Subtractive Renormalization and Scaling in Low-Energy Few-Body Physics

Lauro Tomío

UFABC - Universidade Federal do ABC, Santo André, Brazil

Instituto de Fisica Teórica-UNESP, São Paulo, Brazil

The $8^{\text {th }}$ International Workshop on Chiral Dynamics 2015, Pisa, July 02

Outline

- 1. Introduction and motivation
- - renormalized fixed-poínt Hamiltonían
- ~ Motivation: Effective Theories
- 2. Formalism: Subtractive Renormalized Method
- Results of the approach in first order, with one-subtraction
- 3. Renormalization Group Invariance
- 4. Renormalized Hamiltonían
- 5. Subtracted T-matrix equation with n-subtractions
- 6. Results for NN Phase-shifts and Mixing Parameters
- 7. Hamiltonian for n-subtracted Three-Body Theory
- 8. Final Remarks

INTRODUCTION

The renormalization group program followed by K. Wilson and collaborators is of particular interest as it allows one to parameterize

- the physics of the high momentum states and work with effective degrees of freedom. The main idea is to use an effective renormalized Hamiltonian that, in the interaction between low-momentum states, includes the coupling with high momentum states.
- The renormalized Hamiltonian carries the physical information contained in the quantum system in states of high momentum.
- As an example, in the nuclear physics context, the use of effective interactions containing singularities at short distances is motivated by the development of a chirally symmetric nucleon-nucleon interaction, which contaíns contact interactions (Díracdelta and its higher order derivatives)
- Singular contact interactions have also been considered in specific treatments of scaling limits and correlations between low-energy observables of three- and four-body systems (atomic and nuclear)
(See, for example, Amorím et al [PRC56(1997)R2378; PRA60(1999)R9] and Hadizadeh et al [PRL107(2011)135304; PRA85(2012)023610]).

Renormalized fixed-point Hamiltonians

Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as Dirac-delta and/or its derivatives). We consider a renormalization scheme for few-nucleon interactions, relyíng on a subtracted T-matrix equation. The fixed-point Hamiltonian, which is Hermitian, contains the renormalized coefficients/operators that carry the physical informations of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude.
It is also behind the renormalization group invariance of quantum mechanics.

- Renormalization group techníques, Callan-Symanzik equation, scale invariance and universality are discussed in this context.

Nucleon-nucleon (NN) system - Conventional approaches

Standard high-precision NN potentials: Bonn 2000, CD Bonn, Avi8, Nijm I, II, ...

Common features:

- Long-range part due to One-Pion-exchange
- Short-range pieces, modeled phenomenologically,

Describe the existing NN data

- Have typically 40-50 parameters

Effective Field Theory

- Identify the relevant degrees of freedom and symmetries
- Construct the most general Lagrangian consistent with
- Do standard quantum field theory with this Lagrangian.
S. Weinberg, Physica A96 (79) 327

Effective NN Interaction

We consider the following effective NN interaction:

$$
\begin{aligned}
& V_{E F T}\left(p^{\prime}, p\right)=V_{\pi}^{r e g}\left(p^{\prime}, p\right)+\sum_{i, j=0}^{1} \lambda_{i j} p^{\prime 2 i} p^{2 j} \\
& =\underbrace{V_{\pi}^{r e g}\left(p^{\prime}, p\right)+\lambda_{00}}_{V_{\pi+\delta}}+\underbrace{\lambda_{01} p^{\prime 2}+\lambda_{10} p^{2}+\lambda_{11} p^{\prime 2} p^{2}}_{V_{\delta^{\prime}}} \\
& V_{\pi+\delta}: \text { Regular part of OPEP }+V_{\delta}
\end{aligned}
$$

V_{δ} : Dirac- δ Contact Interaction
$V_{\delta^{\prime}}$: Derivative Contact Interactions
How to treat the singular interaction?

Subtractive Renormalization Method

From the original T-matrix equation

$$
\begin{aligned}
T(E) & =V+V G_{0}^{(+)}(E) T(E) \\
& =\left[1-V G_{0}^{(+)}(E)\right]^{-1} V
\end{aligned}
$$

$$
G_{0}^{(+)}(E)=\frac{1}{\left(E+i \varepsilon-H_{0}\right)}
$$

We simply need to:
\rightarrow replace V by $T\left(-\mu^{2}\right)$ and
\rightarrow multiply the free propagator by a μ-dependent function such that

$$
T(E)=T\left(-\mu^{2}\right)+T\left(-\mu^{2}\right) G_{R}^{(+)}\left(E ;-\mu^{2}\right) T(E)
$$

where

$$
\begin{aligned}
G_{R}^{(+)}\left(E ;-\mu^{2}\right) & \equiv G_{0}^{(+)}(E)-G_{0}\left(-\mu^{2}\right) \\
& =\frac{\left(\mu^{2}+E\right)}{\left(\mu^{2}+H_{0}\right)} G_{0}^{(+)}(E)
\end{aligned}
$$

Partial Wave Decomposition of OPEP

The one-pion-exchange potential is given by:

$$
\left\langle\overrightarrow{p^{\prime}}\right| V_{\pi}|\vec{p}\rangle=-\frac{g_{a}^{2}}{4(2 \pi)^{3} f_{\pi}^{2}} \vec{\tau}_{1} \cdot \vec{\tau}_{2} \frac{\vec{\sigma}_{1} \cdot\left(\overrightarrow{p^{\prime}}-\vec{p}\right) \vec{\sigma}_{2} \cdot\left(\overrightarrow{p^{\prime}}-\vec{p}\right)}{\left(\overrightarrow{p^{\prime}}-\vec{p}\right)^{2}+m_{\pi}^{2}}
$$

We normalize our basis for the partial wave decomposition expressing the plane-wave as

$$
\left|\vec{p} ; s m_{s} ; I\right\rangle=\sqrt{\frac{2}{\pi}} \sum_{l s j m_{j} ; I}\left|p ; l s ; j m_{j}\right\rangle|I\rangle\left[\mathcal{Y}_{l s}^{j m_{j}}(\hat{p})\right]^{\dagger}\left|s m_{s}\right\rangle
$$

The partial wave decomposition of OPEP in the ${ }^{1} S_{0}$ state is

$$
V_{\pi}\left(p^{\prime}, p\right)=\frac{g_{a}^{2}}{16 \pi f_{\pi}^{2}}+V_{\pi}^{r e g}\left(p^{\prime}, p\right)
$$

with a regular part
$V_{\pi}^{r e g}\left(p^{\prime}, p\right)=-\frac{g_{a}^{2}}{32 \pi f_{\pi}^{2}} \int_{-1}^{1} d x \frac{m_{\pi}^{2}}{p^{2}+{p^{\prime}}^{2}-2 p p^{\prime} x+m_{\pi}^{2}}$

Subtracted Equations with only $V_{\pi+\delta}$

Singlet ${ }^{1} S_{0}$:

$$
T_{s}^{(00)}\left(p^{\prime}, p ; k^{2}\right)=T_{s}^{(0)}\left(p^{\prime}, p ;-\mu^{2}\right)+\frac{2}{\pi} \int_{0}^{\infty} d q q^{(}\left(\frac{\mu^{2}+k^{2}}{\mu^{2}+q^{2}}\right) \frac{\left.T_{s}^{(0)}\right)\left(p^{\prime}, q ;-\mu^{2}\right)}{k^{2}-q^{2}+i \epsilon} T_{s}^{(0)}\left(p^{\prime}, p ; k^{2}\right)
$$

Coupled-channel ${ }^{3} S_{1} 3^{3} D_{1}$

$$
T_{t}^{T_{t}^{(l, l)}\left(p^{\prime}, p ; k^{2}\right)=T_{t}^{\left(l_{2}, 2\right)}\left(p^{\prime}, p ;-\mu^{2}\right)+\frac{2}{\pi} \sum_{l_{3}} \int_{0}^{\infty} d q q^{2}\left(\frac{\mu^{2}+k^{2}}{\mu^{2}+q^{2}}\right) \frac{T_{t}^{(l, l)}\left(p^{\prime}, q ;-\mu^{2}\right)}{k^{2}-q^{2}+i \epsilon} T_{t}^{\left(l l^{(l)}\right)}\left(p^{\prime}, p ; k^{2}\right)}
$$

${ }^{3} S_{1}$ phase shifts with only $V_{\pi+\delta}$

${ }^{3} D_{1}$ phase shifts with only $V_{\pi+\delta}$

ε_{1} mixing angle with only $V_{\pi+\delta}$

Features of $V_{\pi+\delta}$

- Reasonable agreement for the coupled channel, where the pion domínates.
- Only one subtraction is enough to obtaín a finite T-matríx.
- Poor description of the singlet state. Need next order in NN interaction. More subtractions required.

Renormalized Hamiltonían

- The renormalized Hamiltonian is the sum of the free Hamiltonian with the renormalized interaction:

$$
\begin{array}{r}
H_{R} \approx H_{0}+V_{R} \\
T_{R}(E) \approx V_{R}+V_{R} G_{0}^{(+)}(E) T_{R}(E) \\
G_{0}^{(+)}(E) \approx\left(E+i \varepsilon-H_{0}\right)-1 \\
V_{R} \approx T_{R}\left(-\mu^{2}\right) \Sigma_{n}\left[-G_{0}\left(-\mu^{2}\right) T_{R}\left(-\mu^{2}\right)\right]^{n} \\
\approx T_{R}\left(-\mu^{2}\right) /\left[1+G_{0}\left(-\mu^{2}\right) T_{R}\left(-\mu^{2}\right)\right] \\
\approx\left\{1 /\left[1+T_{R}\left(-\mu^{2}\right) G_{0}\left(-\mu^{2}\right)\right]\right\} T_{R}\left(-\mu^{2}\right)
\end{array}
$$

Subtracted T-matrix Equations

The $n-t h$ order subtracted equation is given by:

$$
\begin{gathered}
T(E)=V^{(n)}\left(-\mu^{2} ; E\right)+V^{(n)}\left(-\mu^{2} ; E\right) G_{n}^{(+)}\left(E ;-\mu^{2}\right) T(E) \\
V^{(n)} \equiv\left[1-\left(-\mu^{2}-E\right)^{n-1} V^{(n-1)} G_{0}^{n}\left(-\mu^{2}\right)\right]^{-1} V^{(n-1)} \\
G_{n}^{(+)} \equiv\left[\left(-\mu^{2}-E\right) G_{0}\left(-\mu^{2}\right)\right]^{n} G_{0}^{(+)}(E)
\end{gathered}
$$

Since we need 3 subtractions, we have

$$
\begin{gathered}
T\left(p^{\prime}, p ; k^{2}\right)=V_{\pi+\delta+\delta^{\prime}}^{(3)}\left(p^{\prime}, p ;-\mu^{2} ; k^{2}\right) \\
+\frac{2}{\pi} \int_{0}^{\infty} d q q^{2}\left(\frac{\mu^{2}+k^{2}}{\mu^{2}+q^{2}}\right)^{3} \frac{V_{\pi+\delta+\delta^{\prime}}^{(3)}\left(p^{\prime}, q ;-\mu^{2} ; k^{2}\right)}{k^{2}-q^{2}+i \epsilon} T\left(q, p ; k^{2}\right) \\
V_{\pi+\delta+\delta^{\prime}}^{(3)}=V_{\pi+\delta}^{(3)}+\lambda_{\mathcal{R} 10}\left(p^{\prime 2}+p^{2}\right)+\lambda_{\mathcal{R} 11} p^{\prime 2} p^{2}
\end{gathered}
$$

Subtracted T-matrix Equations

The integral equations for $V_{\pi+\delta}^{(n)}$ are

$$
\begin{aligned}
& V_{\pi+\delta}^{(n)}=V_{\pi+\delta}^{(n-1)} \\
+ & \frac{2}{\pi} \int_{0}^{\infty} d q q^{2}\left(\frac{\mu^{2}+k^{2}}{\mu^{2}+q^{2}}\right)^{n-1} \frac{V_{\pi+\delta}^{(n-1)}}{-\mu^{2}-q^{2}} V_{\pi+\delta}^{(n)}
\end{aligned}
$$

The T-matrix of the OPE plus the δ potential is obtained using Distorted Wave Theory:

$$
\begin{aligned}
T_{\pi+\delta}(E) & =T_{\pi}(E)+\left[1+T_{\pi}(E) G_{0}^{(+)}(E)\right] \\
& \times T_{\delta}(E)\left[1+G_{0}^{(+)}(E) T_{\pi}(E)\right]
\end{aligned}
$$

with the singular T -matrix being solution of

$$
T_{\delta}(E)=V_{\delta}+V_{\delta} G_{\pi}^{(+)}(E) T_{\delta}(E)
$$

The Green's function for the regular part of OPE is

$$
G_{\pi}^{(+)}(E)=G_{0}^{(+)}(E)+G_{0}^{(+)}(E) T_{\pi}(E) G_{0}^{(+)}(E)
$$

Subtracted T-matrix Equations

Renormalization is also required to obtain $T_{\delta}(E)$. But in this case only 1 subtraction is enough

$$
\begin{aligned}
T_{\delta}(E) & =T_{\delta}\left(-\mu^{2}\right) \\
& +T_{\delta}\left(-\mu^{2}\right)\left[G_{\pi}^{(+)}(E)-G_{\pi}\left(-\mu^{2}\right)\right] T_{\delta}(E)
\end{aligned}
$$

The renormalized strength of the δ interaction defines $T_{\delta}(E)$ at the subtraction point

$$
T_{\delta}\left(-\mu^{2}\right)=\lambda_{\mathcal{R} 00}
$$

The result is

$$
\begin{aligned}
& T_{\pi+\delta}\left(p^{\prime}, p ;-\mu^{2}\right)=T_{\pi}\left(p^{\prime}, p ;-\mu^{2}\right) \\
+ & {\left[1+\frac{2}{\pi} \int_{0}^{\infty} d q q^{2} \frac{T_{\pi}\left(p^{\prime}, q ;-\mu^{2}\right)}{-\mu^{2}-q^{2}}\right] } \\
\times & \lambda_{\mathcal{R} 00} \\
\times & {\left[1+\frac{2}{\pi} \int_{0}^{\infty} d q^{\prime} q^{\prime 2} \frac{T_{\pi}\left(q^{\prime}, p ;-\mu^{2}\right)}{-\mu^{2}-q^{\prime 2}}\right] }
\end{aligned}
$$

Renormalization Group Invariance

\rightarrow Observables are invariant under the change of the subtracion energy scale μ^{2}
\rightarrow The driving term $V^{(n)}$ has to be modified in order to keep T invariant

The rule to modify $V^{(n)}$ appears in the form of a non-relativistic Callan-Symanzik equation:

$$
\frac{\partial V^{(n)}}{\partial \mu^{2}}=-V^{(n)} \frac{\partial G_{n}^{(+)}}{\partial \mu^{2}} V^{(n)}
$$

which is derived from

$$
\frac{\partial T(E)}{\partial \mu^{2}}=0
$$

Model results with OPE, NLO and NNLO

$$
\begin{aligned}
V_{\mathrm{NLO}}\left(p, p^{\prime}\right)= & V_{\mathrm{TPE}}^{\mathrm{NLO}}\left(p, p^{\prime}\right)+\lambda_{1}\left(p p^{\prime}\right) \delta_{L, 1} \delta_{L^{\prime}, 1} \\
& +\left(\lambda_{2}\left(p^{2}+p^{\prime 2}\right)+\lambda_{3}\left(p^{2} p^{\prime 2}\right)\right) \delta_{L, 0} \delta_{L^{\prime}, 0} \\
& +\lambda_{4}\left(p^{2} \delta_{L, 2} \delta_{L^{\prime}, 0}+p^{\prime 2} \delta_{L^{\prime}, 2} \delta_{L, 0}\right), \\
V_{\mathrm{TPE}}^{\mathrm{NLO}}\left(\vec{p}, \overrightarrow{p^{\prime}}\right)= & -\left(\frac{\boldsymbol{\tau}_{1} \cdot \tau_{2}}{384 \pi^{2} f_{\pi}^{4}}\right) \frac{L(q)}{(2 \pi)^{3}}\left\{4 M_{\pi}^{2}\left(5 g_{A}^{4}-4 g_{A}^{2}-1\right)\right. \\
+ & \left.q^{2}\left(23 g_{A}^{4}-10 g_{A}^{2}-1\right)+\frac{48 g_{A}^{4} M_{\pi}^{4}}{4 M_{\pi}^{2}+q^{2}}\right\} \\
& -\left(\frac{3 g_{A}^{4}}{64 \pi^{2} f_{\pi}^{4}}\right) L(q)\left\{\left(\vec{\sigma}_{1} \cdot \vec{q}\right)\left(\vec{\sigma}_{2} \cdot \vec{q}\right)\right. \\
& \left.-q^{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right\} .
\end{aligned}
$$

For the NNLO chiral potential, we adop a momentum space form, which is explicitly given by Epelbaum in Prog.Part.Nucl. Phys.57(2006)654. See also in PRC 83 (2011) 064005.

Numerical Results

For each set of $\lambda_{\mathcal{R} 10}, \lambda_{\mathcal{R} 11}$ and μ, we fit the singlet scattering length $a_{s}=-23.739 \mathrm{fm}$ through the value of $\lambda_{\mathcal{R} 00}$. With $\mu=214 \mathrm{MeV}$, the two parameters left are adjusted to reproduce the Nijgemen data up to the center of mass momentum of $k=300 \mathrm{MeV} / \mathrm{c}$.

First, as a straightforward check of our method, we obtain the singlet S-wave phase shifts for $V_{\pi+\delta}$ obtained by solving the three-fold equation with $\lambda_{\mathcal{R} 10}=\lambda_{\mathcal{R} 11}=0$. The present calculation reproduces the results obtained with the one-subtracted equation.

$$
\begin{aligned}
& \mu=214 \mathrm{MeV} \\
& \mu \lambda_{R 00}=-8.8395 \\
& \lambda_{R 01}=0 \\
& \lambda=0
\end{aligned} V_{\pi+\delta},
$$

$$
\begin{aligned}
& \mu=214 \mathrm{MeV} \\
& \mu \lambda_{R 00}=-0.1465 \\
& \mu^{3} \lambda_{R 01}=4.7124 \\
& \mu^{5} \lambda_{R 11}=5.0265
\end{aligned}
$$

Contributions to the ${ }^{1} S_{0}$ phase shifts

Results for NN Phase-shifts and Mixing Parameters

Phase-shifts for the ${ }^{1} S_{0}$ wave, with subtracted point at -50 MeV ; and, for ${ }^{3} P_{0}$ wave with subtraction point at -100 MeV .

Results for NN Phase-shifts and Mixing Parameters

Phase-shifts for the ${ }^{1} P_{1}$ and ${ }^{3} P_{1}$ waves.

Results for NN Phase-shifts and Mixing Parameters

Phase-shifts for the ' D_{2} and ${ }^{3} D_{2}$ waves.

Results for NN Phase-shifts and Mixing Parameters

Phase-shifts and mixing parameter for the ${ }^{3} S_{1}-3 D_{1}$ coupled channels.

Results for NN Phase-shifts and Mixing Parameters

Phase-shifts and mixing parameter for the ${ }^{3} P_{2}-3 F_{2}$ coupled channels.

illustration of the cut-off independence of the method, for two singular cases, by considering NNLO potential with $n=4$ subtracted scattering equation. Our results were obtained for infinite cut-offs, within the subtractive renormalization approach.
[PRC83 (2011) 064005]

Hamiltonian for Subtracted 3B equations

n -subtracted T -matrix equation (for Dirac-delta $\mathrm{n}=1$)
$T(E)=V^{(n)}\left(E,-\mu^{2}\right)+(-1)^{n}\left(E+\mu^{2}\right)^{n} V^{(n)}\left(E,-\mu^{2}\right) G_{0}^{(+)}(E) G_{0}^{n}\left(-\mu^{2}\right) T(E)$
Invariance of T-matrix by dislocations of the subtraction point:

$$
\frac{\partial V^{(n)}}{\partial \mu^{2}}=-V^{(n)} \frac{\partial G_{n}^{(+)}\left(E ;-\mu^{2}\right)}{\partial \mu^{2}} V^{(n)}
$$

Renormalized Hamiltonian: $\quad H_{\mathcal{R}}=H_{0}+V_{\mathcal{R}}$
$V_{\mathcal{R}}=\left[1+V^{(n)} G_{0}^{(+)}(E)\left(1-(-1)^{n}\left(\mu^{2}+E\right)^{n} G_{0}^{n}\left(-\mu^{2}\right)\right)\right]^{-1} V^{(n)}$

$$
\frac{\partial V_{\mathcal{R}}}{\partial \mu^{2}}=0 \quad \text { and } \quad \frac{\partial H_{\mathcal{R}}}{\partial \mu^{2}}=0
$$

Subtracted-Faddeev equations 3B:

$$
\begin{gathered}
T_{k}(E)=t_{(i j)}\left(E-\frac{q_{k}^{2}}{2 m_{i j, k}}\right)\left[1+\left(G_{0}^{(+)}(E)-G_{0}\left(-\mu_{3}^{2}\right)\right)\left(T_{i}(E)+T_{j}(E)\right)\right] \\
H_{\mathscr{R} I}^{(3 B)}=\sum_{(i j)} V_{\mathcal{R}(i j)}^{(2 B)}+V_{\mathscr{R}}^{(3 B)}
\end{gathered}
$$

Frederico, Delfino, Tomio, Yamashita PPNP 67, 939 (2012)

REFERENCES:

- Frederico, Tímóteo, and Tomio, "Renormalization of the one-pion exchange Interaction", NPA 653 (1999) 209;
- Frederico, Delfino and Tomio, "Renormalization Group Invariance of Quantum Mechanics", PLB 481 (2000) 143;
- Tomío, Biswas, Delfino, Frederico, "Renormalization in few-body nuclear physics", Acta Phys. Hung. (Heavy lon Phys.) 16 (2002) 27;
- Tomio, Frederico, Timoteo, Delfino, "Recursive renormalization of the one-pion-exchange plus singular interactions", PLB621 (2005) 109;
- Timoteo, Frederico, Tomio, Delfino, "Renormalization of the NN interaction at NNLO: Uncoupled peripheral waves", IJMPE 16 (2007) 2822; "Subtractive renormalization of NN interaction up to NLO", NPA 790 (2007) 406;
- Tímóteo, Frederico, Delfino, Tomio, "Nucleon-nucleon scattering within a multiple subtractive renormalization approach", PRC 83 (2011) 064005.

Final Remarks

- The scheme works very well, with a T-matrix and Hamiltonian formalism, which doesn' t depend on the subtraction point μ^{2}.
- $V_{\delta i s}$ the component of the effective interaction which dominates in the ${ }^{1} S_{0}$ channel.
- Next orders are included in the effective interaction (more subtractions may be required).
- The calculations can be extended to higher partial waves.
- The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions.
- Very good agreement with neutron-proton data, particularly for the triplet. Mixing parameter for ${ }^{3} S_{1}-{ }^{3} D_{1}$ is shown to be the most sensible observable related to the renormalization scale.
- Rule to modify the driving term follows a non-relativistic CallanSymanzik equation (Group invariance).

My thanks to my collaborators
Tobias Frederico (ITA, São José dos Campos) Antonio Delfino (UFF, Níteróí) Varese S. Tímóteo (Unícamp, Límeíra)

We also would like to thank financial support from Brazilian agencies CAPES, CNPq and FAPESP

Thanks to the organizers, for the invitation; and
All of you to attend!

Backup slides

Parameters LO and NLO

TABLE I. Strengths of the LO contact interactions, which reproduce the scattering lengths for the S waves. The values of $\lambda_{0}^{{ }^{1} S_{0}}$ and $\lambda_{0}^{3 S_{1}}$, in units of fm , are given at the energy scale $-\bar{\mu}^{2}$, with $\bar{\mu}=30 \mathrm{fm}^{-1}\left(\bar{\mu}^{2}=41.47 \times 900 \mathrm{MeV}\right)$.

Strengths	${ }^{1} S_{0}$	${ }^{3} S_{1}$
$\lambda_{0}(\mathrm{fm})$	-0.0203	-0.24142

TABLE II. Strengths of the contact interactions for the fits with the LO potential plus the NLO contact interactions. The values of $\lambda_{0}{ }^{1 S_{0}}$ and $\lambda_{0}^{{ }^{3} S_{1}}$ are given at the same energy scale as in Table $\mathrm{I}\left(-\bar{\mu}^{2}=\right.$ $-41.47 \times 900 \mathrm{MeV}$); with $\lambda_{2}{ }^{1} S_{0}$ and $\lambda_{3}{ }^{1} S_{0}$ at $-\mu^{2}=-50 \mathrm{MeV}$. The other strengths are given at $-\mu^{2}=-100 \mathrm{MeV}$.

Strengths	${ }^{1} S_{0}$	${ }^{3} P_{0}$	${ }^{3} S_{1}$	${ }^{1} P_{1}$	${ }^{3} P_{1}$	${ }^{3} P_{2}$	ϵ_{1}
$\lambda_{0}(\mathrm{fm})$	-0.0165	-	-0.2480	-	-	-	-
$\lambda_{1}\left(\mathrm{fm}^{3}\right)$	-	0.25	-	0.04	0.007	-0.07	-
$\lambda_{2}\left(\mathrm{fm}^{3}\right)$	2.2660	-	0.1	-	-	-	-
$\lambda_{3}\left(\mathrm{fm}^{5}\right)$	2.0047	-	-	-	-	-	-
$\lambda_{4}\left(\mathrm{fm}^{3}\right)$	-	-	-	-	-	-	0.001

TABLE III. Strengths of the contact interactions for the fits with the full NLO potential. The values of the λ 's are given for $\bar{\mu}^{2}$ and μ^{2} as in Table II.

Strengths	${ }^{1} S_{0}$	${ }^{3} P_{0}$	${ }^{3} S_{1}$	${ }^{1} P_{1}$	${ }^{3} P_{1}$	${ }^{3} P_{2}$	ϵ_{1}
λ_{0}	-0.0190	-	-0.1602	-	-	-	-
$\lambda_{1}\left(\mathrm{fm}^{3}\right)$	-	0.37	-	0.063	-0.078	-0.04	-
$\lambda_{2}\left(\mathrm{fm}^{3}\right)$	2.2660	-	0.1	-	-	-	-
$\lambda_{3}\left(\mathrm{fm}^{5}\right)$	2.0047	-	-	-	-	-	-
$\lambda_{4}\left(\mathrm{fm}^{3}\right)$	-	-	-	-	-	-	0.17

