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Final state
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Absorbed

50%50%

σ in σel

Initial state
proton, electron,
photon...

Diffraction in quantum mechanics

σ in=σel



  

Final state
same particle

Almost transparent disk
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~ 0%~ 100%

σ in σel

To have diffraction, one needs strong absorption!

Initial state
proton, electron,
photon...

Diffraction in quantum mechanics
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Intact in the final state
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dissociative
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protonelectron

Surprising phenomenon in high-energy DIS!
Its existence seems almost contradictory with the parton model...
Its observation boosted saturation physics!

10% of HERA 
events were 
diffractive!

A major highlight of HERA!
Diffraction in deep-inelastic scattering

[Golec-Biernat, Wüsthoff 1998]



  

This talk: Diffractive dissociative electron-nucleus scattering

What is the distribution of the rapidity gap y
0
?

Diffraction in deep-inelastic scattering

d σdiff

dy0



  

This talk: Diffractive dissociative electron-nucleus scattering
~ q q dipole-nucleus

[Nikolaev,Zakharov '90 
Golec-Biernat, Wüsthoff 1998]

Diffraction in deep-inelastic scattering

What is the distribution of the rapidity gap y
0
?

d σdiff

dy0
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Equation for the gap distribution

Forward elastic S-matrix element for dipole-nucleus scattering:

S( r , y=0)=e
−
r2QA

2

4

full absorptioncolor transparency

1/QA
r

1

small dipoles large dipoles

r

1)Total amplitude: the Balitsky-Kovchegov equation

[McLerran, Venugopalan]

= MV saturation mom. 

σ tot=2 (1−S)



  

Equation for the gap distribution

Forward elastic S-matrix element for dipole-nucleus scattering:

S( r , y=0)=e
−
r2QA

2

4

[Balitsky, Kovchegov
1996-1999]

full absorptioncolor transparency

1/QA
r

1

small dipoles large dipoles

= y-dependent saturation mom. 

r

y

1

1/Qs(y )
r

∂yS(r , y )=ᾱ∫ d
2 r '
2π

r 2

r '2(r−r ')2
[S( r ' , y )S( r−r ' , y )−S( r , y)]

1)Total amplitude: the Balitsky-Kovchegov equation

[McLerran, Venugopalan]

= MV saturation mom. 

σ tot=2 (1−S)



  

Equation for the gap distribution

S( r , y=0)=e
−
r2QA

2

4

∂yS( r , y )=ᾱ∫ d
2 r '
2π

r 2

r '2(r−r ')2
[S( r ' , y )S( r−r ' , y )−S(r , y)]

2) Diffractive cross section: the Kovchegov-Levin equation
[Kovchegov, Levin 2000 

Hatta, Iancu, Marquet, Soyez, Triantafyllopoulos 2006]



  

Equation for the gap distribution

Define S
2 
as

S( r , y=0)=e
−
r2QA

2

4

2) Diffractive cross section: the Kovchegov-Levin equation

S2(r , y0 ; y0)=[S( r , y0)]
2

∂yS2 (r , y ; y0)=ᾱ∫ d2 r '
2π

r 2

r '2( r−r ')2

×[S2( r ' , y ; y0)S2(r−r ' , y ;y0)−S2(r , y ;y0)]

d σdiff

dy0
=− ∂

∂ y0
S2( r ,Y ; y0)

The solution to these equations is what we are after, 
but they are difficult to solve!

[Kovchegov, Levin 2000 
Hatta, Iancu, Marquet, Soyez, Triantafyllopoulos 2006]

∂yS( r , y )=ᾱ∫ d
2 r '
2π

r 2

r '2(r−r ')2
[S( r ' , y )S( r−r ' , y )−S(r , y)]

for y>y
0
:
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Picture of onium-nucleus scattering
Total cross section

Qs
2
(Y)≃QA

2 e
const×ᾱY

( ᾱY)
3/2 γ0

Solution: 1−S ∼r Q s(Y )≪1 ln
1

r2Qs
2
(Y)

[ r2Qs
2
(Y)]

γ0 ≪ 1
(γ0≃0.63)

σ tot(r , Y)=2[1−S(r ,Y)] ∂yS(r , y )=ᾱ∫ d
2 r '
2π

r 2

r '2( r−r ')2
[S(r ' , y )S( r−r ' , y )−S( r , y)]



  

Picture of onium-nucleus scattering
Total cross section

σ tot(r , Y)=2[1−S(r ,Y)]

Solution:
(γ0≃0.63)

∂yS(r , y )=ᾱ∫ d
2 r '
2π

r 2

r '2( r−r ')2
[S(r ' , y )S( r−r ' , y )−S( r , y)]

Qs
2
(Y)≃QA

2 e
const×ᾱY

( ᾱY)
3/2 γ0 1−S ∼r Q s(Y )≪1 ln

1

r2Qs
2
(Y)

[ r2Qs
2
(Y)]

γ0 ≪ 1



  

Picture of onium-nucleus scattering
Total cross section

Solution:

Onium restframe

1-S is like the transparency 
of the boosted nucleus

(γ0≃0.63)

Qs
2
(Y)≃QA

2 e
const×ᾱY

( ᾱY)
3/2 γ0 1−S ∼r Q s(Y )≪1 ln

1

r2Qs
2
(Y)

[ r2Qs
2
(Y)]

γ0 ≪ 1

σ tot(r , Y)=2[1−S(r ,Y)] ∂yS(r , y )=ᾱ∫ d
2 r '
2π

r 2

r '2( r−r ')2
[S(r ' , y )S( r−r ' , y )−S( r , y)]



  

Picture of onium-nucleus scattering
Total cross section

Solution:

Onium restframe Nucleus restframe

1-S is like the transparency 
of the boosted nucleus

1-S is like the probability to have a
gluon of transverse momentum larger

than the nuclear saturation momentum 
in the boosted onium Fock state

(γ0≃0.63)

Qs
2
(Y)≃QA

2 e
const×ᾱY

( ᾱY)
3/2 γ0 1−S ∼r Q s(Y )≪1 ln

1

r2Qs
2
(Y)

[ r2Qs
2
(Y)]

γ0 ≪ 1

σ tot(r , Y)=2[1−S(r ,Y)] ∂yS(r , y )=ᾱ∫ d
2 r '
2π

r 2

r '2( r−r ')2
[S(r ' , y )S( r−r ' , y )−S( r , y)]



  

Picture of onium-nucleus scattering
Total and diffractive cross section in the y

0
 frame

 Total

in which the nucleus has rapidity y
0



  

Picture of onium-nucleus scattering
Total and diffractive cross section in the y

0
 frame

 Total Diffractive

The scattering between the state of the
onium and the evolved nucleus needs to be elastic

This requires an unusually low-k
T
 gluon at rapidity y

0

in which the nucleus has rapidity y
0



  

Picture of onium-nucleus scattering
Total and diffractive cross section in the y

0
 frame

 Total Diffractive

The scattering between the state of the
onium and the evolved nucleus needs to be elastic

This requires an unusually low-k
T
 gluon at rapidity y

0

in which the nucleus has rapidity y
0

1
σ tot

d σdiff

dy0
=const×[ ᾱY

ᾱ y0( ᾱ (Y−y0)) ]
3 /2

Probability given by the BK equation!



  

Outline

 Equation for the gap distribution

 Ancestry in branching random walks

 Numerical checks

 Picture of onium-nucleus scattering



  

Branching random walks

t

x



  

Branching random walks

x

t

t0

Distribution of decay time of 
most recent common ancestor?



  

Branching random walks

x

t

dp
dt0

=
1

√4 π
×[ t
t 0( t−t 0) ]

3/2

t0

Distribution of decay time of 
most recent common ancestor?

(for branching Brownian motion with diffusion 
constant 2 and splitting rate 1)

[Derrida, Mottishaw 2016]



  

Branching random walks

x

t

dp
dt0

=
1

√4 π
×[ t
t 0( t−t 0) ]

3/2

t0

Distribution of decay time of 
most recent common ancestor?

(for branching Brownian motion with diffusion 
constant 2 and splitting rate 1)

1
σ tot

d σdiff

dy0
=const×[ ᾱY

ᾱ y0( ᾱ (Y−y0)) ]
3 /2

Distribution of rapidity gaps:

ᾱY⇔ t
ᾱ y0⇔ t0

[Derrida, Mottishaw 2016]



  

Branching random walks

x

t

dp
dt0

=
1

√4 π
×[ t
t 0( t−t 0) ]

3/2

t0

Distribution of decay time of 
most recent common ancestor?

(for branching Brownian motion with diffusion 
constant 2 and splitting rate 1)

Physical reason for the correspondence: 
The common ancestor is an unusually large fluctuation! (here: large value of x)

1
σ tot

d σdiff

dy0
=const×[ ᾱY

ᾱ y0( ᾱ (Y−y0)) ]
3 /2

Distribution of rapidity gaps:

ᾱY⇔ t
ᾱ y0⇔ t0

[Derrida, Mottishaw 2016]
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Comparison to numerics

Numerics: Solution to the Kovchegov-Levin eq.

Very large-Y asymptotics

1
σ tot

d σdiff

dy0
=const×[ ᾱY

ᾱ y0( ᾱ (Y−y0)) ]
3 /2

Theory:



  

Realistic rapidities (EIC) ᾱY=3

Comparison to numerics

Numerics: Solution to the Kovchegov-Levin eq.
d σdiff

dy0
∼[ ᾱY

ᾱ y0( ᾱ(Y−y0)) ]
3 /2

Theory:



  

Summary

We have predicted, up to an overall constant, the rapidity gap distribution in diffractive 
dissociation of a virtual photon off a nucleus:

There is a deep analogy between this distribution and the distribution of the time at 
which common ancestors of extreme particles in branching random walks decay

Outlook
We may have an even closer analogy between diffraction and genealogy: The overall 
constant in the distributions may be the same! 
Work in progress...

1
σ tot

d σdiff

dy0
=const×[ ᾱY

ᾱ y0( ᾱ (Y−y0)) ]
3 /2

Partonic interpretation: the rapidity gap is due to a large fluctuation (unusually low-
transverse momentum gluon) in the course of the QCD evolution of the onium Fock state
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