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B Lie formalism and symplectic maps
- Hamiltonian generators and Lie operators
2 Map for the quadrupole
- Map for the general multi-pole
2 Map concatenation

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016



B Consider two sets of canonical variables Z , Z which
may be even considered as the evolution of the system
between two points in phase space

2

B A transformation from the one to the other set can be
constructed through amap AM : 7z +— 7Z

B The Jacobian matrix of the map N/ = M (Z, t) is

composed by the elements M, = ?
<j
B The map is symplecticif M’ JM = J where j— —(I) (I))

B [t can be shown that the variables defined through a
symplectic map  [z;, z;] = [z, z;] = J;; whichisa
known relation satisfied by canonical variables

B In other words, symplectic maps preserve Poisson brackets

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016

B Symplectic maps provide a very usetul framework to
represent and analyze motion through an accelerator 4
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B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1fg] and: f:°g=[f,[f g]] etc

Seminar, June 2016
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2

B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1[fg] and: f:°g=[f,[f g]] etc

B For a Hamiltonian system H(z,t) there is a formal

solution of the equatlons of motion 92 — =|H,z| = H :z

dt
written as z(t) = Z tk “ 20 = etHiz, with a symplectic

map M = ¢ !
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B The Poisson bracket properties satisfy what is
mathematically called a Lie algebra

B They can be represented by (Lie) operators of the form

frg=1[fg] and: f:2g=[f[f g]] etc

B For a Hamiltonian system H(z,t) there is a formal

solution of the equatlons of motion % =|H,z| = H :z
written as z(t) = Z tk " 70 = et z, with a symplectic
map M = ¢

B The 1-turn accelerator map can be represented by the
composition of the maps of each element
M = ef2i gifst gifar  where f; (called the
generator) is the Hamiltonian for each element, a
polynomial of degree 177 in the variables z1,..., 2y
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B Dipole; 2 2
PO 0 2 Py + D,

H = | |
p  2p%  2(1+49)

B Quadrupole:
1
H = ikl(xQ —y?)
B Sextupole: |
H = gkg(ﬂ?g — 3xy°) 4
B Octupole:

1
H = Zkg(CEA — 6332?]2 + y4) |

Physics’ Seminar, June 2016

vy +p;

2(1+ 0)

vy +p;
2(1+ 0)

vy +p;
2(1+ 0)

8
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Lie operators fot

2

Element Map Lie Operator
Drift space x =29+ Lpo exp(: — 5 Lp*:)
P=Do
Thin-lens Quadrupole = = xg exp(: — %:1:2:)
P =po— %o
Thin-lens Multipole T =g exp(:Ax™:)
p=po+ Anz™ !
Thin-lens kick T =g exp(: [y f(z')dz":)
p=po+ f(x)
Thick focusing quad x = xgcoskL + B2 sinkL expl: — 3 L(k%22 + p?):]

Thick defocusing quad
Coordinate shift
Coordinate rotation

Scale change

p = —kxgsinkL —l— po cos kL
x = xg cosh kL + £ sinh kL
p = kxgsinh kL + pg cosh kL

r=x9—0b

P=Dpota

T = T COS [L + Po SIn [t
P = —I SN [t + po COS [i
T = e g

P = GAPO

exp[:3L (k222 — p?);]
exp(:ax + bp:)
expl: — %u(a?? + p?)]

exp(:Axp:)




2

a: =0, e* =1
fia=0, el'a=a
fif =0, elf=f

{:f::9:0 =:1[, gl
eg(X) = g(e?*X)

e tig(X) = g(X —SC)
el'G(:g e = G(:el g)

—_



Map for q @)

B Consider the 1D quadrupole Hamiltonian
1
H = 5(kiz* + p°)
B For a quadrupole of length [, the map is written as
6%:(k1m2—|—p2):

Seminar, June 2016
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B Consider the 1D quadrupole Hamiltonian
1
H =3 (k122 + p*)
B For a quadrupole of length [, the map is written as
6%:(1@1:1324—]92):
B [ts application to the transverse variables is

o 2\n 2\n
— L (k12 +p?): _ (_le) |L(_k1L)
| R

R Z( o L \/’ ) )

Seminar, June 2016

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’

12



2

B Consider the 1D quadrupole Hamiltonian
1
H =3 (k122 + p*)
B For a quadrupole of length [, the map is written as
6%:(k1m2+p2):
B [ts application to the transverse variables is

5 o 0 o 2\n o 2\n
6—%:(1{1:1; +p )$:Z(( le) T L( k’lL) p>

Seminar, June 2016

— (2n)! (2n 4+ 1)!
CLkiaap?) 00 _k,lLZ n _k,lLQ n
e >p20<( (2n)!) p_m((2n+1))!p>

B This finally provides the usual quadrupole matrix

e éJ(/l“‘”’cﬂ?)ac—cos\/7L \/_sm\/iL
6_%(k1x+p) \/781Il \/7L:13+cos \/7[/ 13

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’



Map for ge

B Consider a monomial in the positions and
momenta z''p""

B The map is written as %% P

B [ts application to the transverse variables is

For n # m
620433npm!$ — 7 :- _I_ a(n L m)xn—lpm—l: m—nmn
ezozxnpm:p =5 ::- _|_ Oé(n L m)xn—lpm—l: n—m

For 7. = 1N

. nn. _ n—1, n—1
eOT P i — poT QNI D
n—1 n—1

e TP :p _ peanaz D

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B For combining together the different maps, the Campbell-
Baker-Hausdorff theorem can be used. It states that for PR
sufficiently small, and A, B real matrices, there is a rehl 2

matrix C' for which

68A€tB _ €C’

B For map composition through Lie operators, this is

translated to 63h3 — eifieigi with
1

h:f—b—g+%:f:g+%:f:2g—i—1—12:g:2f—|—2—14:f::g:2f—%0:g:4f—ﬁ0:f:4g+...
or
1 1 1 1 1 1
h=f+ g+ g+ U Lol + 51909 )+ 51719, 19 7 = 5yl o g, 1 = = [ L6 [ 6l + -

i.e. a series of Poisson bracket operations.

B Note that the full map is by “construction” symplectic.

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

B By truncating the map to a certain order, symplecticity is
lost. 15
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B The sextupole map can be represented at second order as

B Consider two identical sextupoles in a beam line

represented by amap R

1 . . . . 1 . .
S, = ¢~ 3lsHaig—Ls:Hs: =3 LsiHa:

1
with the sextupole effective Hamiltonian H, = 6k2 (z° — 3zy?)
and H; the drift Hamiltonian

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The sextupole map can be represented at second order as

B Consider two identical sextupoles in a beam line
represented by amap R

1 . . . . 1 . .
S, = ¢~ 3lsHaig—Ls:Hs: =3 LsiHa:

1
with the sextupole effective Hamiltonian H, = EkQ (z° — 3zy?)
and H; the drift Hamiltonian

B The total map can be approximated at 2" order by
./\/l — SRS ~ SQRSQ _ 6—%LS:Hdze—LS:HS:ﬁe—LS:HS:G—%LS:Hd:

with themap R = ¢~ 2LlsiHaiRe—aLls:Ha:

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The sextupole map can be represented at second order as

B Consider two identical sextupoles in a beam line
represented by amap R

1 . . . . 1 . .
S, = ¢~ 3lsHaig—Ls:Hs: =3 LsiHa:

1
with the sextupole effective Hamiltonian H, = gkz(xg — 3xy°)
and H; the drift Hamiltonian

B The total map can be approximated at 2" order by
M = SRS ~ SQRSQ — 6—%LS:HCI:G—LS:HS:ﬁe—LS:Hsze—%LS:Hd;

with themap R = ¢~ 2LlsiHaiRe—aLls:Ha:
B Inserting the identity RR ™' = Z and considering the
similarity transformation R—1o—Ls:Hsig — o—Ls"R™Hs: | the

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016

_l . o~ _ . —1 . _ . o\ _l . .
M =~ e QLS.H&\Re Ls:'R Hs.e LS'_I:I;E»'"EB 2LS.Hd.1

— -
- -
el T ———— L
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B If the mapR is chosen such that R~ H — H _ then
the sextupole map Lie operators
_ o —1 . . . . . . .

e L. R HS'B Ls:Hs: _ 6LS.HS.6 L.:H,: — 7T

B |n that way, the sextupole non-linearity is getting
eliminated in the final map
— l L L — — l Ld L — . L —_— L] L]

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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2

B If the mapR is chosen such that R~ H — H _ then
the sextupole map Lie operators
_ o —1 . . . . . . .

e L. R HS'@ Ls:Hs: _ 6LS.HS.6 L.:H,: — 7T

B |n that way, the sextupole non-linearity is getting
eliminated in the final map

M~ e alsiHaRe—slsiHa: — o—Ls:Haip o—Ls:Ha:
B Inspecting the form of [, (oddin I and even in 7y), this
_ can be achieved if

RZE — —T, Rpx — — Pz, 7_2y — VY, pr — ::py

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B If the mapR is chosen such that R~ H — H _ then
the sextupole map Lie operators
_ o —1 . . . . . . .

e L. R HS'@ Ls:Hs: _ 6LS.HS.6 L.:H,: — 7T

2

B |n that way, the sextupole non-linearity is getting
eliminated in the final map

MNG__L Hg: Re__L Hg: —€_L Hg: Re~ Ls:Hyg:

B Inspecting the form of /_ (oddin I and even in y), this
can be achieved if ~ 3
Ra = —ux, Rz = —Pa, Ry = +y, Rpy = £py

or in matrix form

-1 0 0 0 COS [y + Ay SIN Ly b, sin iz 0 0
B 0O -1 0 01 —Cy SIN iy COS [by — Qg SIN [y 0 0
0 0O +£1 O 0 0 COS [Ly + ay Sin fu,, by sin fi,
0 0 0 =1 0 0 —Cy SIN Uy COS [Ly — Gy SIN fUy

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B If the mapR is chosen such that R~ H — H _ then
the sextupole map Lie operators
_ o —1 . . . . . . .

e L.:R HS.6 Ls:Hs: _ BLS'H8°€ L.:H,: — 7T

2

B |n that way, the sextupole non-linearity is getting
eliminated in the final map

MNG__L Hg: RG__L Hg: —€_L Hg: Re~ Ls:Hyg:

B Inspecting the form of /_ (oddin I and even in y), this
can be achieved if ~ 3
Ra = —ux, Rz = —Pa, Ry = +y, Rpy = £py

or in matrix form

-1 0 0 0 COS [y + Ay SIN Ly b, sin iz 0 0
B 0O -1 0 01 —Cy SIN iy COS [by — Qg SIN [y 0 0
0 0O +£1 O 0 0 COS [Ly + ay Sin fu,, by sin fi,
0 0 0 =1 0 0 —Cy SIN Uy COS [Ly — Gy SIN fUy

B The horizontal part of the matrix is —Z2 and the vertical
part is =75, which is obtained for phase advances

,U;:U — (Qnm _|_ ]_)7-‘-, /J/y — nyﬂ- 22
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B Symplectic integrators
-1 Taylor map for the quadrupole
2 Restoration of symplecticity
2 3-kick symplectic integrator
- Higher order symplectic integrators
1 Accurate symplectic integrators with positive kicks (SABA,C)

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Why sym

B Symplecticity guarantees that the transformations in phase

2

space are area preserving

B To understand what deviation from symplecticity produces

consider the simple case of the quadrupole with the general
matrix written as

Mo — cos(vVkL) \/LE sin(vkL)
@ —Vksin(vVkL)  cos(VkL)

Take the Taylor expansion for small lengths, up to first

order 1 7 ,
MQ = (—kL 1) —I—O(L )

B This is indeed not symplectic as the determinant of the
matrix is equal to 1 + £ L?,i.e. there is a deviation from

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016

symplecticity at 2" order in the quadrupole length

24
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B The iterated non-symplectic matrix does not

s provide the well-know elliptic trajectory in phase
s space

: , . .
W Although the trajectory is very close to the original
= one, it spirals outwards towards infinity

g o e aniES B

é 0.0001 ]
| o

g -0.0002 - N

ilg -0.0003 - B

é -0-0004 7 -1I.5 '1 -ol.5 i) ol.5 l1 1I.5 2

25
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2

B Symplecticity be can restored by adding “artificially” a
correcting term to the matrix to become

1 L 1 0\ (1 L
MQ:(—kL 1—kL2>:<—kL 1) (0 1)

B In fact, the matrix now

can be decomposed as a drift |

with a thin quadrupole

at the end

B This representation,
although not exact
produces an ellipse
in phase space

0.0004

0.0003 -

0.0002 -

0.0001

0o

-0.0001

o

-0.0002
-0.0003

-0.0004

kL
|

e L !

exact qdadrupole mép .
symplectic map O(1)

T T T
/7 (1
/ /
| /// /////
e s
/ /,
\Q_/
- N
1 1 1 1 1 1
2 -1.5 -1 0.5 0 05 1

X

L
1.5 2



Restoring

B The same approach can be continued to 274 order of the
Taylor map, by adding a 3 order correction

Me = — 1kL? L-}ikLB _ (1 L)2 1 0\ /1 L/2
—kL  1—4kL? 0 1 —kL 1)J\0 1

B The matrix now can be |
decomposed as two half | . -
drifts with a thin kick at the L LT L
center 0.0004 2 . 2

exact qu'adrupole ma'zp .
symplectic map O(1
symplecticmap O(2

0.0003 vme api g

0.0002

B This representation  ...|
1S even more exact as~ ol
the error now is at -0.0001 |-

3rd order in the
length

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The idea is to distribute three kicks with different
strengths so as to get a final map which is more accurate
then the previous ones

B For the quadrupole, one can write

o 34 Cla D6 ) (o D647 (e D6 47)
which imposes > di=) ¢ =1,

B A symmetry condition of this form can be added
di =ds, do=d3, c1 =c3

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The idea is to distribute three kicks with different
strengths so as to get a final map which is more accurate

then the previous ones
B For the quadrupole, one can write

Ma= (o 5) (o 1) (0 ™) Cane 1) 0 ™V%) Cane ) 6 “47)
which imposes > di=) ¢ =1,
B A symmetry condition of this form can be added

d1:d4, d2:d3, C1 — C3

B This provides the matrix Mg = (11 712 with
ma1 122
mi1 = Moo — ——]CL -+ Cldg(dl + — )k2L4 dldQC%CQkBLG
mio = L — ( + d1d2 + 2d1d261)]€L + 2d1d2C1 (dldg + )]{72L5 + d2d2C 62k3L7

4
moq1 — —kL + Cldg(l + CQ)]CQLB — d%C%CQk3L5

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B By imposing ’jat tEe ieterminant is 1, the following

additional relations are obtained

Co . 1
Cldg(dl + 5) — 2/
() 1
4 2 S
1 + dydo + 2d1dacy 6
1
Cld2(1 -+ CQ) = 6

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B By imposing ’jat tEe ieterminant is 1, the following

additional relations are obtained

§ Co 1

E do(dy + 2) = —

: c1de(dy + 2) 54

. 2 | dydy + 2dydyey =

5 e C = —

g 1 102 1G2€1 = ¢

= 1

= Cldg(l + 02) = 6

¢ m Although these are 5 equations

: with 4 unknowns, solutions exist

& 1 1 91/3
"E d — d — , d — d —

ST M T g a1my 0 TR TR T 90 9173
Q:D; 1 21/3
PATOeT S Tos 2T Ty o

E

5

31



B By imposing tiat tie determinant is 1, the following

additional relations are obtained

B This is actually the famous 7 step
4t order symplectic integrator of Forest, Ruth and Yoshida
(1990). It can be generalized for any non-linear element

B [t imposes negative drifts... 32

? C 1

2 c1da(dy + 52) = 51 | |
g CQ 1 | @ @ |
% =2 _ - | |
: 1 + dids + 2d1dacy 6 | @
i 1 | g
g Cldg(l -+ CQ) —_— 6 ; ® . :
¢ M Although these are 5 equations | | | |
g with 4 unknowns, solutions exist : | -~ l
z 1 1 —21/3 | @ | @ |
S dy=dy = D dy = dy =

2T T M T oAy T T g0 213 I
Qz‘ 1 21/3 : :
E Cl=C3= ,  C2=— | : |
% 2 _ 21/3 2 _ 21/3 | @ |
£




Higher ords

B Yoshida has proved that a general integrator map of order
2k can be used to built a map of order 2k + 2

Sok+2(t) = Sar(x1t) 0 Sor(xot) 0 Saor(x1t)

_ 9wt 1

2

with %0 = 11

_1 > — _1
2 — D2k+1 D — D2k+1

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B Yoshida has proved that a general integrator map of order
2k can be used to built a map of order 2k + 2

Szk_|_2 (t) = Szk(.fljlt) O Sgk(x()t) O Sgk(wlt)

_ 9wt 1

2

: Tn — ’x:
with 20 o T T Ty e

B For example the 4" order scheme
can be considered as a composition
of three 279 order ones (single kicks)
S4(t) — SQ (ZClt) O SQ (xot) O SQ (xlt)
Wlth Lo = _251 y L1 = ! 1

2 — 23 2 — 23

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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2

B Yoshida has proved that a general integrator map of order
2k can be used to built a map of order 2k + 2

SQk+2 (t) = Sgk(iblt) O Sgk(xgt) O Sgk(wlt)

with <0 =

1
—D2k+1

9 — Q3RFI

y L1

1

T 9w

B For example the 4t order scheme
can be considered as a composition

of three 274 order ones (single kicks)

S4(t) — SQ (ZClt) O SQ (xot) O SQ (ZClt)

_ 93
2 _ 93

L1

1
2 _ 93

B A 6 order integrator can be

produced by three interleaved 4 order ones (9 kicks)

S@(t) — 54(56175) O S4(£lfot) O S4(£E‘1t)

with

rog —

_ 9%
- 9_93’

X1

1
 9_93

35



B Symplectic integrators with positive steps for Hamiltonian
systems [f — A + ¢B with both 4 and B integrable were
proposed by McLachan (199)).

m Laskar and Robutel (2001) derived all orders of such

Integrators

2

m Consider the formal solution of the Hamiltonian system
written in the Lie repres%ntation
Ft) =) %L%a’:’(@) = et 2(0).
n>0
m A symplectic integrator of order 1, from ¢ to{ + 7
consists of approximating the Lie map ¢™l# = ¢7(LatLlen)
by products of et 4and e?i7leB § =1, ... nwhich
integrate exactly A and B over the time-spans ¢;Tand d;T
m The constants ¢; and d; are chosen to reduce the error 36
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SABA, i

m The SABA, integrator is written as

1 1 1
Wlth C 1 — —) , Co — ——
1 = 2 \/§ 2 \/§

with ¢ = (2 - /3)/24

m The accuracy of SABA,C 1s one
order of magnitude higher than

the Forest-Ruth 4t order schemce

m The usual “drift-kick’ scheme

corresponds to the 2°d order inte
SABA; = ezlaemleneata

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
log10(AE/E)

Y

c'oo'o'\lc'nc'n-b

-10

11
14 12 1 -08 -06 -04 -02 0

2

SABA2 = eclTLA eleLeB €C2TLA eleLeB eC1 TL A ’

1
d1:§

m When{{A, B}, B} isintegrable, e.g. when A is quadratic in
momenta and B depends only in positions, the accuracy of
the integrator is improved by two small negative steps

SABA,C = e 7 € 5L41a.51.5) (SABAZ) —7 "5 L((4,B},B)

log10(s)



Contents of

B Normal forms
0 Effective Hamiltonian
21 Normal form for a perturbation
- Example for a thin octupole

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B Normal forms consists of finding a canonical transformation

)

of the 1-turn map, so that it becomes simpler to analyze

B [n the linear case, the Floquet transformation is a kind a
normal form as it turns ellipses into circles

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B Normal forms consists of finding a canonical transformation

)

of the 1-turn map, so that it becomes simpler to analyze

B [n the linear case, the Floquet transformation is a kind a
normal form as it turns ellipses into circles
B The transformation can be written formally as
z 2 g
with the original map M =® 1o N o ®
q)—l q)—l .
l l and its normal form
L —1 _ _thery:
u — u’ N = P o M o P = €
N

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Norma

B Normal forms consists of finding a canonical transformation

)

of the 1-turn map, so that it becomes simpler to analyze

B [n the linear case, the Floquet transformation is a kind a

normal form as it turns ellipses into circles
B The transformation can be written formally as

z — M
with the originalmap M =® 1o N o ®
‘I)_ll l‘b—l and its normal form
u — u’ N:q)OMOq)_l:e:heff:

F

N N nk
B The transformation ® — ¢ ° is better suited in action

angle variables, i.e. ¢ = e '™ h taking the system from
the original action-angle hf’y = \/2Jy 4 eF%=v to a new set
£ (N) = /2L, eT=s(N)  with the angles being just

z,y
simple rotations, Vg (N) = 27NV, + Yz y, and the

new effective Hamiltonian depends only on the new actions#

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016



B The generating function can be written as a polynomial in
the new actions, i.e.

2

.k Il ._m +k L+m o
Fo=Y " fiamG GGG ™ = Fipm (21,) 77 (21,) 2 e akim
1klm

B There are software tools that built this transformation

B Once the “new” effective Hamiltonian is known, all
interesting quantities can be derived

B This Hamiltonian is a function only of the new actions, and
to 37 order it is obtained as

heff —=v,l, + Vyly
1
+ 504052 + Ccp1L50 + cy1ly0 + c30°

+ cmlg + Caylply + cyyls + Cpol 0% + cy21y52c454

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B The correction of the tunes is given by

————————————
~~~~~~~~~

1 6h€ff 1 N -~ E\
1 Oh, 1 5'\ " ;
@y = 27 Eﬂff T 9 Vy"#zcyyl + Cwylﬂé’ ‘Cy15 + Cy252,)
y AT N ST e
tunes tune-shlft 1st and Pnd order

with amplitude chromaticity

B The correction to the path length is

6h€ff
)

- —
- e
” ~s

As =

N —
-~ -
~- ——
i ——— -

lst 2nd and 3rd

momentum compaction
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B Using the BCH formula, one can prove that the composition
of two maps with g small can be written as

ofiei9 — exp [If—l- ( f )Q‘I‘ O(QQ):]

2

1 —e—f:
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B Using the BCH formula, one can prove that the composition
of two maps with g small can be written as

2

f:

1l —e—

o9 — exp [f + ( :f:) g+ 0(92):]

B Consider a linear map (rotation) followed by a small
perturbation A4 — 63f2361f31
B We are seeking for transformation such that

N = ODMP L = giFipifoigifaigi—F:

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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B Using the BCH formula, one can prove that the composition
of two maps with g small can be written as

el e = exp [f — (1 _:{;—:f:) g+ (9(92):]

2

B Consider a linear map (rotation) followed by a small
perturbation A4 — 63f2361f31
B We are seeking for transformation such that

N = ODMP L = giFipifoigifaigi—F:

B This can be written as

-
——————————
- ~

T T S £ /3

Ko ’ — B _:f2:
eif2igi(e” P =D F+fs: % L—e

B This will transform the new map to a rotation to leading
order

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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2

B Consider a linear map followid by an octupolg

e 2 2, .x7, £ .. .,
M = e 2@ +p .6.4.:€.f2.6.4.
B The generating function has to be chosen such as to

make the following expressign simpler

(e_:fQ: — 1) F + %

Seminar, June 2016
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Example

2

B Consider a linear map followid by an octupolg

R 2, .x™ . S
M = e 2@ +p .6.4.:6.f2.6.4.
B The generating function has to be chosen such as to

make the following expressign simpler

(e7 /2 —1)F + T
. .
B The simplest expression is the one that the angles are
eliminated and there is only dependence on the
action

" Seminar, June 2016
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2

B Consider a linear map followid by an octupolg

R 2, .x™ . S
M = e 2@ +p .6.4.:6.f2.6.4.
B The generating function has to be chosen such as to

make the following expressign simpler

(e7 /2 —1)F + T
. .
B The simplest expression is the one that the angles are
eliminated and there is only dependence on the
action

Seminar, June 2016

B We pass to the action angle variable (resonance

basis) |
ht = V2J eT = 2 Fip

The perturbation is
= (hy +h_)* =hF =% +4h3h_ + 6h% A2 + 4h h® +hd

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’
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Example:

2

B The term 6% h? = 24.J° is independent on the angles.

Thus we may choose the generating functions such that the
other terms are eliminated. It takes the form
1 ( hi N 4h3h_  4h, h? ht )

1

~ 16 — ediv 1 — 2w T 1 — e2w + 1 — ediv

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Example

2

Thus we may choose the generating functions such that the
other terms are eliminated. It takes the form
1 ( hi. +4hih._ +4h+hi N h‘i')
16 \ 1 — v 1 — e2tv 1 — e2tv 1 — edtv
B The map is now written as -
M _ 6—:F:6:1/J—|—§J :6:F:

B The term /2 2 = 24.J° isindependent on the angles.

B The new effective Hamiltonian is depending only on the
actions and contains the tune-shift terms

Non-linear beam dynamics, Graduate Studies in Accelerator Physics” Seminar, June 2016
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Exampl

2

B The term 6% h? = 24.J° is independent on the angles.
Thus we may choose the generating functions such that the

other terms are eliminated. It takes the form

1( hi +4hih_ 4hh3 ht )

T 16 \ 1 — ediv 1—6273V+1—62’iV+1—e4’iV

B The map is now written as -
M _ 6—:F:6:1/J—|—§J :6:F:

B The new effective Hamiltonian is depending only on the
actions and contains the tune-shift terms

B The generator in the original variables is written as

F = —5z* + 3p* + 62°p” + 42°p(2 cot(v) + cot(2v)) + 4ap® (2 cot(v) — cot(2v))]

_6_4[

B Constant values of the generator describe the trajectories in
phase space

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’ Seminar, June 2016
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Graphical res

2

M [t is possible by constructing the one turn map to
built the generating (sometimes called

Physics’ Seminar, June 2016

“distortion”) function r ~ S Fivim I T ik
Jjklim
B For any resonance av, + bg, = ¢, and setting

wj 11 = (0, the associated part of the functions is
F(a,b) ~ Z f]klm J2 J2

1klm

Jtk+l+m<n
j+k=a ,l+m=>b

beam dynamics, Graduate Studies in Accelerator

Non-linear
w
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Normal fo

2

B In the LHC at injection (450

\O K .
S . o7 o) GeV), beam stability is
4 necessary over a very large
= 0.6 4
5 £ number of turns (107)
é o 054 . “ ” . .
é £ o With “warm " quad. errors B Stability is reduced from
v B 0.4 .
z ; o Without “warm” quad. errors random multl-pole
< 2 0.3+ . . . .
% 20 imperfections mainly in the
g o - GO e super-conducting magnets
38 o . :
<2 B Area of stability (Dynamic
£ o )02 @ aperture - DA) computed with
FU . [
= Resonances particle tracking for a large
E number of random magnet
FU L . . .
& DA LHC Version error distributions
2 | Phase Type (o) 4 5 .
E Nominal Target | @ Numerical tool based on
: Warm Quads |_A 0y
g Varm Quads verage .
'S 150 switched ON | Minimum ( ( 7 4 ) I\ 8.6 norm.al fOI"l’n an?ﬂ‘YSlS. (GRR)
5| [ Warm Quads [ Average AR - permitted identification of DA
= switched OFF | Minimum 0.3 11.3 . .
; — — L1057 LIS Leduction reason (errors in the
'GS’ Warm Quads Average 11.1 11.3 12.8 iy .
o 450 switched ON | Minimum | 9.5 9.2 11.4 warm quadrupoles)
> Warm Quads Average | 11.4 12.4 13.8
switched OFF | Minimum | 10.1 10.7 12.3 54
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Summe

B Symplectic maps are the natural way to represent
accelerator dynamics

2

B They are obtained through Lie transformations

Seminar, June 2016

B Truncation of the map makes it deviate from
symplecticity

B Symplecticity essential for preserving Hamiltonian
structure of system (area preservation)

B Use symplectic integrators for tracking

B Even high order integrators with positive steps
exist

B Normal form construction on the 1-turn map
makes non-linear dynamics analysis
straightforward s

Non-linear beam dynamics, Graduate Studies in Accelerator Physics’



B The accelerator Hamiltonian in the small angle, “hard-edge”
approximation is wtitten as H(z,y,l, ps,py,0;8) = Ho + V,

2

£ p2 + p2

s with the unpertutbed part Hy = (14 h z)on—"2Z,

2(1+9)

5 3=

! and the perturbation V (g, y) S | S YT

g n>1 7=0

¢ m The unperturbed part of the Hamiltonian can be integrated

= ( : 2

£ 1 ' 7

9 ot = 79 (1 + ha") (cos¢—|—2)—5f;sin¢> —1

9 pl

g ) 1 _|_ h 1 p?, 2 + p'L 2y p’L 2 {2 2 7

<) 1 X x - T

R A { 0+ g sin(20) + 20 sin’ }

8 . . Dy Dy Y

: . Py — Py tan ¢ i

= fo= gz Y : p! hs

< Pz Dy — ' h _ Y

5 p!, + pb tan wit =

8 fo—= Y ¢ ¢ 2(1 + 5) 57
\ py py




SABAZC fO (

m The perturbation part of the Hamiltonian can be integrated

2

( ' , oV oV " . : .
o=t k= s L = 2 D@ T )
Y €T X . n,j
elB 1 ¢ g‘x/ i with 2%l n>1j=1
A D D) S R R U
@ n>1j=0

m The corrector i1s expressed as

1+ hx OV \ > v\’
={{A,B},B} = ——— . s
C={14,B}, B} =~ T < or ) i ( Ay ) 'orrector is

wtltten as
rxf — :L’i
yl =y , ,
_ 1 oV oV [ov| 6%V ov| 0°V
sLc . [ = b —— < h | — A 2L+ ha') | =1 o -
ette: { pf Py~ 15 o). T oyl +(+x)[ag;iamfayiaxayi]}s
; . 2(1+ha) [OV]| O0°V ov | 0%V
Py = Dy- "oy S
| Y Y 1+9 Oz |; Oxdy|; 0Oy |; 0y* |,
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