From OPE to chiral perturbation theory in holographic QCD

David Greynat

INFN Sezione di Napoli - Dipartimento di Scienze Fisiche - Universitá di Napoli Federico II

30th June 2015

in collaboration with Luigi Cappiello and Giancarlo D'Ambrosio

Based on 1505.01000 and in preparation work

30th June -The 8th International Workshop on Chiral Dynamics 2015

- QCD has well described different regimes: low energy (e.g. χ PT), high energy (OPE), Minkowskian sector (resonances)
- Unfortunately the intermediate sector is unknown...
- Because of the existence of Non-Perturbative effects.

From now we assume Large-N_c limit

Several ways to address this issue

 Treat the 2 points Green functions as Padé approximants. Minimal Hadronic Approximation and related models

```
S. Peris and E. de Rafael, JHEP 9805 (1998)
M. Golterman and S. Peris, JHEP 0101 (2001)
```

Resummation of Large-N_c resonances properties.

```
O. Cata, M. Golterman and S. Peris, JHEP 0508, 076 (2005)
E. de Rafael, Indian Academy of Sciences, Vol. 78, N6 June 2012
```

Non-Analytic reconstruction method.

```
D. G. and S. Peris, Phys.Rev. D82 (2010)
```

AdS/CFT correspondence.

- J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998)
- A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006)

The Maldacena conjecture

4 - dimensional

Non perturbative CFT Large N_c

Green functions

5 - dimensional

Perturbative AdS Classical Theory

Green functions

Practically...

4 - dimensional

Sources coupled to currents v. a. s. p

5 - dimensional

Fields $\phi(x, z)$ on a gravitationnal background

Two different models: Hard - Wall and Soft-Wall

Let consider a conformally flat metric in 5D,

$$g_{MN} dx^{M} dx^{N} = w(z)^{2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2} \right)$$

Hard - Wall

$$0 \leqslant z \leqslant L$$
, $w(z) = \frac{1}{z}$

Soft - Wall

$$0 \leqslant z \leqslant \infty$$
, $w(z) = \frac{1}{z} e^{-\Phi(z)}$

Recovered Large N_c QCD Properties

- J. Hirn and V. Sanz, JHEP 0512, 030 (2005)
- J. Erlich, E. Katz, D.T. Son, M.A. Stephanov Phys. Rev. Lett. 95 (2005)
- D.T. Son and M.A. Stephanov Phys. Rev. D 69 (2004)
- A. Karch, E. Katz, D.T. Son, M. A. Stephanov Phys. Rev. D 74 (2006)

	Hard - Wall	Soft - Wall
		$\Phi(z) = \kappa^2 z^2$
Parton Log	YES	YES
OPE	NO	NO
Chiral symmetry breaking	YES / NO	NO
Regge-like Spectrum of resonances	NO	YES

Purpose of this work

We want to modified the dilaton field $\Phi(z)$ such that we obtain:

- The right OPE.
- A chiral symmetry breaking mechanism: axial field and a pion pole (*i.e.* $F_{\pi} \neq 0$)

Vectorial correlator properties

OPE

$$\Pi_V(Q^2) \underset{Q^2 o \infty}{\sim} \frac{N_c}{24\pi^2} \ln \left(\frac{\Lambda_V^2}{Q^2} \right) + \left< \mathcal{O}_2 \right> \frac{1}{Q^2} + \left< \mathcal{O}_4 \right> \frac{1}{Q^4} + \left< \mathcal{O}_6 \right>_V \frac{1}{Q^6}$$

where in the large-N_c limit the coefficients of the OPE are given by

$$\begin{cases} & \langle \mathcal{O}_2 \rangle = 0 \\ & \langle \mathcal{O}_4 \rangle = \frac{1}{12\pi} \alpha_s \langle G^2 \rangle \\ & \langle \mathcal{O}_6 \rangle_V = -\frac{28\pi}{9} \alpha_s \langle \bar{\psi}\psi \rangle^2 \end{cases}$$

Regge Resonances spectrum

$$\Pi_V(Q^2) = \sum_{n=0}^{\infty} \frac{F_V(n)^2}{Q^2 + M_V(n)^2}$$

with

$$M_V(n)^2 \sim \sigma n$$
,

 σ is related to the confining string tension ($\sigma \sim 1.43(13) \text{ GeV}^2$).

P. Masjuan et al., Phys. Rev. D 85, 094006 (2012)

Lagrangian

$$S_5 = -rac{1}{4g_5^2} \int\!\! d^4x \int_0^\infty\!\! dz \sqrt{g} \; {
m e}^{\; -\Phi(z)} \; g^{MN} g^{RS} \; {
m Tr} \left[\mathbb{F}_{MR} \, \mathbb{F}_{NS}
ight] \; ,$$

with $g = |\det g_{MN}|$, the field strength $\mathbb{F}_{MN} = \partial_M \mathbb{V}_M - \partial_N \mathbb{V}_M - i [\mathbb{V}_M, \mathbb{V}_N]$ and in order to reproduce the parton log

$$g_5^2 = \frac{12\pi^2}{N_c} \ .$$

The AdS/CFT correspondence prescribes that the boundary value of the 5D gauge field \mathbb{V}_M has to be identified with the classical source \mathbf{v}_μ coupled to the the 4-dimensional vectorial current $J_V^a_{\ \mu} =: \bar{q} \ \gamma_\mu \ t^a q :$,

$$\lim_{z\to 0} \mathbb{V}^a_{\mu,z}(x,z) = \mathbf{v}^a_{\mu}(x) \ .$$

The 4D-Fourier transform f_V of \mathbb{V}_M satisfies the equation of motion

$$\partial_z^2 f_V + \partial_z \left[\ln w_0(z) \right] \partial_z f_V + q^2 f_V = 0$$
,

with $w_0(z) \doteq \frac{\mathrm{e}^{-\Phi(z)}}{z} = \frac{\mathrm{e}^{-\kappa^2 z^2}}{z}$ and the boundary condition $f_V(-q^2,0) = 1$

First step: Dilaton profile prescription

In order to recover the right OPE of the vectorial correlator, we take in w(z)

$$\Phi(z) \longmapsto \Phi(z) + B(z)$$

where we choose:

$$B(z) = \sum_{k=1}^{K} \frac{b_{2k}}{2k} z^{2k}$$

A posteriori, since we need to recover the $1/Q^6$ we need only K=3. The purpose will be to find

$$b_{2k} \longleftrightarrow \langle \mathcal{O}_{2k} \rangle$$

Second step: Organisation of the calculation

We introduce an artificial control parameter θ such as

$$w(z) = w_0(z)e^{-B(\sqrt{\theta}z)}$$
 with $w_0(z) = e^{-\Phi(z)}$

 $B(\sqrt{\theta}z) = \sum_{k=0}^{3} \frac{b_{2k}}{2k} z^{2k} \theta^k$ we will take $b_{2k} \propto \theta^{-k}$.

The (complicated) equation of motion

$$\partial_z^2 f_V - \left[\frac{1}{z} + 2\kappa^2 z + b_2 z + b_4 z^3 + b_6 z^6 \right] \partial_z f_V + q^2 f_V = 0 ,$$

is transformed into a hierarchical differential system in θ

$$\begin{array}{ll} \theta^{0} & \mathfrak{D}f_{V}^{(0)} = 0 \\ \theta^{1} & \mathfrak{D}f_{V}^{(1)} = z \ b_{2} \ \partial_{z}f_{V}^{(0)} \\ \theta^{2} & \mathfrak{D}f_{V}^{(2)} = z^{3} \ b_{4} \ \partial_{z}f_{V}^{(0)} + z \ b_{2} \ \partial_{z}f_{V}^{(1)} \\ \theta^{3} & \mathfrak{D}f_{V}^{(3)} = z^{5} \ b_{6} \ \partial_{z}f_{V}^{(0)} + z^{3} \ b_{4} \ \partial_{z}f_{V}^{(1)} + z \ b_{2} \ \partial_{z}f_{V}^{(2)} \end{array}$$

where $\mathfrak{D}\varphi \doteq \partial_z^2 \varphi + \partial_z \left[\ln w_0(z) \right] \partial_z \varphi - Q^2 \varphi$ that can be solved with the usual Green function method.

$$\mathfrak{D}f_V = S(Q^2, z) \Leftrightarrow f_V(Q^2, z) = \int_0^\infty dz' w_0(z') G_V(z, z'; Q^2) S(Q^2, z')$$

then

$$f_V^{(n)}(Q^2,z) = \int_0^\infty \! \mathrm{d}x \; w_0(x) \; G_V(x,z;Q^2) \left[\sum_{k=0}^{n-1} x^{2(n-k)-1} \; b_{2(n-k)} \; \partial_x f_V^{(k)}(Q^2,x) \right]$$

Connection between the two point Green function and the 5D model

$$Q^{2}\Pi_{V}(Q^{2}) = \frac{1}{g_{z}^{2}} \lim_{z \to 0} w_{0}(z) f_{V}(Q^{2}, z) \partial_{z} f_{V}(Q^{2}, z)$$

Therefore we build an analytic expression of Π_V :

$$Q^2\Pi_V(Q^2) = \sum_{k,n} \mathcal{P}_{k,n} \left(\frac{Q^2}{4\kappa^2} \right) \ \psi^{(k)} \left(\frac{Q^2}{4\kappa^2} \right)$$

 $\mathcal{P}_{k,n}$ a polynomial and $\psi^{(k)}$ is the k^{th} derivative of the Digamma ψ .

Just to show up...

$$\Pi_V^{(0)}(Q^2) = \frac{1}{2g_5^2} \left[\gamma_E + \psi \left(\frac{Q^2}{4\kappa^2} + 1 \right) \right]$$

$$\Pi_V^{(1)}(\mathcal{Q}^2) = \frac{b_2}{4\kappa^2 g_5^2} \left(\frac{4\kappa^2}{\mathcal{Q}^2}\right) \left[1 + \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) - \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2 \psi'\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)\right]$$

$$\begin{split} \Pi_V^{(2)}(\mathcal{Q}^2) &= \frac{b_4}{\kappa^4 s_5^2} \left(\frac{4\kappa^2}{\mathcal{Q}^2}\right) \left[-2 - \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \left(5 + 6\frac{\mathcal{Q}^2}{4\kappa^2}\right) + 2\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2 \left(1 + 3\frac{\mathcal{Q}^2}{4\kappa^2}\right) \psi'\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \right] \\ &+ \frac{b_2^2}{16\kappa^4 s_5^2} \left[-1 + 2\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \psi'\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) + \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2 \psi''\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \right] \end{split}$$

$$\begin{split} \Pi_{V}^{(3)}(\mathcal{Q}^2) &= \frac{b_6}{12\kappa^6 g_5^2} \left(\frac{4\kappa^2}{\mathcal{Q}^2}\right) \left\{6 + \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \left[20 + 30\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) + 33\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2\right] \right. \\ &\qquad \qquad - 6\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2 \left[1 + 3\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) + 5\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2\right] \psi'\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \right\} \\ &\qquad \qquad - \frac{b_2 b_4}{8\kappa^6 g_5^2} \left(\frac{4\kappa^2}{\mathcal{Q}^2}\right) \left\{-1 - \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \left[5 + 9\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)\right] + 3\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2 \left[1 + 4\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)\right] \psi'\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \right. \\ &\qquad \qquad + \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^3 \left[1 + \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)\right] \psi''\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \right\} \\ &\qquad \qquad - \frac{b_2^3}{16\kappa^6 c^2} \left\{-2 + 6\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \psi'\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) + 6\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^2 \psi''\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) + \left(\frac{\mathcal{Q}^2}{4\kappa^2}\right)^3 \psi'''\left(\frac{\mathcal{Q}^2}{4\kappa^2}\right) \right\} \end{split}$$

Regge Resonances spectrum

$$Q^{2}\Pi_{V}(Q^{2}) = \sum_{k,n} \mathcal{P}_{k,n} \left(\frac{Q^{2}}{4\kappa^{2}}\right) \psi^{(k)} \left(\frac{Q^{2}}{4\kappa^{2}}\right)$$

The Digamma ψ function has its poles as $\frac{Q^2}{4\kappa^2} = -n$ then it yields to a Regge behaviour expected:

$$M(n)^2 = 4\kappa^2 n = \sigma n$$

and $\kappa \simeq 0.6\,\text{GeV}$

Recovery of the OPE

$$\Pi_{V}(Q^{2}) \underset{Q^{2} \to \infty}{\sim} \frac{1}{2g_{5}^{2}} \ln \left(\frac{4\kappa^{2} e^{-\gamma_{E}}}{Q^{2}} \right) + \underbrace{\frac{1}{g_{5}^{2}} (\kappa^{2} + \theta \frac{1}{2}b_{2})}_{<\mathcal{O}_{2}>} \underbrace{\frac{1}{Q^{2}}}_{} + \underbrace{\frac{1}{30g_{5}^{2}} \left[-5(\kappa^{2} + \theta b_{2})^{2} + 20\theta^{2}b_{4} \right]}_{<\mathcal{O}_{4}>} \underbrace{\frac{1}{Q^{4}}}_{}$$

$$+ \underbrace{\frac{4}{5g_{5}^{2}} \left[-2\theta^{2}\kappa^{2}b_{4} - \theta^{3}(b_{2}b_{4} - 4b_{6}) \right]}_{<\mathcal{O}_{6}>} \underbrace{\frac{1}{Q^{6}}}_{}$$

one has
$$\Lambda_V=2\kappa \mathrm{e}^{-\frac{\gamma_E}{2}}pprox 1\,\mathrm{GeV}$$

$$b_2 = -2\kappa^2$$
 $b_4 = \frac{3}{2}g_5^2 \langle \mathcal{O}_4 \rangle$ $b_6 = \frac{5}{16}g_5^2 \langle \mathcal{O}_6 \rangle_V$

$$b_6 = \frac{5}{16} g_5^2 \left\langle \mathcal{O}_6 \right\rangle_V$$

(Expected) Axial correlator properties

OPE

$$\Pi_A(Q^2) \underset{Q^2 \to \infty}{\sim} \frac{N_c}{24\pi^2} \ln\left(\frac{\Lambda_A^2}{Q^2}\right) + \langle \mathcal{O}_2 \rangle \frac{1}{Q^2} + \langle \mathcal{O}_4 \rangle \frac{1}{Q^4} + \langle \mathcal{O}_6 \rangle_A \frac{1}{Q^6}$$

where in the large-N_c limit the coefficients of the OPE are given by

$$\begin{cases} & \left< \mathcal{O}_2 \right> = 0 \\ & \left< \mathcal{O}_4 \right> = \frac{1}{12\pi} \; \alpha_s \; \left< G^2 \right> \\ & \left< \mathcal{O}_6 \right>_A = -\frac{11}{7} \left< \mathcal{O}_6 \right>_V \end{cases}$$

Axial spectrum

$$\Pi_A(Q^2) = -\frac{F_\pi^2}{Q^2} + \sum_{n=0}^{\infty} \frac{F_A(n)^2}{Q^2 + M_A(n)^2}$$

with

$$M_A(n)^2 \sim \sigma n$$

H. J. Kwee and R. F. Lebed, JHEP 0801, 027 (2008)

Solution: extra-scalar field on the bulk X

$$\begin{split} S_5 &= \int \!\! \mathrm{d}^4 x \int_0^\infty \!\! \mathrm{d}z \sqrt{g} \, \mathrm{e}^{\,-\Phi(z)} \, \operatorname{Tr} \! \left\{ g^{MN} \left(D_M \mathbb{X} \right)^\dagger \left(D_N \mathbb{X} \right) - m^2 \mathbb{X}^2 \right. \\ &\left. - \frac{1}{4 g_5^2} g_{MN} g_{RS} \left(\mathbb{F}_V^{MR} \mathbb{F}_V^{NS} + \mathbb{F}_A^{MR} \mathbb{F}_A^{NS} \right) \right\} \end{split}$$

where we use

$$\begin{split} D^{M}\mathbb{X} &= \partial^{M}\mathbb{X} - i[\mathbb{V}^{M}, \mathbb{X}] - i\{\mathbb{A}^{M}, \mathbb{X}\} \\ \mathbb{F}^{MN}_{V} &= \partial^{M}\mathbb{V}^{N} - \partial^{N}\mathbb{V}^{M} - i[\mathbb{V}^{M}, \mathbb{V}^{N}] - i[\mathbb{A}^{M}, \mathbb{A}^{N}] \\ \mathbb{F}^{MN}_{A} &= \partial^{M}\mathbb{A}^{N} - \partial^{N}\mathbb{A}^{M} - i[\mathbb{V}^{M}, \mathbb{A}^{N}] - i[\mathbb{A}^{M}, \mathbb{V}^{N}] \end{split}$$

If v(z) is the vacuum expectation value for the scalar field \mathbb{X} ,

$$\mathrm{Tr}|\mathbb{X}|^2 = 2\,v(z)^2$$

The equation of motion for the 4D F. T. space of the axial field $\mathbb{A}, f_A(-q^2, z)$:

$$\partial_z^2 f_A + \partial_z \left[\ln w(z) \right] \partial_z f_A - Q^2 f_A = g_5^2 \left(\frac{v(z)}{z} \right)^2 f_A$$

where
$$w(z) = \frac{1}{z} e^{-\Phi(z) - B(z)}$$

A Chiral Symmetry Breaking Mechanism

First step: recovering the axial Regge spectrum

Since $M_{a_1}^2 \simeq 2M_{\rho}^2 \simeq 2 \times 4\kappa^2$,

$$\left(\frac{v(z)}{z}\right)^2 = \beta_0 = \frac{4\kappa^2}{g_5^2}$$

Second step: Axial OPE and pion

$$\Pi_A(Q^2) \underset{Q^2 o \infty}{\sim} \frac{1}{2g_5^2} \ln \left(\frac{\Lambda}{Q^2} \right) + \frac{2\kappa^2}{g_5^2} \frac{1}{Q^2}$$

Corrected with

$$\left(\frac{v(z)}{z}\right)^2 = \beta_0 + \left[\beta^* z \delta(z)\right] \longrightarrow -\frac{\beta^*}{g_5^2 Q^2}$$

This generates a pion pole.

Complete axial spectrum and axial OPE

Completing with the same method used for the vectorial sector

$$\left(\frac{v(z)}{z}\right)^2 = \beta_0 + \beta^* z \delta(z) + \beta_2 z^2 + \beta_4 z^4$$

with
$$\beta_2=-rac{6\kappa^4}{g_s^2}$$
 and $\beta_4=-rac{10\kappa^2}{3g_s^2}-5\kappa^2\left<\mathcal{O}_4\right>+rac{45}{28}\left<\mathcal{O}_6\right>_V$

Conclusion

- We have the axial two point function Π_A with its correct OPE and spectrum
- What about F_{π} and more generally the chiral sector?

Chiral sector

$$\Pi_{LR}(Q^2) = \frac{1}{2} \left(\Pi_V(Q^2) - \Pi_A(Q^2) \right)$$

The lower Q^2 limit exists thanks to the analytic continuation of our expressions one could gives our values for the chiral constants

$$F_\pi^2 = 2\, \mathsf{Res}\left[\Pi_{\mathit{LR}}\left(\mathcal{Q}^2\right), 0
ight] \qquad \quad L_{10} = -rac{1}{4\mathsf{d}}rac{\mathsf{d}}{\mathcal{Q}^2}\left[\mathcal{Q}^2\Pi_{\mathit{LR}}(\mathcal{Q}^2)
ight]igg|_{\mathcal{Q}^2=0}$$

 F_{π}

$$F_{\pi}^{2} = \frac{N_{c}\kappa^{2}\left(180\zeta(3) + 191 - 41\pi^{2}\right)}{72\pi^{2}} + \frac{5\left(\pi^{2} - 10\right)}{2}\frac{\left\langle \mathcal{O}_{4}\right\rangle}{\kappa^{2}} - \frac{45\left(\pi^{2} - 10\right)}{56}\frac{\left\langle \mathcal{O}_{6}\right\rangle_{V}}{\kappa^{4}}$$

 $\text{with } \textit{N}_{\textit{c}} = 3, \, \kappa = 0.6 \, \text{GeV}, \, \left< \mathcal{O}_4 \right> = (-0.635 \pm 0.04) \cdot 10^{-3} \, \text{GeV}^4, \, \left< \mathcal{O}_6 \right>_{\textit{V}} = (14 \pm 3) \cdot 10^{-4} \, \text{GeV}^6$

$$F_{\pi} \simeq \sqrt{4099.9 + 579 + 1147.8} \simeq 76 \ (\pm 3)_{\text{ext.}} \ \text{MeV}$$

to be compared to the SU(2) limit value : $66 < F_{\pi} < 84$ MeV

 L_{10}

$$\begin{split} L_{10} &= \frac{N_c(8010\zeta(3) + 495 - 585\pi^2 - 46\pi^4)}{8640\pi^2} \\ &\quad + \frac{-72\zeta(3) - 12 + 11\pi^2}{64} \frac{\langle \mathcal{O}_4 \rangle}{\kappa^4} + \frac{5[5216\zeta(3) + 67 - 33\pi^2]}{1792} \frac{\langle \mathcal{O}_6 \rangle_V}{\kappa^6} \end{split}$$

 $\text{with } \textit{N}_{\textit{c}} = 3, \, \kappa = 0.6 \, \text{GeV}, \, \left<\mathcal{O}_{4}\right> = (-0.635 \pm 0.04) \cdot 10^{-3} \, \text{GeV}^{4}, \, \left<\mathcal{O}_{6}\right>_{\textit{V}} = (14 \pm 3) \cdot 10^{-4} \, \text{GeV}^{6}$

$$10^3 L_{10} = -4.6 - 0.8 + 0.1 \simeq -5.3 (\pm 1)_{\text{ext.}}$$

to be compared to : $L_{10} = -5.3 \pm 0.13 \cdot 10^{-3}$

Conclusion

- We have shown that it is possible to recover the right OPE and the Regge behaviour of the spectrum for the vectorial field from a modified dilaton profile in the SW model
- We have shown that by the use of an extra scalar field it is possible to have axial field in SW model with the right OPE and the axial spectrum.
- We have shown a χ SBM quite efficient: Taking $\langle \mathcal{O}_4 \rangle = \langle \mathcal{O}_6 \rangle = 0$, one has

$$N_C = 3.5$$

- What about the intermediate region? This method provides an unique way to do the analytic continuation from the OPE to the χ PT by predicting a value for F_{π} and L_{10} through Π_{LR} .
- More generally we have a pion wave function (not mention here) that allows to extract prediction for the dominant L_i from the χ PT Lagrangian.