Pseudoscalar pole contribution to the hadronic light-by-light piece of a_{μ}

Adolfo Guevara

Departamento de Física Teórica
Facultad de CC Físicas, Madrid, Spain

QCD@Work, Matera, Italy
June 27, 2018

Purpose

- The main purpose of this work is to reduce the theoretical uncertainty in the computation of the a_{μ}, in which the main source of uncertainty comes from the hadronic contributions. This is why we decided to analyze the hadronic light-by-light contribution using $\chi \mathrm{PT}$ extended to include resonances.

Magnetic moment

- The Dirac equation predicts a magnetic moment for a particle with EM charge Q and mass m

$$
\boldsymbol{\mu}_{\ell}=g_{\ell} \frac{Q}{2 m} \mathbf{s}
$$

- such that $g_{\ell}=2$. This is obtained for a classic EM field.
- The deviation from $g_{\ell}=2$ defines the anomalous magnetic moment, which will happen due to loop corrections.

$$
a_{\ell}:=\frac{g_{\ell}-2}{2}=\frac{\alpha}{2 \pi}+\mathcal{O}\left(\alpha^{2}\right) \approx 0.00116
$$

Contributions to a_{μ}

- The computation of a_{μ} can be splitted in different contributions, whose values can be found in PDG ${ }^{1}$

$$
a_{\mu}=a_{\mu}^{Q E D}+a_{\mu}^{E W}+a_{\mu}^{\text {Had }}
$$

- $a_{\mu}^{Q E D}$ are all corrections ${ }^{2}$ that might come from QED

$$
a_{\mu}^{Q E D}=116584718.95(0.08) \times 10^{-11}+\mathcal{O}\left(\frac{\alpha}{\pi}\right)^{6}
$$

(18)

(18)

(2072)

(120)

(18)

(2)

[^0]$$
a_{\mu}^{E W}
$$

- $a_{\mu}^{E W}$ are Electroweak contribution that are not $a_{\mu}^{Q E D}$ $\left(W^{ \pm}, Z, H\right)$ at two loops ${ }^{3}$. Three loops contribution is negligible ($\lesssim 0.4 \times 10^{-11}$).

$$
a_{\mu}^{E W}=153.6(1.0) \times 10^{-11}
$$

${ }^{3}$ C. Gnendiger et al., Phys.Rev.D88 (2013)

Hadronic contributions

- $a_{\mu}^{\text {Had }}$ can be separated into two parts, the PDG values are the following. ${ }^{4}$

Hadronic Vacuum Polarization (HVP) contribution.
$a_{\mu}^{H V P}=6845(33)(7) \times 10^{-11}$

Hadronic light-by-light (HLbL)
contribution. $a_{\mu}^{H L b L}=105(26) \times 10^{-11}$

[^1]
Hadronic contributions to a_{μ}

- All the contributions and their uncertainties are shown in the next table.

Contribution	$\times 10^{11}$	Uncertainty $\times 10^{11}$
QED	116584718.95	0.08
EW	153.6	1.0
Had	6950	$(34)_{\text {Vac. Pol. }}(26)_{\text {Light-by-Light }}$
Total	116591823	$(34)(26)$
Exp	116592091	$(54)(33)$

- Clearly, the largest uncertainty comes from the hadronic contribution.
- With these values there is a discrepancy

$$
a_{\mu}^{\exp }-a_{\mu}^{S M}=268(63)(43) \times 10^{-11} \quad \sim 3.5 \sigma
$$

Hadronic contributions to a_{μ}

- The main uncertainty comes from hadronic contributions ${ }^{5}$, which give 4.3×10^{-10}.
- The current experimental ${ }^{6}$ error is 6.3×10^{-10}.
- Fermilab \& J-Parc are planning to lower ${ }^{7}$ the error to 1.6×10^{-10}. It is necessary to reduce theoretical uncertainty.
- A reanalysis of $R_{\text {had }}$ from Lattice QCD may reduce ${ }^{8}$ the HVP error $\left(3.3 \times 10^{-10}\right)$ below that of the HLbL piece.

[^2]
Hadronic Light by Light

- We decided to analyze the HLbL piece since, nowadays, it can't be obtained from experimental data.
- It can be separated into three parts.

(a) [L.D.]

(b) [L.D.]

(c) [S.D.]
- The sum of (b) and (c) is ${ }^{9} \sim 1 / 10$ smaller than (a).

Pseudoscalar pole

- Our contribution to a_{μ} comes from diagram (a)

- To compute the pion transition form factor $F_{\pi \gamma^{\star} \gamma^{\star}}$ we rely on Resonance Chiral Theory ${ }^{10}(\mathrm{R} \chi \mathrm{T})$ with $U(3)$ breaking.
${ }^{10}$ G. Ecker, J. Gasser A. Pich \& E. De Rafael Nucl.Phys. B321(1989) P.D. Ruíz-Femenía et al., JHEP 0307 (2003) K. Kampf and J. Novotný PRD84 (2011)

$U(3)$ breaking and $\mathcal{F}_{\pi \gamma^{\star} \gamma^{\star}}$

- We include corrections up to $\mathcal{O}\left(m_{P}^{2}\right)$. Some of this give ${ }^{11}$

$$
M_{\rho}^{2}=M_{\omega}^{2}=M_{V}^{2}-4 e_{m}^{V} m_{\pi}^{2}, \quad M_{\phi}^{2}=M_{V}^{2}-4 e_{m}^{V}\left(2 m_{K}^{2}-m_{\pi}^{2}\right)
$$

- Where e_{m}^{V} is the $U(3)$ breaking parameter.
- We can constrain parameters by imposing high energy conditions on $\mathcal{F}_{P \gamma^{\star} \gamma^{\star}}$.
- After constraining parameters we find ${ }^{12}$

$$
\mathcal{F}_{\pi \gamma^{\star} \gamma^{\star}}\left(q_{1}^{2}, q_{2}^{2}\right)=\frac{32 \pi^{2} m_{\pi}^{2} F_{V}^{2} d_{123}^{\star}-N_{C} M_{V}^{2} M_{\rho}^{2}}{12 \pi^{2} F_{\pi} D_{\rho}\left(q_{1}^{2}\right) D_{\rho}\left(q_{2}^{2}\right)},
$$

where $D_{R}\left(q^{2}\right)=M_{R}^{2}-q^{2}$.

[^3]
The $\eta^{(\prime)}$-TFF

- For the $\eta^{(\prime)}$ we find ${ }^{13}$

$$
\mathcal{F}_{\eta \gamma^{\star} \gamma^{\star}}\left(q_{1}^{2}, q_{2}^{2}\right)=\frac{1}{12 \pi^{2} F D_{\rho}\left(q_{1}^{2}\right) D_{\rho}\left(q_{2}^{2}\right) D_{\phi}\left(q_{1}^{2}\right) D_{\phi}\left(q_{2}^{2}\right)} \times
$$

$\left\{-\frac{N_{C} M_{V}^{2}}{3}\left[5 C_{q} M_{\rho}^{2} D_{\phi}\left(q_{1}^{2}\right) D_{\phi}\left(q_{2}^{2}\right)-\sqrt{2} C_{s} M_{\phi}^{2} D_{\rho}\left(q_{1}^{2}\right) D_{\rho}\left(q_{2}^{2}\right)\right]\right.$
$+\frac{32 \pi^{2} F_{V}^{2} d_{123}^{\star} m_{\eta}^{2}}{3}\left[\left(5 C_{q} D_{\phi}\left(q_{1}^{2}\right) D_{\phi}\left(q_{2}^{2}\right)-\sqrt{2} C_{s} D_{\rho}\left(q_{1}^{2}\right) D_{\rho}\left(q_{2}^{2}\right)\right]\right.$
$-\frac{256 \pi^{2} F_{V}^{2} d_{2}^{\star}}{3}\left[\left(5 C_{q} \Delta_{\eta \pi}^{2} D_{\phi}\left(q_{1}^{2}\right) D_{\phi}\left(q_{2}^{2}\right)+\sqrt{2} C_{s} \Delta_{2 \kappa \pi \eta}^{2} D_{\rho}\left(q_{1}^{2}\right) D_{\rho}\left(q_{2}^{2}\right)\right]\right\}$.

- The η^{\prime}-TFF can be obtained from $\mathcal{F}_{\eta^{\prime} \gamma^{\star} \gamma^{\star}}$ by making $C_{q} \rightarrow C_{q}^{\prime}, C_{s} \rightarrow-C_{s}^{\prime}$ and $m_{\eta} \rightarrow m_{\eta^{\prime}}$.
- (Here we define $\Delta_{\eta \pi}^{2}:=m_{\eta}^{2}-m_{\pi}^{2}$ and $\Delta_{2 K \pi \eta}^{2}:=2 m_{K}^{2}-m_{\pi}^{2}-m_{\eta}^{2}$)
${ }^{13}$ AG, P. Roig, JJ Sanz Cillero, arXiv:1308.08099

Fit to experimental TFF

- We fit $e_{m}^{V}, M_{V}, d_{123}^{\star}, d_{2}^{\star}$ and $\eta-\eta^{\prime}$ mixing parameters to experimental determinations of $\mathcal{F}_{\pi \gamma \gamma^{\star}}$ and $\mathcal{F}_{\eta^{(1)} \gamma \gamma^{\star}}$.
- BaBar π^{0}-TFF is at odds with the asymptitic QCD limit, with Belle data and $\eta^{(\prime)}$-TFF related through chiral symmetry.
- Neglecting BaBar π^{0}-TFF data reduces $\chi^{2} /$ dof from 150/101 \rightarrow 69/84.
- Therefore, our best fit will exclude BaBar $\pi^{0}-T F F$.

$$
F_{\pi \gamma \gamma^{\star}}
$$

- After fitting we get ${ }^{14}$.

- BaBar data is shown in red.
${ }^{14}$ AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099

$\mathcal{F}_{\eta \gamma \gamma^{\star}}$ and $\mathcal{F}_{\eta^{\prime} \gamma \gamma^{\star}}$

- Our fit for the η-TFF gives ${ }^{15}$

${ }^{15}$ AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099
$\mathcal{F}_{\eta \gamma \gamma^{\star}}$ and $\mathcal{F}_{\eta^{\prime} \gamma \gamma^{\star}}$
- While for the η^{\prime}-TFF gives ${ }^{16}$

${ }^{16}$ AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099

$a_{\mu}^{P, H L b L}$

- We get a total pseudoscalar exchange contribution of

$$
a_{\mu}^{P, H L b L}=(8.47 \pm 0.16) \cdot 10^{-10}
$$

- For TFFs in the chiral limit we get $a_{\mu}^{P, H L b L}=8.27 \cdot 10^{-10}$.
- This shows that NNLO corrections, which will be suppressed by further powers of m_{P}^{2}, must be negligible.
- NLO effects from $1 / N_{C}$ can be estimated from $\pi \pi$ and $K \bar{K}$ loops contribution to $D_{\rho}:\left(\Delta a_{\mu}^{P, H L b L}\right)_{1 / N_{C}}= \pm 0.09 \times 10^{-10}$.
- Our TFF $\sim 1 / Q^{4}$ when $Q^{2} \rightarrow \infty$ for doubly off-shell photon. A rough estimate of uncertainty is $\left(\Delta a_{\mu}^{P, L b L}\right)_{\text {asym }}={ }_{-0.0}^{+0.5} \cdot 10^{-10}$

$a_{\mu}^{P, H L b L}$

- Now we can compare our results with earlier results.

$a_{\mu}^{H L b L} \cdot 10^{10}$	Contribution
8.3 ± 1.2	M. Knecht and A. Nyffeler, PRD 65(2002)
8.5 ± 1.3	J. Bijnens, E. Palante and J. Prades, Phys.Lett.75(1995)
8.60 ± 0.25	P. Roig, AG and G. López Castro, PRD 89 (2014)
9.4 ± 0.5	P. Masjuan and P. Sánchez Puertas, PRD 95 (2017)
8.28 ± 0.34	H. Czyż, P. Kisza and S. Tracz, PRD 97 (2018)

- Our contribution gives

$$
a_{\mu}^{P, H L b L}=\left(8.47 \pm 0.16_{\text {sta }} \pm 0.09_{1 / N_{C}}^{+0.0}+\frac{\text { asym }}{}\right) \cdot 10^{-10}
$$

Conclusions

- Our determination of the $a_{\mu}^{P, H L b L}$ has an improved theoretical accuracy with lower uncertainty compared with previous determinations.
- We found that $\operatorname{BaBar} \pi^{0}$-TFF data is incompatible with measurements of $\eta^{(\prime)}$ form factors.
- Excluding fitting data in the $q^{2}>0$ region we avoid large uncertainties due to EM radiative corrections.
- We find that further chiral corrections to $\mathcal{F}_{P \gamma^{\star} \gamma^{\star}}$ must be negligible.

Back up

Short Distance constraints

- One finds by taking the limits

$$
\lim _{Q^{2} \rightarrow \infty} \mathcal{F}_{\pi \gamma^{\star} \gamma^{\star}}\left(Q^{2}, 0\right) \quad \text { and } \lim _{Q^{2} \rightarrow \infty} \mathcal{F}_{\pi \gamma^{\star} \gamma^{\star}}\left(Q^{2}, Q^{2}\right)
$$

- @O $\left(m_{\pi}^{0}\right)$:

$$
C_{22}^{W}=0, c_{125}=0, c_{1256}=-\frac{N_{C} M_{V}}{32 \sqrt{2} \pi^{2} F_{V}}, d_{3}=\frac{c_{1256}}{\sqrt{2}} \frac{M_{V}}{F_{V}}
$$

- @ $\mathcal{O}\left(m_{\pi}^{2}\right)$:

$$
\lambda_{V}=-\frac{32 \pi^{2} F_{V}}{N_{C}} C_{7}^{W}, c_{1235}^{\star}=\frac{N_{C} M_{V}}{4 \sqrt{2} \pi^{2} F_{V}}\left(\frac{e_{m}^{V}}{2}+\frac{M_{V}^{2} \lambda_{V}}{F_{V}}\right)
$$

- From $\mathcal{F}_{\eta \gamma^{\star} \gamma^{\star}}$:

$$
C_{8}^{W}=0, c_{3}=\frac{c_{1235}}{8}
$$

- From VVP Green's function: $C_{7}^{W}=\lambda_{V}=0$.

$$
a_{\mu}^{P, H L b L}
$$

- We get for π^{0}

$$
a_{\mu}^{\pi, L b L}=5.81 \pm 0.09 \times 10^{-10}
$$

- While we get for η

$$
a_{\mu}^{\eta, L b L}=1.51 \pm 0.06 \times 10^{-10}
$$

- And for η^{\prime}

$$
a_{\mu}^{\eta^{\prime}, L b L}=1.15 \pm 0.07 \times 10^{-10}
$$

- Getting a total pseudoscalar exchange contribution of

$$
a_{\mu}^{P, H L b L}=8.47 \pm 0.16 \times 10^{-10}
$$

Fitted parameters

With π^{0}-BaBar \quad Without π^{0}-BaBar \quad Fixing M_{V} and e_{m}^{V}

\mathcal{P}_{1}	-0.2 ± 1.0	0.0 ± 1.0	0.0 ± 1.0
\mathcal{P}_{2}	0.5 ± 1.0	0.0 ± 0.5	0.0 ± 1.0
\bar{d}_{2}	$(-2.9 \pm 1.7) \cdot 10^{-2}$	$(-2.7 \pm 1.7) \cdot 10^{-2}$	$(-3 \pm 2) \cdot 10^{-2}$
\bar{d}_{123}	$(-2.5 \pm 1.5) \cdot 0^{-1}$	$(-2.3 \pm 1.5) \cdot 10^{-1}$	$(-3 \pm 2) \cdot 10^{-1}$
M^{\prime}	$(799 \pm 5) \mathrm{MeV}$	$(791 \pm 6) \mathrm{MeV}$	$764.3 \mathrm{MeV} \dagger$
e_{m}^{\vee}	-0.35 ± 0.10	-0.36 ± 0.10	-0.2288^{\dagger}
θ_{8}	$(-19.5 \pm 0.9)^{\circ}$	$(-19.5 \pm 0.9)^{\circ}$	$(-21.7 \pm 0.9)^{\circ}$
θ_{0}	$(-9.5 \pm 1.6)^{\circ}$	$(-9.5 \pm 1.6)^{\circ}$	$(-10.4 \pm 1.6)^{\circ}$
f_{8}	$(118 \pm 4) \mathrm{MeV}$	$(118 \pm 3) \mathrm{MeV}$	$(118 \pm 3) \mathrm{MeV}$
f_{0}	$(108 \pm 3) \mathrm{MeV}$	$(107.5 \pm 1.0) \mathrm{MeV}$	$(107 \pm 3) \mathrm{MeV}$
$\chi^{2} /$ dof	$150 . / 101$	$69 . / 84$	$101 . / 86$

$\mathcal{P}_{1 / 2}$ are related to $\overline{d_{123}}$ and $\overline{d_{2}}$ through a rotation that reduces correlation between the two latter.

Asymptotic behavior

- We obtained the correct behavior for an on-shell photon,

$$
\lim _{Q^{2} \rightarrow \infty} \mathcal{F}_{\pi \gamma^{\star} \gamma^{\star}}\left(Q^{2}, 0\right) \approx \frac{2 F}{Q^{2}}
$$

- The correct behavior for $\mathcal{F}_{\pi \gamma^{\star} \gamma^{\star}}\left(Q^{2}, Q^{2}\right)$ can be obtained considering another vector multiplet. In the chiral limit we get

$$
\begin{gathered}
\mathcal{F}_{\pi^{0} \gamma^{\star} \gamma^{\star}}\left(q_{1}^{2}, q_{2}^{2}\right)=\frac{-1}{12 \pi^{2} F\left(M_{\rho}^{2}-q_{1}^{2}\right)\left(M_{\rho}^{2}-q_{2}^{2}\right)\left(M_{\rho^{\prime}}^{2}-q_{1}^{2}\right)\left(M_{\rho^{\prime}}^{2}-q_{2}^{2}\right)} \\
\times\left[-q_{1}^{2} q_{2}^{2}\left(N_{C} M_{\rho^{\prime}}^{4}-48 \pi^{2} F^{2} M_{\rho^{\prime}}^{2}+4 \pi^{2} F^{2}\left(q_{1}^{2}+q_{2}^{2}\right)\right)\right. \\
+N_{C} M_{\rho}^{4} M_{\rho^{\prime}}^{4}-8 \pi^{2} F^{2} M_{\rho}^{2}\left(3\left(q_{1}^{2}+q_{2}^{2}\right) M_{\rho^{\prime}}^{2}-q_{1}^{2} q_{2}^{2}\right) \\
+64 \pi^{2} F_{\rho}^{2} d_{3}^{(\rho, \rho)} M_{\rho}^{2} q_{1}^{2} q_{2}^{2}\left(1-\frac{M_{\rho^{\prime}}^{2}}{M_{\rho}^{2}}\right)^{2} \\
\left.-\frac{16 \pi^{2} \sqrt{2} F_{\rho} c_{125}^{(\rho)}}{M_{\rho}} q_{1}^{2} q_{2}^{2}\left(q_{1}^{2}-q_{2}^{2}\right)^{2}\left(1-\frac{M_{\rho^{\prime}}^{2}}{M_{\rho}^{2}}\right)\right] .
\end{gathered}
$$

Asymptotic behavior

- Only two parameters remain unconstrained after matching with high energy QCD behavior, which we choose c_{125}^{ρ} and d_{3}^{ρ}
- Since contributions from the second multiplet are considered subleading, and one constraint is

$$
F_{\rho} \frac{c_{125}^{\rho}}{M_{\rho}}+F_{\rho^{\prime}} \frac{c_{125}^{\rho^{\prime}}}{M_{\rho^{\prime}}}=0
$$

we assume that $c_{125}^{\rho}=c_{125}^{\rho^{\prime}}=0$.

- For d_{3} we use the SD constraint from previous analysis.

$$
F_{\rho}^{2} d_{3}^{\rho}=\frac{N_{C} M_{\rho}^{2}}{64 \pi^{2}}
$$

- Comparison is done in the chiral limit, using $M_{\rho}=770 \mathrm{MeV}$.

$1 / N_{C}$ error

- A NLO effect from $1 / N_{C}$ terms will be the intermediate $\pi \pi$ and $K \bar{K}$ contribution ${ }^{17}$ to D_{ρ}.
- This gives

$$
M_{\rho}^{2}-q^{2} \longrightarrow M_{\rho}^{2}-q^{2}+\frac{q^{2} M_{\rho}^{2}}{96 \pi^{2} F_{\pi}^{2}}\left(A_{\pi}\left(q^{2}\right)+\frac{1}{2} A_{K}\left(q^{2}\right)\right)
$$

where

$$
A_{P}\left(q^{2}\right)=\ln \frac{m_{P}^{2}}{M_{\rho}^{2}}+8 \frac{m_{P}^{2}}{q^{2}}-\frac{5}{3}+\sigma_{P}^{3}\left(q^{2}\right) \ln \left(\frac{\sigma_{P}\left(q^{2}\right)+1}{\sigma_{P}\left(q^{2}\right)-1}\right)
$$

and $\sigma_{P}\left(q^{2}\right)=\sqrt{1-\frac{4 m_{P}^{2}}{q^{2}}}$.

- Since for $a_{\mu}^{H, L b L}$ the photon momenta are $q^{2}<0, D_{\rho}$ is real.

Beyond Standard Model (BSM) probe

- Precise measurements of a_{ℓ} make feasible the search of BSM effects.
- Contributions to BSM interactions, like chiral $\mathrm{d}=5$ operator $\mathcal{O}_{d=5}=\frac{g}{\Lambda} \bar{\psi} \sigma^{\mu \nu} F_{\mu \nu} \psi$ mixes helicities of ℓ.
- Helicity flips are allowed only for massive particles, so $\mathcal{O}_{d=5}$ must be suppressed by a factor $\sim \frac{g m_{\ell}}{\Lambda^{2}}$.
- If current discrepancy is from BSM contribution to a_{μ},

$$
\Lambda \approx \sqrt{g} 100 \mathrm{TeV}
$$

Why not $\ell=\tau$?

- Since transition probability is squared modulus of the amplitude, BSM effects will be easier to detect with $\ell=\mu$

$$
\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \sim 4 \times 10^{4}
$$

- Therefore, BSM effects should be larger on a_{τ}. Nevertheless, τ_{τ} is so small that experimental results ${ }^{18}$ are still compatible with $a_{\tau}=0$.

$$
\tau_{\mu}=2.197 \times 10^{-6} s, \quad \tau_{\tau}=2.906 \times 10^{-13} s \quad \Rightarrow \quad \frac{\tau_{\tau}}{\tau_{\mu}} \sim 10^{-7}
$$

${ }^{18}$ K. Ackerstaff et al., [OPAL Collab.] Phys.Lett.B431(1998)
M. Acciarri et al., [L3 Collab.] Phys.Lett.B434(1998)
W. Lohmann, Nucl.Phys.B144(2005)

a_{e} vs a_{μ} precission

- Even though measurements of a_{e} are 2250 times more precise ${ }^{19} a_{\mu}$ is

$$
\frac{1}{2250}\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \sim 19
$$

times more sensitive to BSM contributions.

- Therefore, it would be more plausible to find such a deviation in the a_{μ}.
${ }^{19}$ R.S. Van Dyck et al., PRL59(1987);
P.J. Mohr et al., Rev.Mod.Phys.72(2000)

Electromagnetic current

- The way to compute a_{μ} is through the interaction Lagrangian

$$
\mathcal{L}_{i n t}^{Q E D}(x)=-e \bar{\psi}(x) \gamma^{\mu} A_{\mu}(x) \psi(x)
$$

- where $A=A^{Q E D}+A^{e x t}$. $A^{Q E D}$ will give the radiative corrections as that given by Schwinger and $A^{\text {ext }}$ is a classic EM field.
- Through Gordon identity, the lepton current in momentum space can be written as

$$
\tilde{j^{\alpha}}=(-i e) \bar{u}(p+q)\left[\gamma^{\alpha} F_{E}\left(q^{2}\right)+i \frac{\sigma^{\alpha \beta} q_{\beta}}{2 m_{\mu}} F_{M}\left(q^{2}\right)\right] u(p)
$$

- where $F_{E}\left(q^{2}\right)$ is called the Dirac (or electric charge) form factor and $F_{M}\left(q^{2}\right)$ is the Pauli (or magnetic) form factor.

Magnetic moment

- Then, $\vec{\mu}$ is the part interacting with the \vec{B} from $A^{\text {ext }}, \vec{\mu} \cdot \vec{B}$.
- This gives

$$
\vec{\mu}=g\left(\frac{e}{2 m}\right) \vec{s}
$$

- where

$$
g=2\left[F_{1}(0)+F_{2}(0)\right] .
$$

- By neglecting contributions from $A_{\mu}^{Q E D}$ one gets $F_{1}(0)=1$ and $F_{2}(0)=0$, recovering Dirac's result $g=2$.
- Therefore, the $\vec{\mu} \cdot \vec{B}$ interaction is needed to measure a_{μ}.

How to measure a_{μ} ?

- If \vec{B} is constant, the problem reduces to determining the helicity.
- However, one big issue arises. Muons are unstable!
- Thanks to maximal parity violation of weak interactions one can determine the helicity of the muon.
- To see this one needs to know how to generate muons.

The π decay

- Charged pions decay 99.99% of the time to muons

$$
\mathcal{B}\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}\right) \approx 99.99 \%
$$

- Therefore, one can produce muons by first producing $\pi^{ \pm}$, generated by hitting a fixed target with a proton beam.

- The lepton current coupling to the weak gauge boson, W^{α}, is

$$
j_{\alpha}^{W}(x)=\bar{\psi}_{\nu L}(x) \gamma_{\alpha} \psi_{\mu_{L}}(x)
$$

- where $\psi_{L}=\frac{1}{2}\left(1-\gamma_{5}\right) \psi$ is a left eigenstate of helicity.
^ Figure treacherously stolen from F. Jegerlehner \& A. Nyffeler, Phys.Rep. 477(2009).

Helicity of muons.

- This means that muons obtained from π decays have a determined helicity.

- From π^{+}decays results right anti-muons, where from π^{-} decays results left muons.
^ Also treacherously taken from Jegerlehner \& Nyffeler, Phys.Rep.477(2009).

Helicity of electrons

- The muon also decays through a weak gauge boson exchange.

- This means that the helicity of the electron (positron) can also be determined.
- Therefore, in wherever direction the electron is ejected, it must be parallel (e^{+}) or antiparallel (e^{-}) to its momentum.
- An additional electric quadrupole field normal to the muon orbit is used to focus the beam.
* Same as before, Jegerlehner and Nyffeler, Phys.Rep.33(2009)

Experimental summary

- To summarize, this is the experimental setup.

- All remaining is to determine the Larmor precession.
* Same, F. Jegerlehner and A. Nyffeler, Phys.Rep.33(2009)

Who TF Larmor? ${ }^{\uparrow}$

- The Larmor precession is defined as the precession of a magnetic moment about a magnetic field.

- The Larmor frequency in this case is

$$
\vec{\omega}=-\frac{e}{m_{\mu}}\left[a_{\mu} \vec{B}-a_{\mu}\left(\frac{\gamma}{\gamma+1}\right)(\vec{v} \cdot \vec{B}) \vec{v}+\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right) \vec{E} \times \vec{v}\right] .
$$

* "Who is That Famous Larmor?"

It's magic?

- One can magically disappear the electric quadrupole field contribution.

Magic? Always believe it's not so

- It is done by choosing the magic Lorentz factor to be $\gamma^{\infty}=29.3$, corresponding to a magic energy $E_{\mu}^{\infty} \approx 3.098 \mathrm{GeV}$.
- \vec{E} generates an oscillation in the beam direction and in \vec{B} direction.
- The reason to disregard the contribution from \vec{E} is to minimize $\vec{\omega}$. This will reduce the error for a_{μ}.

Resonance Chiral Theory $\mathrm{R} \chi \top$

- The relevant degrees of freedom are^{20} the octet of the lightest pseudoscalar (π, K, η and η^{\prime}).
- The expansion parameter in this theory is $1 / N_{C}$, and in large N_{C} the $U(1)_{A}$ broken symmetry is restored, that is the reason for taking η^{\prime} at the same level as the other resonances.

$F_{\pi \gamma \gamma}$ parameters

- $\mathrm{R} \chi \mathrm{T}$ parameters can be found using short distance behavior of QCD, which predicts an asymptotic behavior of s^{-1} for this process.
- Thus, short distance relationships ${ }^{21}$ ensure a convergent behavior

$$
\begin{gathered}
d_{3}=-\frac{N_{C} M_{V}^{2}}{64 \pi^{2} F_{V}^{2}}+\frac{F^{2}}{8 F_{V}^{2}}-\frac{4 \sqrt{2} P_{2}}{F_{V}} ; \quad c_{125}=0 ; \quad d_{123}=\frac{1}{24} ; \\
F_{V}=\sqrt{3} F ; \quad c_{125}=0 ; \quad c_{1256}=-\frac{N_{C} M_{V}}{32 \sqrt{2} \pi^{2} F_{V}}
\end{gathered}
$$

Restored $U(1)_{A}$

- Within t'Hooft's large N_{C}, the anomaly term is suppressed by a factor $1 / N_{C}$ with respecto to the rest of the $Q C D$ lagrangian

$$
\frac{g^{2}}{8 \pi^{2}} \frac{\theta}{N_{C}} \operatorname{Tr} F^{\mu \nu} \tilde{F}_{\mu \nu}
$$

- Therefore in the limit $N_{C} \rightarrow \infty$ the $U(1)_{A}$ symmetry is restored.

Wess-Zumino-Witten

- A fundamental part of the analysis is the WZW term, wich is order p^{4} in the chiral counting and describe intrinsic odd interactions ${ }^{22}$.

$$
\begin{align*}
& Z[U, I, r]=-\frac{i N_{C}}{240 \pi^{2}} \int_{M^{5}} d^{5} x \varepsilon^{i j k l m}\left\langle\Sigma_{i}^{L} \Sigma_{j}^{L} \Sigma_{k}^{L} \Sigma_{l}^{L} \Sigma_{m}^{L}\right\rangle \\
& -\frac{i N_{C}}{48 \pi^{2}} \int d^{4} x \varepsilon_{\mu \nu \rho \sigma}\left(W(U, I, r)^{\mu \nu \rho \sigma}-W(\mathbf{1}, I, r)^{\mu \nu \rho \sigma}\right) \\
& W(U, I, r)_{\mu \nu \rho \sigma}=\left\langle U \ell_{\mu} \ell_{\nu} \ell_{\rho} U^{\dagger} r_{\sigma}+\frac{1}{4} U \ell_{\mu} U^{\dagger} r_{\nu} U \ell_{\rho} U^{\dagger} r_{\sigma}+i U \partial_{\mu} \ell_{\nu} \ell_{\rho} U^{\dagger} r_{\sigma}\right. \\
& \quad+i \partial_{\mu} r_{\nu} U \ell_{\rho} U^{\dagger} r_{\sigma}-i \Sigma_{\mu}^{L} \ell_{\nu} U^{\dagger} r_{\rho} U \ell_{\sigma}+\Sigma_{\mu}^{L} U^{\dagger} \partial_{\nu} r_{\rho} U \ell_{\sigma} \\
& \quad-\Sigma_{\mu}^{L} \Sigma_{\nu}^{L} U^{\dagger} r_{\rho} U \ell_{\sigma}+\Sigma_{\mu}^{L} \ell_{\nu} \partial_{\rho} \ell_{\sigma}+\Sigma_{\mu}^{L} \partial_{\nu} \ell_{\rho} \ell_{\sigma}-i \Sigma_{\mu}^{L} \ell_{\nu} \ell_{\rho} \ell_{\sigma} \\
& \left.\quad+\frac{1}{2} \Sigma_{\mu}^{L} \ell_{\nu} \Sigma_{\rho}^{L} \ell_{\sigma}-i \Sigma_{\mu}^{L} \Sigma_{\nu}^{L} \Sigma_{\rho}^{L} \ell_{\sigma}-(L \leftrightarrow R)\right\rangle \\
& \quad \Sigma_{\mu}^{L}=U^{\dagger} \partial_{\mu} U, \Sigma_{\mu}^{R}=U \partial_{\mu} U^{\dagger}, \tag{1}
\end{align*}
$$

${ }^{22}$ J. Wess and B. Zumino Phys.Lett.37B(1971)
E. Witten, Nucl. Phys. B223 (1983)

Contribución de resonancias a las LEC de $\chi \mathrm{PT}$ a $\mathcal{O}\left(p^{4}\right)$

- El lagrangiano de interacción de las resonancias vectoriales es

$$
\mathcal{L}(V)=\left\langle V_{\mu \nu} J^{\mu \nu}\right\rangle ; \quad J^{\mu \nu}=\frac{F_{V}}{2 \sqrt{2}} f_{+}^{\mu \nu}+i \frac{G_{V}}{2 \sqrt{2}}\left[u^{\mu}, u^{\nu}\right]
$$

- Con $f^{\mu} \nu_{ \pm}=u F_{L}^{\mu \nu} u^{\dagger} \pm u^{\dagger} F_{R}^{\mu \nu} u$, donde

$$
F_{R, L}^{\mu \nu}=\partial^{\mu}(r, \ell)^{\nu}-\partial^{\nu}(r, \ell)^{\mu}-i\left[(r, \ell)^{\mu},(r, \ell)^{\nu}\right]
$$

- siendo r y ℓ las corrientes vectoriales y axiales externas, respectivamente.
- y $u^{\mu}=i\left[u^{\dagger}\left(\partial^{\mu}-i r^{\mu}\right) u-u\left(\partial^{\mu}-i \ell^{\mu}\right) u^{\dagger}\right]=i u^{\dagger} D_{\mu} U u^{\dagger}$
- F_{V} y G_{V} son parámetros reales.
- Así, se encuentra que V debe cumplir una ecuación de constricción

$$
\nabla^{\alpha} \nabla_{\rho} V^{\alpha \beta}-\nabla^{\beta} \nabla_{\rho} V^{\rho \alpha}+M_{V}^{2} V^{\alpha \beta}=-2 J^{\alpha \beta}
$$

- Donde $\nabla_{\mu} R=\partial_{\mu} R+\left[\Gamma_{\alpha}, R\right]$ y

$$
\Gamma_{\alpha}=\frac{1}{2}\left[u^{\dagger}\left(\partial_{\alpha}-i r_{\alpha}\right) u+u\left(\partial_{\alpha}-i \ell_{\alpha}\right) u^{\dagger}\right] .
$$

Al sustituir V y a órden p^{4} se tiene que

$$
\begin{gathered}
L_{1}^{V}=\frac{G_{V}^{2}}{8 M_{V}^{2}} \quad L_{2}^{V}=2 L_{1}^{V} \quad L_{3}^{V}=-6 L_{1}^{V} \\
L_{9}^{V}=\frac{F_{V} G_{V}}{2 M_{V}^{2}} \quad L_{10}^{V}=-\frac{F_{V}^{2}}{4 M_{V}^{2}}
\end{gathered}
$$

- y de igual forma para las demás resonancias.

[^0]: ${ }^{1}$ C. Patrignani et al. (Particle Data Group), Chin.Phys.C40(2016)
 ${ }^{2}$ T. Aoyama et al. PRL 109(2012)

[^1]: ${ }^{4}$ C. Patrignani et al. (Particle Data Group), Chin.Phys.C40(2016)
 For HVP, M. Davier et al. Eur.Phys.J. C71 (2011)
 For HLbL J. Prades et al. Advanced series on directions in HEP Vol20.

[^2]: ${ }^{5}$ M. Davier et al., Eur.Phys.J.C71(2011)
 ${ }^{6}$ G. W. Bennet et al., [Muon g-2 Collab.],PRD73(2006)
 ${ }^{7}$ H. Inuma et al, Nucl. Instrum. Meth. A 832 (2016); W. Gohn, FERMILAB-CONF-17-602-PPD, Muon g-2 collaboration, (2017)
 ${ }^{8}$ Talks given at the Muon g-2 Theory Initiative Workshops held during the last year at FNAL, Tsukuba, Connecticut Univ. and Mainz Univ.

[^3]: ${ }^{11}$ V. Cirigliano, G. Ecker, H. Neufeld and T. Pich, JHEP 0306 (2006)
 ${ }^{12}$ AG, P. Roig, JJ Sanz Cillero, arXiv:1803.08099

