Conclusions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Pseudoscalar pole contribution to the hadronic light-by-light piece of a_{μ}

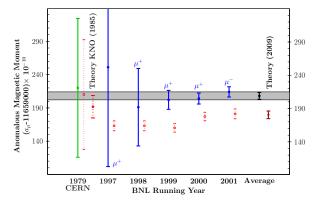
Adolfo Guevara

Departamento de Física Teórica Facultad de CC Físicas, Madrid, Spain

QCD@Work, Matera, Italy June 27, 2018

Purpose

• The main purpose of this work is to reduce the theoretical uncertainty in the computation of the a_{μ} , in which the main source of uncertainty comes from the hadronic contributions. This is why we decided to analyze the hadronic light-by-light contribution using χ PT extended to include resonances.



▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Magnetic moment

• The Dirac equation predicts a magnetic moment for a particle with EM charge Q and mass m

$$oldsymbol{\mu}_\ell = g_\ell rac{Q}{2m} \mathbf{s}$$

- such that $g_{\ell} = 2$. This is obtained for a classic EM field.
- The deviation from $g_{\ell} = 2$ defines the anomalous magnetic moment, which will happen due to loop corrections.

$$a_{\ell} := rac{g_{\ell}-2}{2} = rac{lpha}{2\pi} + \mathcal{O}(lpha^2) pprox 0.00116.$$

э

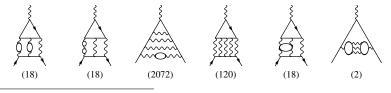
Contributions to a_{μ}

 The computation of a_μ can be splitted in different contributions, whose values can be found in PDG¹

$$a_\mu = a_\mu^{QED} + a_\mu^{EW} + a_\mu^{Had}$$

• a_{μ}^{QED} are all corrections² that might come from QED

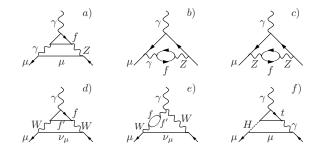
$$a_{\mu}^{\textit{QED}} = 116584718.95(0.08) imes 10^{-11} + \mathcal{O}\left(rac{lpha}{\pi}
ight)^6$$



Conclusions

• a_{μ}^{EW} are Electroweak contribution that are not a_{μ}^{QED} (W^{\pm}, Z, H) at two loops³. Three loops contribution is negligible ($\lesssim 0.4 \times 10^{-11}$).

$$a_{\mu}^{EW} = 153.6(1.0) imes 10^{-11}$$



³C. Gnendiger et al., Phys.Rev.D88 (2013)

・ロト・日本・日本・日本・日本・日本

Hadronic contributions

• a_{μ}^{Had} can be separated into two parts, the PDG values are the following.⁴



⁴C. Patrignani *et al.* (Particle Data Group), Chin.Phys.C40(2016)
For HVP, M. Davier *et al.* Eur.Phys.J. C71 (2011)
For HLbL J. Prades *et al.* Advanced series on directions in HEP Vol20.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hadronic contributions to a_{μ}

• All the contributions and their uncertainties are shown in the next table.

Contribution	$\times 10^{11}$	Uncertainty $ imes 10^{11}$	
QED	116 584 718.95	0.08	
EW	153.6	1.0	
Had	6 950	(34) _{Vac. Pol.} (26) _{Light-by-Light}	
Total	116 591 823	(34)(26)	
Exp	116 592 091	(54)(33)	

- Clearly, the largest uncertainty comes from the hadronic contribution.
- With these values there is a discrepancy

$$a_{\mu}^{exp}-a_{\mu}^{SM}=268(63)(43) imes 10^{-11}~~\sim 3.5\sigma$$

Hadronic contributions to a_{μ}

- The main uncertainty comes from hadronic contributions 5, which give $4.3\times 10^{-10}.$
- The current experimental 6 error is $6.3\times 10^{-10}.$
- Fermilab & J-Parc are planning to lower⁷ the error to 1.6×10^{-10} . It is necessary to reduce theoretical uncertainty.
- A reanalysis of $R_{\rm had}$ from Lattice QCD may reduce⁸ the HVP error (3.3×10^{-10}) below that of the HLbL piece.

⁵M. Davier *et al.*, Eur.Phys.J.C71(2011)

⁶G. W. Bennet *et al.*, [Muon g-2 Collab.], PRD73(2006)

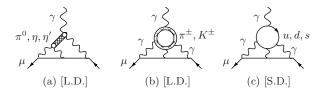
⁷H. Inuma et al, Nucl. Instrum. Meth. A 832 (2016); W. Gohn,

FERMILAB-CONF-17-602-PPD, Muon g-2 collaboration, (2017)

⁸Talks given at the Muon g-2 Theory Initiative Workshops held during the last year at FNAL, Tsukuba, Connecticut Univ. and Mainz Univ= + - = + -

Hadronic Light by Light

- We decided to analyze the HLbL piece since, nowadays, it can't be obtained from experimental data.
- It can be separated into three parts.

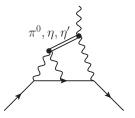


• The sum of (b) and (c) is $^9 \sim 1/10$ smaller than (a).

⁹F. Jegerlehner & A. Nyffeler, Phys.Rep.477(2009) □ → <♂ > < ≧ → < ≧ → < ≧ → ○ < ♡ < ♡

Pseudoscalar pole

• Our contribution to a_{μ} comes from diagram (a)



• To compute the pion transition form factor $F_{\pi\gamma^{\star}\gamma^{\star}}$ we rely on Resonance Chiral Theory¹⁰ (R χ T) with U(3) breaking.

¹⁰G. Ecker, J. Gasser A. Pich & E. De Rafael Nucl.Phys. B321(1989)
 P.D. Ruíz-Femenía *et al.*, JHEP 0307 (2003)
 K. Kampf and J. Novotný PRD84 (2011)

U(3) breaking and $\mathcal{F}_{\pi\gamma^{\star}\gamma^{\star}}$

• We include corrections up to $\mathcal{O}(m_P^2)$. Some of this give¹¹

$$M_{
ho}^2 = M_{\omega}^2 = M_V^2 - 4 e_m^V m_\pi^2 \,, \qquad M_{\phi}^2 = M_V^2 - 4 e_m^V (2 m_K^2 - m_\pi^2)$$

- Where e_m^V is the U(3) breaking parameter.
- We can constrain parameters by imposing high energy conditions on *F*_{Pγ*γ*}.
- After constraining parameters we find¹²

$$\mathcal{F}_{\pi\gamma^{\star}\gamma^{\star}}(q_{1}^{2},q_{2}^{2})=rac{32\pi^{2}m_{\pi}^{2}F_{V}^{2}d_{123}^{\star}-N_{C}M_{V}^{2}M_{
ho}^{2}}{12\pi^{2}F_{\pi}D_{
ho}(q_{1}^{2})D_{
ho}(q_{2}^{2})},$$

where $D_R(q^2) = M_R^2 - q^2$.

The $\eta^{(\prime)}$ -TFF

- For the $\eta^{(\prime)}$ we find 13

$$\mathcal{F}_{\eta\gamma^{\star}\gamma^{\star}}(q_{1}^{2},q_{2}^{2}) = \frac{1}{12\pi^{2}FD_{\rho}(q_{1}^{2})D_{\rho}(q_{2}^{2})D_{\phi}(q_{1}^{2})D_{\phi}(q_{2}^{2})} \times \\ \left\{ -\frac{N_{C}M_{V}^{2}}{3} \left[5C_{q}M_{\rho}^{2}D_{\phi}(q_{1}^{2})D_{\phi}(q_{2}^{2}) - \sqrt{2}C_{s}M_{\phi}^{2}D_{\rho}(q_{1}^{2})D_{\rho}(q_{2}^{2}) \right] \\ + \frac{32\pi^{2}F_{V}^{2}d_{123}^{\star}m_{\eta}^{2}}{3} \left[(5C_{q}D_{\phi}(q_{1}^{2})D_{\phi}(q_{2}^{2}) - \sqrt{2}C_{s}D_{\rho}(q_{1}^{2})D_{\rho}(q_{2}^{2}) \right] \\ - \frac{256\pi^{2}F_{V}^{2}d_{2}^{\star}}{3} \left[(5C_{q}\Delta_{\eta\pi}^{2}D_{\phi}(q_{1}^{2})D_{\phi}(q_{2}^{2}) + \sqrt{2}C_{s}\Delta_{2K\pi\eta}^{2}D_{\rho}(q_{1}^{2})D_{\rho}(q_{2}^{2}) \right] \right\}.$$

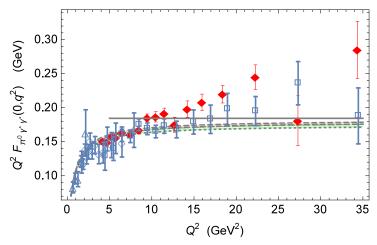
• The η' -TFF can be obtained from $\mathcal{F}_{\eta'\gamma^{\star}\gamma^{\star}}$ by making $C_q \to C'_q$, $C_s \to -C'_s$ and $m_\eta \to m_{\eta'}$.

• (Here we define
$$\Delta_{\eta\pi}^2 := m_\eta^2 - m_\pi^2$$
 and $\Delta_{2K\pi\eta}^2 := 2m_K^2 - m_\pi^2 - m_\eta^2$)

Fit to experimental TFF

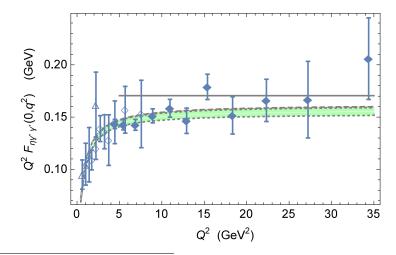
- We fit $e_m^V, M_V, d_{123}^{\star}, d_2^{\star}$ and $\eta \eta'$ mixing parameters to experimental determinations of $\mathcal{F}_{\pi\gamma\gamma^{\star}}$ and $\mathcal{F}_{\eta^{(\prime)}\gamma\gamma^{\star}}$.
- BaBar π^0 -TFF is at odds with the asymptitic QCD limit, with Belle data and $\eta^{(\prime)}$ -TFF related through chiral symmetry.
- Neglecting BaBar π^0 -TFF data reduces χ^2 /dof from 150/101 \rightarrow 69/84.
- Therefore, our best fit will exclude BaBar π^0 -TFF.

• After fitting we get¹⁴.

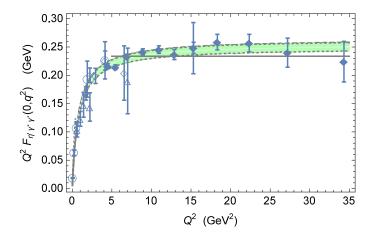


• BaBar data is shown in red.

• Our fit for the η -TFF gives¹⁵



• While for the η' -TFF gives¹⁶



 $a_{\mu}^{P,HLbL}$

• We get a total pseudoscalar exchange contribution of

$$a_{\mu}^{P,HLbL} = (8.47\pm0.16)\cdot10^{-10}$$

- For TFFs in the chiral limit we get $a_{\mu}^{P,HLbL} = 8.27 \cdot 10^{-10}$.
- This shows that NNLO corrections, which will be suppressed by further powers of m_P^2 , must be negligible.
- NLO effects from 1/N_C can be estimated from ππ and K K
 loops contribution to D_ρ: (Δa^{P,HLbL}_μ)_{1/N_C} = ±0.09 × 10⁻¹⁰.
- Our TFF $\sim 1/Q^4$ when $Q^2 \rightarrow \infty$ for doubly off-shell photon. A rough estimate of uncertainty is $(\Delta a_{\mu}^{P,LbL})_{asym} = \stackrel{+0.5}{_{-0.0}} \cdot 10^{-10}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Now we can compare our results with earlier results.

$a_{\mu}^{HLbL} \cdot 10^{10}$	Contribution		
8.3 ± 1.2	M. Knecht and A. Nyffeler, PRD 65(2002)		
8.5 ± 1.3	J. Bijnens, E. Palante and J. Prades, Phys.Lett.75(1995)		
8.60 ± 0.25	P. Roig, AG and G. López Castro, PRD 89 (2014)		
9.4 ± 0.5	P. Masjuan and P. Sánchez Puertas, PRD 95 (2017)		
8.28 ± 0.34	H. Czyż, P. Kisza and S. Tracz, PRD 97 (2018)		

• Our contribution gives

$$a_{\mu}^{P,HLbL} = (8.47 \pm 0.16_{\rm sta} \pm 0.09_{1/N_{C}-0.0} \stackrel{+0.5}{_{\rm asym}}) \cdot 10^{-10}$$

Conclusions

- Our determination of the $a_{\mu}^{P,HLbL}$ has an improved theoretical accuracy with lower uncertainty compared with previous determinations.
- We found that BaBar π^0 -TFF data is incompatible with measurements of $\eta^{(\prime)}$ form factors.
- Excluding fitting data in the $q^2 > 0$ region we avoid large uncertainties due to EM radiative corrections.
- We find that further chiral corrections to *F_{Pγ*γ*}* must be negligible.

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Back up

Short Distance constraints

• One finds by taking the limits

$$\lim_{Q^2 \to \infty} \mathcal{F}_{\pi \gamma^\star \gamma^\star}(Q^2, 0) \quad \text{and} \quad \lim_{Q^2 \to \infty} \mathcal{F}_{\pi \gamma^\star \gamma^\star}(Q^2, Q^2),$$

• $\mathcal{OO}(m_\pi^0)$:

$$C_{22}^W = 0, \ c_{125} = 0, \ c_{1256} = -\frac{N_C M_V}{32\sqrt{2}\pi^2 F_V}, \ d_3 = \frac{c_{1256}}{\sqrt{2}} \frac{M_V}{F_V}$$

• $@\mathcal{O}(m_{\pi}^2):$

$$\lambda_V = -\frac{32\pi^2 F_V}{N_C} C_7^W, \ c_{1235}^{\star} = \frac{N_C M_V}{4\sqrt{2}\pi^2 F_V} \left(\frac{e_m^{\star}}{2} + \frac{M_V^2 \lambda_V}{F_V}\right)$$
• From $\mathcal{F}_{\eta\gamma^{\star}\gamma^{\star}}$:

~

CIANE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$C_8^{\prime\prime} = 0, \ c_3 = \frac{c_{1235}}{8}$$

• From VVP Green's function: $C_7^W = \lambda_V = 0$.

~11/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $a_{\mu}^{P,HLbL}$

• We get for π^0

$$a_{\mu}^{\pi,LbL} = 5.81 \pm 0.09 imes 10^{-10}$$

• While we get for η

$$a_{\mu}^{\eta, LbL} = 1.51 \pm 0.06 imes 10^{-10}$$

• And for η'

$$a_{\mu}^{\eta',LbL} = 1.15 \pm 0.07 imes 10^{-10}$$

• Getting a total pseudoscalar exchange contribution of

$$\textit{a}_{\mu}^{\textit{P,HLbL}} = 8.47 \pm 0.16 \times 10^{-10}$$

Fitted parameters

	With π^0 -BaBar	Without π^0 -BaBar	Fixing M_V and e_m^V
\mathcal{P}_1	-0.2 ± 1.0	0.0 ± 1.0	0.0 ± 1.0
\mathcal{P}_2	0.5 ± 1.0	0.0 ± 0.5	0.0 ± 1.0
\bar{d}_2	$(-2.9 \pm 1.7) \cdot 10^{-2}$	$(-2.7\pm1.7)\cdot10^{-2}$	$(-3\pm2)\cdot10^{-2}$
\bar{d}_{123}	$(-2.5\pm1.5)\cdot10^{-1}$	$(-2.3 \pm 1.5) \cdot 10^{-1}$	$(-3\pm2)\cdot10^{-1}$
M_V	(799 ± 5) MeV	$(791\pm 6)~{ m MeV}$	764.3 MeV [†]
e_m^V	-0.35 ± 0.10	-0.36 ± 0.10	-0.228 [†]
θ_8	$(-19.5\pm0.9)^\circ$	$(-19.5\pm0.9)^\circ$	$(-21.7\pm0.9)^\circ$
θ_0	$(-9.5\pm1.6)^\circ$	$(-9.5\pm1.6)^\circ$	$(-10.4\pm1.6)^\circ$
f ₈	(118 ± 4) MeV	(118 ± 3) MeV	(118 ± 3) MeV
f ₀	(108 ± 3) MeV	(107.5 ± 1.0) MeV	(107 ± 3) MeV
$\chi^2/{ m dof}$	150./101	69./84	101./86

 $\mathcal{P}_{1/2}$ are related to $\overline{d_{123}}$ and $\overline{d_2}$ through a rotation that reduces correlation between the two latter.

Asymptotic behavior

• We obtained the correct behavior for an on-shell photon,

$$\lim_{Q^2
ightarrow\infty}\mathcal{F}_{\pi\gamma^\star\gamma^\star}(Q^2,0)pproxrac{2F}{Q^2}.$$

• The correct behavior for $\mathcal{F}_{\pi\gamma^{\star}\gamma^{\star}}(Q^2, Q^2)$ can be obtained considering another vector multiplet. In the chiral limit we get

$$\begin{split} \mathcal{F}_{\pi^{0}\gamma^{\star}\gamma^{\star}}(q_{1}^{2},q_{2}^{2}) &= \frac{-1}{12\pi^{2}F\left(M_{\rho}^{2}-q_{1}^{2}\right)\left(M_{\rho}^{2}-q_{2}^{2}\right)\left(M_{\rho'}^{2}-q_{1}^{2}\right)\left(M_{\rho'}^{2}-q_{2}^{2}\right)} \\ \times \left[-q_{1}^{2}q_{2}^{2}\left(N_{C}M_{\rho'}^{4}-48\pi^{2}F^{2}M_{\rho'}^{2}+4\pi^{2}F^{2}\left(q_{1}^{2}+q_{2}^{2}\right)\right) \\ &+N_{C}M_{\rho}^{4}M_{\rho'}^{4}-8\pi^{2}F^{2}M_{\rho}^{2}\left(3\left(q_{1}^{2}+q_{2}^{2}\right)M_{\rho'}^{2}-q_{1}^{2}q_{2}^{2}\right) \\ &+64\pi^{2}F_{\rho}^{2}d_{3}^{(\rho,\rho)}M_{\rho}^{2}q_{1}^{2}q_{2}^{2}\left(1-\frac{M_{\rho'}^{2}}{M_{\rho}^{2}}\right)^{2} \\ &-\frac{16\pi^{2}\sqrt{2}F_{\rho}c_{125}^{(\rho)}}{M_{\rho}}q_{1}^{2}q_{2}^{2}\left(q_{1}^{2}-q_{2}^{2}\right)^{2}\left(1-\frac{M_{\rho'}^{2}}{M_{\rho}^{2}}\right)\right]. \end{split}$$

Asymptotic behavior

- Only two parameters remain unconstrained after matching with high energy QCD behavior, which we choose c_{125}^{ρ} and d_3^{ρ}
- Since contributions from the second multiplet are considered subleading, and one constraint is

$$F_{
ho}rac{c_{125}^{
ho}}{M_{
ho}}+F_{
ho'}rac{c_{125}^{
ho'}}{M_{
ho'}}=0$$

we assume that $c_{125}^{
ho} = c_{125}^{
ho'} = 0.$

• For d_3 we use the SD constraint from previous analysis.

$$F_{\rho}^2 d_3^{\rho} = \frac{N_C M_{\rho}^2}{64\pi^2}$$

• Comparison is done in the chiral limit, using $M_{\rho} = 770$ MeV.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$1/N_C$ error

- A NLO effect from $1/N_C$ terms will be the intermediate $\pi\pi$ and $K\bar{K}$ contribution¹⁷ to D_{ρ} .
- This gives

$$M^2_
ho - q^2 \; \longrightarrow \; M^2_
ho - q^2 + rac{q^2 M^2_
ho}{96 \pi^2 F^2_\pi} \left(A_\pi(q^2) + rac{1}{2} A_{\mathcal{K}}(q^2)
ight),$$

where

$$A_P(q^2) \,=\, \ln rac{m_P^2}{M_
ho^2} + 8 rac{m_P^2}{q^2} - rac{5}{3} + \sigma_P^3(q^2) \ln \left(rac{\sigma_P(q^2) + 1}{\sigma_P(q^2) - 1}
ight),$$

and
$$\sigma_P(q^2) = \sqrt{1 - \frac{4m_P^2}{q^2}}.$$

• Since for $a_{\mu}^{H,LbL}$ the photon momenta are $q^2 < 0$, D_{ρ} is real.

Beyond Standard Model (BSM) probe

- Precise measurements of a_{ℓ} make feasible the search of BSM effects.
- Contributions to BSM interactions, like chiral d=5 operator $\mathcal{O}_{d=5} = \frac{g}{\Lambda} \bar{\psi} \sigma^{\mu\nu} F_{\mu\nu} \psi$ mixes helicities of ℓ .
- Helicity flips are allowed only for massive particles, so O_{d=5} must be suppressed by a factor ~ ^{gm_ℓ}/_{Λ²}.
- If current discrepancy is from BSM contribution to a_{μ} ,

$$\Lambda \approx \sqrt{g}$$
 100 TeV

Why not $\ell = \tau$?

• Since transition probability is squared modulus of the amplitude, BSM effects will be easier to detect with $\ell = \mu$

$$\left(rac{m_{\mu}}{m_e}
ight)^2 \sim 4 imes 10^4$$

• Therefore, BSM effects should be larger on a_{τ} . Nevertheless, τ_{τ} is so small that experimental results¹⁸ are still compatible with $a_{\tau} = 0$.

¹⁸K. Ackerstaff *et al.*, [OPAL Collab.] Phys.Lett.B431(1998)
 M. Acciarri *et al.*, [L3 Collab.] Phys.Lett.B434(1998)
 W. Lohmann, Nucl.Phys.B144(2005)

a_e vs a_μ precission

• Even though measurements of a_e are 2250 times more precise¹⁹ a_μ is

$$\frac{1}{2250} \left(\frac{m_{\mu}}{m_e}\right)^2 \sim 19$$

times more sensitive to BSM contributions.

 Therefore, it would be more plausible to find such a deviation in the a_μ.

¹⁹R.S. Van Dyck *et al.*, PRL59(1987);
 P.J. Mohr *et al.*, Rev.Mod.Phys.72(2000)

Electromagnetic current

• The way to compute a_{μ} is through the interaction Lagrangian

$$\mathcal{L}_{int}^{QED}(x) = -e \bar{\psi}(x) \gamma^{\mu} A_{\mu}(x) \psi(x),$$

- where $A = A^{QED} + A^{ext}$. A^{QED} will give the radiative corrections as that given by Schwinger and A^{ext} is a classic EM field.
- Through Gordon identity, the lepton current in momentum space can be written as

$$\tilde{j}^{lpha} = (-ie)\bar{u}(p+q)\left[\gamma^{lpha}F_{E}(q^{2}) + irac{\sigma^{lphaeta}q_{eta}}{2m_{\mu}}F_{M}(q^{2})
ight]u(p),$$

• where $F_E(q^2)$ is called the Dirac (or electric charge) form factor and $F_M(q^2)$ is the Pauli (or magnetic) form factor.

Magnetic moment

- Then, $\overrightarrow{\mu}$ is the part interacting with the \overrightarrow{B} from A^{ext} , $\overrightarrow{\mu} \cdot \overrightarrow{B}$.
- This gives

$$\overrightarrow{\mu} = g\left(\frac{e}{2m}\right) \overrightarrow{s},$$

where

$$g = 2[F_1(0) + F_2(0)].$$

- By neglecting contributions from A^{QED}_μ one gets F₁(0) = 1 and F₂(0) = 0, recovering Dirac's result g = 2.
- Therefore, the $\overrightarrow{\mu} \cdot \overrightarrow{B}$ interaction is needed to measure a_{μ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to measure a_{μ} ?

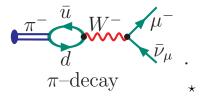
- If \overrightarrow{B} is constant, the problem reduces to determining the helicity.
- However, one big issue arises. Muons are unstable!
- Thanks to maximal parity violation of weak interactions one can determine the helicity of the muon.
- To see this one needs to know how to generate muons.

The π decay

• Charged pions decay 99.99% of the time to muons

$$\mathcal{B}(\pi^{\pm}
ightarrow\mu^{\pm}
u_{\mu})pprox$$
 99.99%.

 Therefore, one can produce muons by first producing π[±], generated by hitting a fixed target with a proton beam.



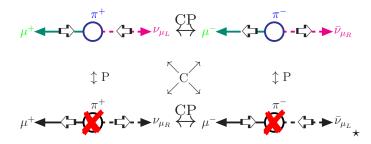
• The lepton current coupling to the weak gauge boson, W^{lpha} , is

$$j^{W}_{\alpha}(x) = \bar{\psi}_{\nu L}(x) \gamma_{\alpha} \psi_{\mu L}(x),$$

- where $\psi_L = \frac{1}{2}(1 \gamma_5)\psi$ is a left eigenstate of helicity.
- * Figure treacherously stolen from F. Jegerlehner & A. Nyffeler, Phys.Rep.477(2009).

Helicity of muons.

• This means that muons obtained from π decays have a determined helicity.



- From π^+ decays results right anti-muons, where from π^- decays results left muons.
- * Also treacherously taken from Jegerlehner & Nyffeler, Phys.Rep.477(2009).

Helicity of electrons

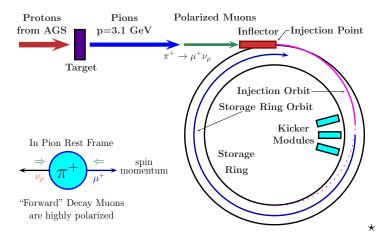
• The muon also decays through a weak gauge boson exchange.

$$\begin{array}{c} \bar{\nu}_{\mu_R} & & \swarrow \\ \nu_{e_L} & & \swarrow \\ \end{array} \xrightarrow{\mu^+} & & e^+ \\ \end{array} \begin{array}{c} \nu_{\mu_L} & & \swarrow \\ \bar{\nu}_{e_R} & & \swarrow \\ \end{array} \xrightarrow{\mu^-} & & e^- \\ \end{array}$$

- This means that the helicity of the electron (positron) can also be determined.
- Therefore, in wherever direction the electron is ejected, it must be parallel (e⁺) or antiparallel (e⁻) to its momentum.
- An additional electric quadrupole field normal to the muon orbit is used to focus the beam.
- * Same as before, Jegerlehner and Nyffeler, Phys.Rep.33(2009)

Experimental summary

• To summarize, this is the experimental setup.



- All remaining is to determine the Larmor precession.
- * Same, F. Jegerlehner and A. Nyffeler, Phys.Rep.33(2009) , 🖅 🌾 📳 👔 🔊 🤉

Conclusions

Who TF Larmor?

• The Larmor precession is defined as the precession of a magnetic moment about a magnetic field.

• The Larmor frequency in this case is

$$\overrightarrow{\omega} = -\frac{e}{m_{\mu}} \left[a_{\mu} \overrightarrow{B} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) (\overrightarrow{v} \cdot \overrightarrow{B}) \overrightarrow{v} + \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \overrightarrow{E} \times \overrightarrow{v} \right]$$

"Who is That Famous Larmor?"

It's magic?

• One can *magically disappear* the electric quadrupole field contribution.

Magic? Always believe it's not so

- It is done by choosing the magic Lorentz factor to be $\gamma^{\infty} = 29.3$, corresponding to a magic energy $E^{\infty}_{\mu} \approx 3.098$ GeV.
- \overrightarrow{E} generates an oscillation in the beam direction and in \overrightarrow{B} direction.
- The reason to disregard the contribution from \overrightarrow{E} is to minimize $\overrightarrow{\omega}$. This will reduce the error for a_{μ} .

Resonance Chiral Theory $R\chi T$

- The relevant degrees of freedom are²⁰ the octet of the lightest pseudoscalar (π , K, η and η').
- The expansion parameter in this theory is $1/N_c$, and in large N_c the $U(1)_A$ broken symmetry is restored, that is the reason for taking η' at the same level as the other resonances.

²⁰G. Ecker, J. Gasser A. Pich y E. De Rafael Nucl.Phys. B321(1989) = → = → ۹.0

$F_{\pi\gamma\gamma}$ parameters

- R χ T parameters can be found using short distance behavior of QCD, which predicts an asymptotic behavior of s^{-1} for this process.
- Thus, short distance relationships²¹ ensure a convergent behavior

$$d_3 = -\frac{N_C M_V^2}{64\pi^2 F_V^2} + \frac{F^2}{8F_V^2} - \frac{4\sqrt{2}P_2}{F_V}; \qquad c_{125} = 0; \qquad d_{123} = \frac{1}{24};$$

$$F_V = \sqrt{3}F;$$
 $c_{125} = 0;$ $c_{1256} = -\frac{N_C M_V}{32\sqrt{2}\pi^2 F_V}$

²¹J. Sanz-Cillero and P. Roig, Phys.Rev.Lett.B733(2014) → () →

Restored $U(1)_A$

• Within t'Hooft's large N_C , the anomaly term is suppressed by a factor $1/N_C$ with respecto to the rest of the QCD lagrangian

$$\frac{g^2}{8\pi^2}\frac{\theta}{N_C}\,TrF^{\mu\nu}\tilde{F}_{\mu\nu},$$

• Therefore in the limit $N_C \to \infty$ the $U(1)_A$ symmetry is restored.

・ロト・日本・モート モー うへぐ

Wess-Zumino-Witten

 A fundamental part of the analysis is the WZW term, wich is order p⁴ in the chiral counting and describe intrinsic odd interactions ²².

$$Z[U, I, r] = -\frac{iN_{C}}{240\pi^{2}} \int_{M^{5}} d^{5} x \varepsilon^{ijklm} \langle \Sigma_{i}^{L} \Sigma_{j}^{L} \Sigma_{k}^{L} \Sigma_{l}^{L} \Sigma_{m}^{L} \rangle$$

$$-\frac{iN_{C}}{48\pi^{2}} \int d^{4} x \varepsilon_{\mu\nu\rho\sigma} (W(U, I, r)^{\mu\nu\rho\sigma} - W(\mathbf{1}, I, r)^{\mu\nu\rho\sigma})$$

$$W(U, I, r)_{\mu\nu\rho\sigma} = \langle U\ell_{\mu}\ell_{\nu}\ell_{\rho}U^{\dagger}r_{\sigma} + \frac{1}{4}U\ell_{\mu}U^{\dagger}r_{\nu}U\ell_{\rho}U^{\dagger}r_{\sigma} + iU\partial_{\mu}\ell_{\nu}\ell_{\rho}U^{\dagger}r_{\sigma}$$

$$+ i\partial_{\mu}r_{\nu}U\ell_{\rho}U^{\dagger}r_{\sigma} - i\Sigma_{\mu}^{L}\ell_{\nu}U^{\dagger}r_{\rho}U\ell_{\sigma} + \Sigma_{\mu}^{L}U^{\dagger}\partial_{\nu}r_{\rho}U\ell_{\sigma}$$

$$- \Sigma_{\mu}^{L}\Sigma_{\nu}^{L}U^{\dagger}r_{\rho}U\ell_{\sigma} + \Sigma_{\mu}^{L}\ell_{\nu}\partial_{\rho}\ell_{\sigma} + \Sigma_{\mu}^{L}\partial_{\nu}\ell_{\rho}\ell_{\sigma} - i\Sigma_{\mu}^{L}\ell_{\nu}\ell_{\rho}\ell_{\sigma}$$

$$+ \frac{1}{2}\Sigma_{\mu}^{L}\ell_{\nu}\Sigma_{\rho}^{L}\ell_{\sigma} - i\Sigma_{\mu}^{L}\Sigma_{\nu}^{L}\Sigma_{\rho}^{L}\ell_{\sigma} - (L \leftrightarrow R)\rangle,$$

$$\Sigma_{\mu}^{L} = U^{\dagger}\partial_{\mu}U, \Sigma_{\mu}^{R} = U\partial_{\mu}U^{\dagger},$$
(1)

 $^{22}\mathsf{J}.$ Wess and B. Zumino Phys.Lett.37B(1971)

E. Witten, Nucl. Phys. B223 (1983)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Contribución de resonancias a las LEC de χ PT a $\mathcal{O}(p^4)$

• El lagrangiano de interacción de las resonancias vectoriales es

$$\mathcal{L}(V) = \langle V_{\mu\nu}J^{\mu\nu} \rangle; \qquad J^{\mu\nu} = \frac{F_V}{2\sqrt{2}}f^{\mu\nu}_+ + i\frac{G_V}{2\sqrt{2}}[u^\mu, u^\nu]$$

• Con
$$f^{\mu}\nu_{\pm} = uF_{L}^{\mu\nu}u^{\dagger} \pm u^{\dagger}F_{R}^{\mu\nu}u$$
, donde

$$F_{R,L}^{\mu\nu} = \partial^{\mu}(r,\ell)^{\nu} - \partial^{\nu}(r,\ell)^{\mu} - i\left[(r,\ell)^{\mu},(r,\ell)^{\nu}\right]$$

• siendo $r \neq l$ las corrientes vectoriales y axiales externas, respectivamente.

• y
$$u^{\mu} = i \left[u^{\dagger} \left(\partial^{\mu} - ir^{\mu} \right) u - u \left(\partial^{\mu} - i\ell^{\mu} \right) u^{\dagger} \right] = i u^{\dagger} D_{\mu} U u^{\dagger}$$

• F_V y G_V son parámetros reales.

• Así, se encuentra que V debe cumplir una ecuación de constricción

$$\nabla^{\alpha}\nabla_{\rho}V^{\alpha\beta} - \nabla^{\beta}\nabla_{\rho}V^{\rho\alpha} + M_{V}^{2}V^{\alpha\beta} = -2J^{\alpha\beta}$$

• Donde $abla_{\mu}R = \partial_{\mu}R + [\Gamma_{\alpha}, R]$ y

$$\Gamma_{\alpha} = \frac{1}{2} [u^{\dagger} (\partial_{\alpha} - ir_{\alpha})u + u(\partial_{\alpha} - i\ell_{\alpha})u^{\dagger}].$$

Al sustituir V y a órden p^4 se tiene que

$$L_1^V = \frac{G_V^2}{8M_V^2}$$
 $L_2^V = 2L_1^V$ $L_3^V = -6L_1^V$

$$L_9^V = \frac{F_V G_V}{2M_V^2} \qquad L_{10}^V = -\frac{F_V^2}{4M_V^2}$$

• y de igual forma para las demás resonancias.