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Facultad de CC F́ısicas, Madrid, Spain

QCD@Work, Matera, Italy
June 27, 2018



aµ and contributions to aµ P Transition Form Factor Conclusions

Purpose

� The main purpose of this work is to reduce the theoretical
uncertainty in the computation of the aµ, in which the main
source of uncertainty comes from the hadronic contributions.
This is why we decided to analyze the hadronic light-by-light
contribution using χPT extended to include resonances.
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Magnetic moment

� The Dirac equation predicts a magnetic moment for a particle
with EM charge Q and mass m

µ` = g`
Q

2m
s

� such that g` = 2. This is obtained for a classic EM field.

� The deviation from g` = 2 defines the anomalous magnetic
moment, which will happen due to loop corrections.

a` := g`−2
2 = α

2π +O(α2) ≈ 0.00116.
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Contributions to aµ
� The computation of aµ can be splitted in different

contributions, whose values can be found in PDG1

aµ = aQED
µ + aEWµ + aHadµ

� aQED
µ are all corrections2 that might come from QED

aQED
µ = 116584718.95(0.08)× 10−11 +O

(α
π

)6

(18) (18) (2072) (120) (18) (2)

1C. Patrignani et al. (Particle Data Group), Chin.Phys.C40(2016)
2T. Aoyama et al. PRL 109(2012)
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aEWµ

� aEWµ are Electroweak contribution that are not aQED
µ

(W±,Z ,H) at two loops3. Three loops contribution is
negligible (. 0.4× 10−11).

aEWµ = 153.6(1.0)× 10−11
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d) e) f)

3C. Gnendiger et al., Phys.Rev.D88 (2013)
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Hadronic contributions
� aHadµ can be separated into two parts, the PDG values are the

following.4

Hadrones

Hadronic Vacuum Polarization (HVP)
contribution.
aHVPµ = 6845(33)(7)× 10−11

Hadrones Hadronic light-by-light (HLbL)
contribution. aHLbLµ = 105(26)× 10−11

4C. Patrignani et al. (Particle Data Group), Chin.Phys.C40(2016)
For HVP, M. Davier et al. Eur.Phys.J. C71 (2011)
For HLbL J. Prades et al. Advanced series on directions in HEP Vol20.
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Hadronic contributions to aµ

� All the contributions and their uncertainties are shown in the
next table.

Contribution ×1011 Uncertainty×1011

QED 116 584 718.95 0.08

EW 153.6 1.0

Had 6 950 (34)Vac. Pol. (26)Light-by-Light

Total 116 591 823 (34)(26)

Exp 116 592 091 (54)(33)

� Clearly, the largest uncertainty comes from the hadronic
contribution.

� With these values there is a discrepancy

aexpµ − aSMµ = 268(63)(43)× 10−11 ∼ 3.5σ
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Hadronic contributions to aµ

� The main uncertainty comes from hadronic contributions5,
which give 4.3× 10−10.

� The current experimental6 error is 6.3× 10−10.

� Fermilab & J-Parc are planning to lower7 the error to
1.6× 10−10. It is necessary to reduce theoretical uncertainty.

� A reanalysis of Rhad from Lattice QCD may reduce8 the HVP
error (3.3× 10−10) below that of the HLbL piece.

5M. Davier et al., Eur.Phys.J.C71(2011)
6G. W. Bennet et al., [Muon g-2 Collab.],PRD73(2006)
7H. Inuma et al, Nucl. Instrum. Meth. A 832 (2016); W. Gohn,

FERMILAB-CONF-17-602-PPD, Muon g-2 collaboration, (2017)
8Talks given at the Muon g-2 Theory Initiative Workshops held during the last

year at FNAL, Tsukuba, Connecticut Univ. and Mainz Univ.
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Hadronic Light by Light

� We decided to analyze the HLbL piece since, nowadays, it
can’t be obtained from experimental data.

� It can be separated into three parts.

π0, η, η′

µ

γ

(a) [L.D.]

γ
γ

π±,K±

µ

γ

(b) [L.D.]

γ
γ

u, d, s

µ

γ

(c) [S.D.]

� The sum of (b) and (c) is9 ∼ 1/10 smaller than (a).

9F. Jegerlehner & A. Nyffeler, Phys.Rep.477(2009)
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Pseudoscalar pole

� Our contribution to aµ comes from diagram (a)

π0, η, η′

� To compute the pion transition form factor Fπγ?γ? we rely on
Resonance Chiral Theory10 (RχT) with U(3) breaking.

10G. Ecker, J. Gasser A. Pich & E. De Rafael Nucl.Phys. B321(1989)
P.D. Rúız-Femeńıa et al., JHEP 0307 (2003)
K. Kampf and J. Novotný PRD84 (2011)
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U(3) breaking and Fπγ?γ?
� We include corrections up to O(m2

P). Some of this give11

M2
ρ = M2

ω = M2
V − 4eVmm2

π , M2
φ = M2

V − 4eVm (2m2
K −m2

π)

� Where eVm is the U(3) breaking parameter.

� We can constrain parameters by imposing high energy
conditions on FPγ?γ? .

� After constraining parameters we find12

Fπγ?γ?(q2
1 , q

2
2) =

32π2m2
πF

2
V d

?
123 − NCM

2
VM

2
ρ

12π2FπDρ(q2
1)Dρ(q2

2)
,

where DR(q2) = M2
R − q2.

11V. Cirigliano, G. Ecker, H. Neufeld and T. Pich, JHEP 0306 (2006)
12AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099



aµ and contributions to aµ P Transition Form Factor Conclusions

The η(′)-TFF

� For the η(′) we find13

Fηγ?γ?(q2
1 , q

2
2) =

1

12π2FDρ(q2
1)Dρ(q2

2)Dφ(q2
1)Dφ(q2

2)
×

{
−NCM

2
V

3

[
5CqM

2
ρDφ(q2

1)Dφ(q2
2)−

√
2CsM

2
φDρ(q2

1)Dρ(q2
2)
]

+
32π2F 2

V d
?
123m

2
η

3

[
(5CqDφ(q2

1)Dφ(q2
2)−

√
2CsDρ(q2

1)Dρ(q2
2)
]

−256π2F 2
V d

?
2

3

[
(5Cq∆2

ηπDφ(q2
1)Dφ(q2

2) +
√

2Cs∆2
2KπηDρ(q2

1)Dρ(q2
2)
]}

.

� The η′-TFF can be obtained from Fη′γ?γ? by making
Cq → C ′q, Cs → −C ′s and mη → mη′ .

� (Here we define ∆2
ηπ := m2

η −m2
π and ∆2

2Kπη := 2m2
K −m2

π −m2
η)

13AG, P. Roig, JJ Sanz Cillero, arXiv:1308.08099
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Fit to experimental TFF

� We fit eVm ,MV , d
?
123, d

?
2 and η − η′ mixing parameters to

experimental determinations of Fπγγ? and Fη(′)γγ? .

� BaBar π0-TFF is at odds with the asymptitic QCD limit, with
Belle data and η(′)-TFF related through chiral symmetry.

� Neglecting BaBar π0-TFF data reduces χ2/dof from
150/101→ 69/84.

� Therefore, our best fit will exclude BaBar π0-TFF.
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Fπγγ?

� After fitting we get14.

� BaBar data is shown in red.
14AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099
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Fηγγ? and Fη′γγ?
� Our fit for the η-TFF gives15

15AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099
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Fηγγ? and Fη′γγ?

� While for the η′-TFF gives16

16AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099
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aP,HLbLµ

� We get a total pseudoscalar exchange contribution of

aP,HLbLµ = (8.47± 0.16) · 10−10

� For TFFs in the chiral limit we get aP,HLbLµ = 8.27 · 10−10.

� This shows that NNLO corrections, which will be suppressed
by further powers of m2

P , must be negligible.

� NLO effects from 1/NC can be estimated from ππ and KK

loops contribution to Dρ: (∆aP,HLbLµ )1/NC
= ±0.09× 10−10.

� Our TFF ∼ 1/Q4 when Q2 →∞ for doubly off-shell photon.

A rough estimate of uncertainty is (∆aP,LbLµ )asym =+0.5
−0.0 ·10−10
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aP,HLbLµ

� Now we can compare our results with earlier results.

aHLbLµ · 1010 Contribution

8.3± 1.2 M. Knecht and A. Nyffeler, PRD 65(2002)

8.5± 1.3 J. Bijnens, E. Palante and J. Prades, Phys.Lett.75(1995)

8.60± 0.25 P. Roig, AG and G. López Castro, PRD 89 (2014)

9.4± 0.5 P. Masjuan and P. Sánchez Puertas, PRD 95 (2017)

8.28± 0.34 H. Czyż, P. Kisza and S. Tracz, PRD 97 (2018)

� Our contribution gives

aP,HLbL
µ = (8.47± 0.16sta ± 0.091/NC

+0.5
−0.0 asym) · 10−10
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Conclusions

� Our determination of the aP,HLbLµ has an improved theoretical
accuracy with lower uncertainty compared with previous
determinations.

� We found that BaBar π0-TFF data is incompatible with
measurements of η(′) form factors.

� Excluding fitting data in the q2 > 0 region we avoid large
uncertainties due to EM radiative corrections.

� We find that further chiral corrections to FPγ?γ? must be
negligible.
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Back up
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Short Distance constraints

� One finds by taking the limits

lim
Q2→∞

Fπγ?γ?(Q2, 0) and lim
Q2→∞

Fπγ?γ?(Q2,Q2),

� @O(m0
π) :

CW
22 = 0, c125 = 0, c1256 = − NCMV

32
√

2π2FV
, d3 = c1256√

2

MV
FV

� @O(m2
π) :

λV = −32π2FV
NC

CW
7 , c?1235 = NCMV

4
√

2π2FV

(
evm
2 +

M2
VλV
FV

)
� From Fηγ?γ? :

CW
8 = 0, c3 = c1235

8

� From VVP Green’s function: CW
7 = λV = 0.
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aP,HLbLµ

� We get for π0

aπ,LbLµ = 5.81± 0.09× 10−10

� While we get for η

aη,LbLµ = 1.51± 0.06× 10−10

� And for η′

aη
′,LbL
µ = 1.15± 0.07× 10−10

� Getting a total pseudoscalar exchange contribution of

aP,HLbLµ = 8.47± 0.16× 10−10
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Fitted parameters

With π0-BaBar Without π0-BaBar Fixing MV and eVm

P1 −0.2± 1.0 0.0± 1.0 0.0± 1.0
P2 0.5± 1.0 0.0± 0.5 0.0± 1.0
d̄2 (−2.9± 1.7) · 10−2 (−2.7± 1.7) · 10−2 (−3± 2) · 10−2

d̄123 (−2.5± 1.5) · 10−1 (−2.3± 1.5) · 10−1 (−3± 2) · 10−1

MV (799± 5) MeV (791± 6) MeV 764.3 MeV †

eVm −0.35± 0.10 −0.36± 0.10 −0.228 †

θ8 (−19.5± 0.9)◦ (−19.5± 0.9)◦ (−21.7± 0.9)◦

θ0 (−9.5± 1.6)◦ (−9.5± 1.6)◦ (−10.4± 1.6)◦

f8 (118± 4) MeV (118± 3) MeV (118± 3) MeV
f0 (108± 3) MeV (107.5± 1.0) MeV (107± 3) MeV

χ2/dof 150./101 69./84 101./86

P1/2 are related to d123 and d2 through a rotation that reduces
correlation between the two latter.
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Asymptotic behavior

� We obtained the correct behavior for an on-shell photon,

lim
Q2→∞

Fπγ?γ?(Q2, 0) ≈ 2F

Q2
.

� The correct behavior for Fπγ?γ?(Q2,Q2) can be obtained
considering another vector multiplet. In the chiral limit we get

Fπ0γ?γ? (q2
1 , q

2
2) =

−1

12π2F
(
M2
ρ − q2

1

) (
M2
ρ − q2

2

) (
M2
ρ′ − q2

1

)(
M2
ρ′ − q2

2

)
×
[
− q2

1q
2
2

(
NCM

4
ρ′ − 48π2F 2M2

ρ′ + 4π2F 2
(
q2

1 + q2
2

))
+NCM

4
ρM

4
ρ′ − 8π2F 2M2

ρ

(
3
(
q2

1 + q2
2

)
M2
ρ′ − q2

1q
2
2

)
+64π2F 2

ρd
(ρ,ρ)
3 M2

ρq
2
1q

2
2

(
1−

M2
ρ′

M2
ρ

)2

−16π2
√

2Fρc
(ρ)
125

Mρ
q2

1q
2
2

(
q2

1 − q2
2

)
2

(
1−

M2
ρ′

M2
ρ

)]
.
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Asymptotic behavior

� Only two parameters remain unconstrained after matching
with high energy QCD behavior, which we choose cρ125 and dρ3

� Since contributions from the second multiplet are considered
subleading, and one constraint is

Fρ
cρ125

Mρ
+ Fρ′

cρ
′

125

Mρ′
= 0

we assume that cρ125 = cρ
′

125 = 0.

� For d3 we use the SD constraint from previous analysis.

F 2
ρ d

ρ
3 =

NCM
2
ρ

64π2

� Comparison is done in the chiral limit, using Mρ = 770 MeV.
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1/NC error

� A NLO effect from 1/NC terms will be the intermediate ππ
and KK̄ contribution17 to Dρ.

� This gives

M2
ρ − q2 −→ M2

ρ − q2 +
q2M2

ρ

96π2F 2
π

(
Aπ(q2) +

1

2
AK (q2)

)
,

where

AP(q2) = ln
m2

P

M2
ρ

+ 8
m2

P

q2
− 5

3
+ σ3

P(q2) ln

(
σP(q2) + 1

σP(q2)− 1

)
,

and σP(q2) =
√

1− 4m2
P

q2 .

� Since for aH,LbLµ the photon momenta are q2 < 0, Dρ is real.

17D. Gómez-Dumm, A. Pich and J. Portolés, PRD62 (2000)
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Beyond Standard Model (BSM) probe

� Precise measurements of a` make feasible the search of BSM
effects.

� Contributions to BSM interactions, like chiral d=5 operator
Od=5 = g

Λ ψ̄σ
µνFµνψ mixes helicities of `.

� Helicity flips are allowed only for massive particles, so Od=5

must be suppressed by a factor ∼ gm`
Λ2 .

� If current discrepancy is from BSM contribution to aµ,

Λ ≈ √g 100 TeV
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Why not ` = τ?

� Since transition probability is squared modulus of the
amplitude, BSM effects will be easier to detect with ` = µ(

mµ

me

)2

∼ 4× 104

� Therefore, BSM effects should be larger on aτ . Nevertheless,
ττ is so small that experimental results18 are still compatible
with aτ = 0.

τµ = 2.197× 10−6s, ττ = 2.906× 10−13s ⇒ ττ
τµ
∼ 10−7

18K. Ackerstaff et al., [OPAL Collab.] Phys.Lett.B431(1998)
M. Acciarri et al., [L3 Collab.] Phys.Lett.B434(1998)
W. Lohmann, Nucl.Phys.B144(2005)
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ae vs aµ precission

� Even though measurements of ae are 2250 times more
precise19 aµ is

1

2250

(
mµ

me

)2

∼ 19

times more sensitive to BSM contributions.

� Therefore, it would be more plausible to find such a deviation
in the aµ.

19R.S. Van Dyck et al., PRL59(1987);
P.J. Mohr et al., Rev.Mod.Phys.72(2000)
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Electromagnetic current

� The way to compute aµ is through the interaction Lagrangian

LQED
int (x) = −eψ̄(x)γµAµ(x)ψ(x),

� where A = AQED + Aext. AQED will give the radiative
corrections as that given by Schwinger and Aext is a classic
EM field.

� Through Gordon identity, the lepton current in momentum
space can be written as

j̃α = (−ie)ū(p + q)

[
γαFE (q2) + i

σαβqβ
2mµ

FM(q2)

]
u(p),

� where FE (q2) is called the Dirac (or electric charge) form
factor and FM(q2) is the Pauli (or magnetic) form factor.
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Magnetic moment

� Then, −→µ is the part interacting with the
−→
B from Aext, −→µ · −→B .

� This gives
−→µ = g

( e

2m

)−→s ,
� where

g = 2[F1(0) + F2(0)].

� By neglecting contributions from AQED
µ one gets F1(0) = 1

and F2(0) = 0, recovering Dirac’s result g = 2.

� Therefore, the −→µ · −→B interaction is needed to measure aµ.
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How to measure aµ?

� If
−→
B is constant, the problem reduces to determining the

helicity.

� However, one big issue arises. Muons are unstable!

� Thanks to maximal parity violation of weak interactions one
can determine the helicity of the muon.

� To see this one needs to know how to generate muons.
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The π decay

� Charged pions decay 99.99% of the time to muons

B(π± → µ±νµ) ≈ 99.99%.

� Therefore, one can produce muons by first producing π±,
generated by hitting a fixed target with a proton beam.

W−π−

d

ū µ−

ν̄µ

π–decay
·
?

� The lepton current coupling to the weak gauge boson, W α, is

jWα (x) = ψ̄νL(x)γαψµL(x),

� where ψL = 1
2 (1− γ5)ψ is a left eigenstate of helicity.

? Figure treacherously stolen from F. Jegerlehner & A. Nyffeler, Phys.Rep.477(2009).
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Helicity of muons.

� This means that muons obtained from π decays have a
determined helicity.

➪

➪π+

µ+ νµL

CP↔ ➪

➪

π−

µ− ν̄µR

➪

➪

π+

µ+ νµR

CP↔

l P

✘ ➪

➪π−

µ− ν̄µL

l P

✘

ր
ց

տ
ւC

?

� From π+ decays results right anti-muons, where from π−

decays results left muons.

? Also treacherously taken from Jegerlehner & Nyffeler, Phys.Rep.477(2009).
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Helicity of electrons

� The muon also decays through a weak gauge boson exchange.

➪

➪➪
➪

µ+

e+
ν̄µR

νeL
➪ ➪➪

➪

µ−

e−
νµL

ν̄eR ?

� This means that the helicity of the electron (positron) can
also be determined.

� Therefore, in wherever direction the electron is ejected, it
must be parallel (e+) or antiparallel (e−) to its momentum.

� An additional electric quadrupole field normal to the muon
orbit is used to focus the beam.

? Same as before, Jegerlehner and Nyffeler, Phys.Rep.33(2009)
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Experimental summary

� To summarize, this is the experimental setup.

π+
Storage

Ring

Protons

from AGS

Target

Pions

p=3.1 GeV

π+ → µ+νµ

Inflector

Polarized Muons

Injection Point

Kicker

Modules

Injection Orbit

Storage Ring Orbit

νµ µ+

⇒ ⇐ spin
momentum

In Pion Rest Frame

“Forward” Decay Muons
are highly polarized

?

� All remaining is to determine the Larmor precession.

? Same, F. Jegerlehner and A. Nyffeler, Phys.Rep.33(2009)
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Who TF Larmor?♠

� The Larmor precession is defined as the precession of a
magnetic moment about a magnetic field.

� The Larmor frequency in this case is

−→ω = − e

mµ

[
aµ
−→
B − aµ

(
γ

γ + 1

)
(−→v · −→B )−→v +

(
aµ −

1

γ2 − 1

)−→
E ×−→v

]
.

♠ “Who is That Famous Larmor?”
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It’s magic?

� One can magically disappear the electric quadrupole field
contribution.
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Magic? Always believe it’s not so

� It is done by choosing the magic Lorentz factor to be
γm = 29.3, corresponding to a magic energy E m

µ ≈ 3.098 GeV.

�

−→
E generates an oscillation in the beam direction and in

−→
B

direction.

� The reason to disregard the contribution from
−→
E is to

minimize −→ω . This will reduce the error for aµ.



aµ and contributions to aµ P Transition Form Factor Conclusions

Resonance Chiral Theory RχT

� The relevant degrees of freedom are20 the octet of the lightest
pseudoscalar (π, K, η and η′).

� The expansion parameter in this theory is 1/NC , and in large
NC the U(1)A broken symmetry is restored, that is the reason
for taking η′ at the same level as the other resonances.

20G. Ecker, J. Gasser A. Pich y E. De Rafael Nucl.Phys. B321(1989)
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Fπγγ parameters

� RχT parameters can be found using short distance behavior of
QCD, which predicts an asymptotic behavior of s−1 for this
process.

� Thus, short distance relationships21 ensure a convergent
behavior

d3 = − NCM
2
V

64π2F 2
V

+
F 2

8F 2
V

−4
√

2P2

FV
; c125 = 0; d123 =

1

24
;

FV =
√

3F ; c125 = 0; c1256 = − NCMV

32
√

2π2FV

21J. Sanz-Cillero and P. Roig, Phys.Rev.Lett.B733(2014)
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Restored U(1)A

� Within t’Hooft’s large NC , the anomaly term is suppressed by
a factor 1/NC with respecto to the rest of the QCD lagrangian

g2

8π2

θ

NC
TrFµν F̃µν ,

� Therefore in the limit NC →∞ the U(1)A symmetry is
restored.
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Wess-Zumino-Witten
� A fundamental part of the analysis is the WZW term, wich is

order p4 in the chiral counting and describe intrinsic odd
interactions 22.

Z [U, l , r ] = − iNC

240π2

∫
M5

d5xεijklm〈ΣL
i ΣL

j ΣL
kΣL

l ΣL
m〉

− iNC

48π2

∫
d4xεµνρσ(W (U, l , r)µνρσ −W (1, l , r)µνρσ)

W (U, l , r)µνρσ = 〈U`µ`ν`ρU†rσ+
1

4
U`µU

†rνU`ρU†rσ+iU∂µ`ν`ρU
†rσ

+ i∂µrνU`ρU
†rσ − iΣL

µ`νU
†rρU`σ + ΣL

µU
†∂νrρU`σ

− ΣL
µΣL

νU
†rρU`σ + ΣL

µ`ν∂ρ`σ + ΣL
µ∂ν`ρ`σ − iΣL

µ`ν`ρ`σ

+
1

2
ΣL
µ`νΣL

ρ`σ − iΣL
µΣL

νΣL
ρ`σ − (L↔ R)〉,

ΣL
µ = U†∂µU,ΣR

µ = U∂µU
†, (1)

22J. Wess and B. Zumino Phys.Lett.37B(1971)
E. Witten, Nucl. Phys. B223 (1983)
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Contribución de resonancias a las LEC de χPT a O(p4)

� El lagrangiano de interacción de las resonancias vectoriales es

L(V ) = 〈VµνJµν〉; Jµν =
FV

2
√

2
f µν+ + i

GV

2
√

2
[uµ, uν ]

� Con f µν± = uFµνL u† ± u†FµνR u, donde

FµνR,L = ∂µ(r , `)ν − ∂ν(r , `)µ − i [(r , `)µ, (r , `)ν ]

� siendo r y ` las corrientes vectoriales y axiales externas,
respectivamente.

� y uµ = i
[
u† (∂µ − irµ) u − u (∂µ − i`µ) u†

]
= iu†DµUu†

� FV y GV son parámetros reales.



aµ and contributions to aµ P Transition Form Factor Conclusions

� Aśı, se encuentra que V debe cumplir una ecuación de
constricción

∇α∇ρV αβ −∇β∇ρV ρα + M2
VV

αβ = −2Jαβ

� Donde ∇µR = ∂µR + [Γα,R] y

Γα =
1

2
[u†(∂α − irα)u + u(∂α − i`α)u†].

Al sustituir V y a órden p4 se tiene que

LV1 =
G 2
V

8M2
V

LV2 = 2LV1 LV3 = −6LV1

LV9 =
FVGV

2M2
V

LV10 = − F 2
V

4M2
V

� y de igual forma para las demás resonancias.
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