

2

— Z Z<(2n—|—1)‘(2m)' ( )6[2272|—2m—l—1—2l

[20+1]
2n+2m-+1-—-2I

+ O(5)

+ O(5)

The quadrupole fringe to leading order has an octupole-like effect 3
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m From the hard-edge Hamiltonian

+
Hf — IZBp(El—ép) (y py — X pCE _|_ szypy T 3y2xpzc>7

Tune footprint for the
SNS based on hard-
edge (red) and realistic
(blue) quadrupole
fringe-field
Oy [ arh  Gpy 2J5\ sl | |
0vy ) \Qpy Qo) \2J, )

5.83¢

¢ the first order shift of the frequencies
£ with amplitude can be computed
analytically

ysics’ Seminar, June 2016

Realistic

with the “anharmonicity” coefficients
(torsion) 5.62|

Ahh = 167TB Z :I:Qzﬁcmoéa:z
Ahy = 167TB Z :I:Qz(ﬁzmayz Byiam) >
Ayy = 167TBp Z inByzayz
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Choice of the £

Momentum spread [%]

2

< Tune Diffusion quality factor
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Correction sc

I|I||II||||||||||||||||| 10° ‘ ‘
@ —® no correction
TypeD Typeo 13 ”
10t | @ ®hwel «——m " Chosen scheme
®  OTypell
Type II1
Type | s . ®  OTypelV
:§ 10
o
=
>
g
=
= A
@ 10
10°
0 5 10 15

Position (o)

m Comparison of correction schemes for b, and bs errors
in the LHC dipoles

m Frequency maps, resonance analysis, tune diffusion
estimates, survival plots and short term tracking,
proved that only half of the correctors are needed
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Working point choic

m Figure of merit for
choosing best working
point is sum of diffusior

rates with a constant 064 .
added for every lost oeaft
particle 062

m Each point is produced .|
after tracking 100 .
particles 2>

s Nominal working point
had to be moved .
towards “blue” area 057
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Application of the

2

m The one kick integrator reveals a completely different dynamics then the
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Resonance 1
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optimization based IVCz‘leipmxux,ﬁnW _ \/ L-cos| N (np, +np I
on phase advance = L-cos(n,p, +n,u,.)

m Non linear

scan for minimization @
of resonance driving
terms and tune-shift
with amplitude

N (nu, . +nu, )=2km
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nu.+nu, =2kt




2

Normalized diffusion sum (Q =11.78, Qy:6.7) Hamiltonian driving terms up to 4™ order
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m Comparing different chromaticity sextupole
correction schemes and working point optimization
using normal form analysis, frequency maps and
finally particle tracking

m Finding the adequate sextupole strengths through
the tune diffusion coefficient
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Contents of

B Experiments
- Experimental frequency maps
- Beam loss frequency maps
0 Space-charge frequency scan

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

40



Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016

D. Robin, C. Steier, J. Laskar, and L.
Nadolski, PRI 2000

m Frequency analysis of turn-
by-turn data of beam
oscillations produced by a
fast kicker magnet and

recorded on a Beam Position

Monitors

Reproduction of the non-
linear model of the
Advanced Light Source
storage ring and working
point optimization for
increasing beam lifetime
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Beam loss frequen

B Strength of resonance lines

identified by derivative of beam \*‘\NM‘“
intensity (average beam loss rate) | | —

B Tunes continuously monitored
using NAFF and beam intensity
recorded with current transformer
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AQ,/AQ, ~ 0.10/0.18
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Lossless blow-up
of beam core
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B [njecting high bunch density beam into the SPS

B Space charge effect quite strong with (linear)
tune-shifts of

B Changing horizontal / vertical frequency and
measuring emittance (action) blow-up
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B [njecting high bunch density beam into the SPS

B Space charge effect quite strong with (linear) tune-
shifts of

B Changing horizontal / vertical frequency and

¢ (um)

measuring emittance (action) blow-up
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B Summary
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B Frequency map analysis is a powerful technique for
analyzing particle motion in simulations but also in real
accelerator experiments

B Based on ability to reconstruct numerical quasi-periodic
solutions in phase space of general Hamiltonian system

B The power of NAFF algorithm ensures the accurate
determination of fundamental frequencies of motions
with very high precision precision

B A wide of range of applications for understanding
limitations due to non-linear effects in a variety of
accelerators

B Application of the method in turn-by-turn data recorded
in beam position monitors can reveal effect of non-linear
resonances experimentally
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Thanks for the material to

- F.Antoniou, H.Bartosik, W.Herr,
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F.Schmidt, A.Wolski,
F.Zimmermann



