
Introduction to VHDL

P. Albicocco
LNF-INFN

SUMMARY

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 2	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

u  VHDL introduction
u  VHDL history
u  Level of abstraction
u  Simulation and synthesis
u  Libraries and packages
u  Entities and architectures

u  Entity
u  Ports
u  Architecture
u  Variables and signals

u  VHDL operators
u  Assignment statement example
u  Process example
u  Concurrent statements
u  VHDL code examples
u  Conclusions

VHDL à Very Hard Difficult Language J

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 3	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

VHDL à VHSIC Hardware Description Language
VHSIC à Very High Speed Integrated Circuits

u  VHDL is used to model the physical hardware used in digital systems.
u  VHDL allows most reliable design process minimizing both costs and develop time
u  VHDL make use of Object Oriented methodology (modules developed for the

current project can be reused in the future)

BUT	

u  VHDL is NOT a programming language (like C, C++, python etc.)

u  when designing systems using VHDL you must always have in mind the
hardware you have to implement

VHDL HISTORY

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 4	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

VHDL à VHSIC Hardware Description Language
VHSIC à Very High Speed Integrated Circuits

u  VHDL is used for documentation, verification and synthesis of large digital design.
u  VHDL allows hardware description using three different approaches: structural, data flow and

behavioral (generally a mixture of the three methods is used).
u  VHDL is a standard (VHDL-1076) developed by IEEE (Institute of Electrical and Electronics

Engineers)

1981 Initiated by US DoD to address hardware life-cycle crisis
1983-85 Development of baseline language by Intermetrics, IBM and TI
1986 All rights transferred to IEEE
1987 Publication of IEEE Standard
1987 Mil Std 454 requires comprehensive VHDL descriptions to be delivered with ASICs
1994 Revised standard (named VHDL 1076-1993)
2000 Revised standard (named VHDL 1076 2000, Edition)
2002 Revised standard (named VHDL 1076-2002)
2007 VHDL Procedural Language Application Interface standard (VHDL 1076c-2007)
2009 Revised Standard (named VHDL 1076-2008)

Summary: History of VHDL

LEVELS OF ABSTRACTION

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 5	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

u  Structural model:
u  The system is described as gates and component blocks connected by wires

to implement the design (like a schematic rapresentation)
u  Describes only connections

u  Behavioral model:
u  Describes the behavior of a component
u  Describes how input signal interact to create the output
u  Register Transfer Level (RTL):

u  Describes dataflow in the system
u  Algorithmic Level:

u  Instruction in a sequence of operations (sequential logic)
u  Dataflow model:

u  Define flow of data (example: x <= y is executed as soon as the input
variable y change)

u  VHDL respect the VLSI design principles of modularity and locality

SIMULATION AND SYNTHESIS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 6	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

u  Simulation is the prediction of the behavior of a system
-  Functional simulation generates an approximates behavior of the

hardware design (functional simulation assume all outputs changing
at the same time)

-  Timing simulation predicts the exact behavior of a hardware design
u  Synthesis translates the design into a netlist file describing the

hardware structure of a system
-  VHDL was not designed for synthesis
-  Not all VHDL statements are synthesizable

When starting a VHDL based design please remind Stephen Brown, Zvonko
Vranesic [Fundamentals of Digital Logic with VHDL Design] suggestion:

“A good general guideline is to assume that if the designer cannot
readily determine what logic circuit is described by the VHDL code,
then the CAD tools are not likely to synthesize the circuit that the
designer is trying to describe”

ENTITIES AND ARCHITECTURES

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 7	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

ENTITY	

ARCHITECTURE 2	

VHDL structure	

ARCHITECTURE 1	 ARCHITECTURE 3	

ARCHITECTURES
u  specify the design internal implementation
u  An entity can have more architectures according to the required

optimization (performance, area, power consumption, simulation)
u  Configurations specify the connections between an architecture and an

instance of an entity (in the following we’ll use a single architecture)

ARCHITECTURES DECLARATIONS

ARCHITECTURE architecture_name OF entity_name IS
BEGIN

-- Insert VHDL code here
--

END architecture_name

ENTITIES

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 8	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

ENTITY = EXTERNAL INTERFACE SPECIFICATION
Entity declaration specify:

u  The name of the entity
u  A set of generic declarations defining the instance parameters
u  A set of port declarations defining the inputs and outputs of the hardware

design

--
library ieee;
use ieee.std_logic_1164.all;
--
entity OR_ent is
port(x: in std_logic;

y: in std_logic;
F: out std_logic

);
end OR_ent;
--

ENTITY SECTION
àdeclare the I/O port of the circuit

define the names of the ports,
their mode and their type

entity – defines the interface

port direction; can be:
in, out, inout

std_logic is the type of the port. Standard logic is defined by the
standard IEEE 1164. It is defined in the IEEE library.
Any node of type std_logic can take 9 different values. ‘0’ , ’1’ , ’H’ ,
’L’ , ’Z’ , ’U’ , ’X’ , ’W’ , ’-’

Library: collection of design
elements

EXAMPLE: OR GATE (F= x + y)

Comment ‘-’

note: final signal has no semi-colon

PORTS

	EDIT	2015	–	FRASCATI	OCTOBER	20-29	 9	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

PORT NAMES
u  letters, digits, underscores
u  begin with a letter
u  are case insensitive

PORT DIRECTIONS
u  in
u  out
u  inout
u  buffer special OUT (can be read by the entity architecture)

IEEE standard 1164-1993
u  the external pins of a synthesizable design must be defined using data types

specified in the std_logic_1164 package
u  IEEE strongly recommend the use of following data types for synthetizable

system
u  std_logic
u  std_logic_vector(<max> DOWNTO <min>)

ARCHITECTURE

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 10	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

architecture OR_arch of OR_ent is
begin
 process(x, y)
 begin
 -- compare to truth table
 if ((x='0') and (y='0')) then

 F <= '0';
else
 F <= '1';
end if;

 end process;
end OR_arch;

architecture OR_beh of OR_ent is
begin
 F <= x or y;
end OR_beh;	

CUNCURRENT SIGNAL ASSIGNMENT (CSA) PROCESS

concurrent statement

sensitivity list (process is
invoked if the signal
values change)

The ARCHITECTURE describes the behavior, interconnections and
relationship between different inputs and outputs

sequential
statements

The use of processes makes your code more modular, more readable, and
allows you to separate combinational logic from sequential logic

You can assign a name
to the process

VARIABLES & SIGNALS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 11	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

BOTH VARIABLES AND SIGNALS ARE USED TO HOLD DATA, BUT:

u  Variables are used in processes (variables behave as expected in software
programming languages)

u  Signals are used in structural and data flow description

a:=b;

u  variables do not trigger events
u  variables are modified with the variable assignment “:=“
u  the value of b is copied immediately to a
u  assignment is performed when the process is executed

VARIABLE EXAMPLE

count: process (x)
 variable cnt : integer := -1;
begin
 cnt:=cnt+1;
end process;

u  variable declaration appears BEFORE the begin
keyword (optional: the initial value can be specified
and will be used in simulation)

u  Variable cnt is declared to be of the type integer
(can assume both positive and negative values)

each time the process is executed the value cnt+1 is
stored in cnt variable (as process is executed once
when simulation start initializing cnt to -1 allows the
value of cnt be 0 when simulation start)

cnt is incremented each time the signal (x) in the
sensitivity list change, then if x is a bit signal the
process counts the number of rising and falling
edges of the signal

SYNTHESIS AND SIMULATION: BEWARE

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 12	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

u  Synthesizable design can be simulated
u  Not all simulated signals can be synthetized

LIBRARY	ieee;		
USE	ieee.std_logic_1164.ALL;	
	
ENTITY	simple_buffer	IS		

	PORT	(din	:	IN	std_logic;	
	 					dout	:	OUT	std_logic	
);		

END	simple_buffer;	
ARCHITECTURE	behavioural1	OF	simple_buffer	IS		
BEGIN		

	dout	<=	din	AFTER	10	ns;		
END	behavioural1;		

THIS ARCHITECTURE CAN BE SIMULATED BUT NOT SYNTETIZED

VHDL OPERATORS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 13	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

LOGICAL OPERATORS

RELATIONAL OPERATORS

= (EQUAL)
/= (NOT EQUAL)
< (LESS THAN)
> (GREATER THAN)	

MATHEMATICAL OPERATORS

+ (ADDITION)
-  (SUBTRACTION)
* (MULTIPLICATION)
/ (DIVISION)	

“AND”	
“OR”	
“NAND”	
“NOR”	
“XOR”	

ASSIGNMENT STATEMENTS EXAMPLE

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 14	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

SIGNAL	a,	b,	c	:	std_logic;		
SIGNAL	avec,	bvec,	cvec	:	std_logic_vector(7	DOWNTO	0);		
	
--	Concurrent	Signal	Assignment	Statements	
--	NOTE:	Both	a	and	avec	are	produced	concurrently		
a	 	 	<=	b	AND	c;	
avec	 	<=	bvec	OR	cvec;		
	
--	Alterna>vely,	signals	may	be	assigned	constants		
a		 	 	<=	’0’;		
b	 	 	<=	’1’;		
c		 	 	<=	’Z’;		
avec		 	<=	"00111010";	 	--	Assigns	0x3A	to	avec		
Bvec	 		<=	X"3A”;	 	 	--	Assigns	0x3A	to	bvec		
cvec	 	<=	X"3"	&	X"A";	 	--	Assigns	0x3A	to	cvec		

PROCESS: D FF EXAMPLE

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 15	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

;,*:3%<=%>?? !"#$%&'()*+,- 9

Copyright © 2005 by W. D. Bishop. All Rights Reserved

#%:-+4#%:-+433:-)4%28,/4-9:-)4%28,/4-9

% .5+=6)4(:#..$6+%$,"#$EVENT 6,,4573,#$(-6.5=+6'-$5,$5.$
)(..57'#$,($.)#:5-8$6$1$-'5)9-'()

% !"#$EVENT 6,,4573,#$:6+$7#$3.#%$,($:"#:,$-(4$,"#$45.5+=$#%=#$
(-6:'(:,$.5=+6'

% !"#$7'(:,$%56=46*$(-$6$1$*'5)9*'()$5.$."(&+$7#'(&$D FLIP-FLOP BLOCK DIAGRAM!
LIBRARY	ieee;		
USE	ieee.std_logic_1164.ALL;		
ENTITY	dff	IS	

	PORT(rst,	clk,	ena,	d	:	IN		 	std_logic	
	 			q	:	 	 														OUT	 	std_logic	

END	dff;		
ARCHITECTURE	synthesis1	OF	dff	IS		
BEGIN		

	PROCESS	(rst,	clk)		
	BEGIN		
	 	IF	(rst	=	‘1’)	THEN		
	 	 	q	<=	‘0’;		
	 	ELSIF	(clk’EVENT)	AND	(clk	=	‘1’)	THEN		
	 	 	IF	(ena	=	‘1’)	THEN		
	 	 	 	q	<=	d;		
	 	 	END	IF;		
	 	END	IF;		
	END	PROCESS;		

END	synthesis1;		

EVENT attribute is used to check
the rising edge of a clock signal

CONCURRENT STATEMENTS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 16	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

u  All concurrent statements in an architecture are executed simultaneously

u  Concurrent statements are used to express parallel activity

u  Concurrent statements are executed with no predefined order by the
simulator . So the order in which the code is written does not have any effect
on its function

u  Process is a concurrent statement in which sequential statements are allowed

u  All processes in an architecture are executed simultaneously

u  Concurrent statements are executed by the simulator when one of the signals
in its sensitivity list changes . This is called occurrence of ‘event’ (c <= a or b;
is executed when either signal ‘a’ or signal ‘b’ changes

VHDL INSTRUCTIONS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 17	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

VHDL_INSTRUCTION FILE CONTAINS DESCRIPTION AND
EXAMPLES OF FPGA BUILDING BLOCKS AND INSTRUCTIONS	

LET’S START WRITING SOME CODE …

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 18	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

REMIND
u  Every VHDL design description consists of at least one entity / architecture pair, or

one entity with multiple architectures.
u  The entity section of the HDL design is used to declare the I/O ports of the circuit,

while the description code resides within architecture portion.
u  Standardized design libraries are typically used and are included prior to the entity

declaration. This is accomplished by including the code "library ieee;" and "use
ieee.std_logic_1164.all;".

AND GATE

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 19	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

--
library ieee;
use ieee.std_logic_1164.all;
--
entity AND_ent is
port(x: in std_logic;

y: in std_logic;
F: out std_logic

);
end AND_ent;
--
architecture behav1 of AND_ent is
begin
 process(x, y)
 begin
 -- compare to truth table
 if ((x='1') and (y='1')) then

 F <= '1';
else
 F <= '0';
end if;

 end process;
end behav1;

--
architecture behav2 of AND_ent is
begin
 F <= x and y;
end behav2;

COMBINATIONAL LOGIC

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 20	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

The port map instruction is used for component instantiation. The program incorporates
multiple components in the design. 	

--

library ieee; -- component #1
use ieee.std_logic_1164.all;
entity OR_GATE is
port(X: in std_logic;

Y: in std_logic;
F2: out std_logic

);
end OR_GATE;
architecture behv of OR_GATE is
begin
process(X,Y)
begin

F2 <= X or Y; -- behavior des.
end process;
end behv;

library ieee; -- component #2
use ieee.std_logic_1164.all;
entity AND_GATE is
port(A: in std_logic;

B: in std_logic;
F1: out std_logic

);
end AND_GATE;
architecture behv of AND_GATE is
begin
process(A,B)
begin

F1 <= A and B; -- behavior des.
end process;
end behv;

OR AND

COMBINATIONAL LOGIC

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 21	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

--
library ieee; -- top level circuit
use ieee.std_logic_1164.all;
use work.all;
entity comb_ckt is
port(input1: in std_logic;

input2: in std_logic;
input3: in std_logic;
output: out std_logic

);
end comb_ckt;
architecture struct of comb_ckt is
 component AND_GATE is -- as entity of AND_GATE
 port(A: in std_logic;
 B: in std_logic;
 F1: out std_logic
);
 end component;
 component OR_GATE is -- as entity of OR_GATE
 port(X: in std_logic;
 Y: in std_logic;
 F2: out std_logic
);
 end component;
 signal wire: std_logic; -- signal just like wire
begin
 -- use sign "=>" to clarify the pin mapping
 Gate1: AND_GATE port map (A=>input1, B=>input2, F1=>wire);
 Gate2: OR_GATE port map (X=>wire, Y=>input3, F2=>output);
end struct;
--

COMPONENTS INSTANTIATION	

SIGNALS AND VARIABLES

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 22	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

Signals are used to connect the design components and must carry the information
between current statements of the design. On the other hand, variables are used within
process to compute certain values.

library	ieee;	
use	ieee.std_logic_1164.all;	
enjty	sig_var	is	
port(d1,	d2,	d3: 	in	std_logic;	

	res1,	res2: 	out	std_logic);	
end	sig_var;	
architecture	behv	of	sig_var	is	
		signal	sig_s1:	std_logic;	
Begin	
		proc1:	process(d1,d2,d3) 		
				variable	var_s1:	std_logic;	
		begin	

	var_s1	:=	d1	and	d2;	
	res1	<=	var_s1	xor	d3;	

		end	process;	
		proc2:	process(d1,d2,d3)	
		begin	

	sig_s1	<=	d1	and	d2;	
	res2	<=	sig_s1	xor	d3;	

		end	process;	
end	behv;	

The first process uses variables while the second
uses signals: the outputs of the two processes are
different !!!

COMBINATIONAL COMPONENTS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 23	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

u  The body of an architecture includes concurrent signal assignment, concurrent
processes and component instantiation (port map statements)

u  Process statements include sequential statements (case/if-then-else/loop)

library ieee;
use ieee.std_logic_1164.all;

entity DECODER is
port(I: in std_logic_vector(1 downto 0);

O: out std_logic_vector(3 downto 0)
);
end DECODER;

architecture behv of DECODER is
begin
 -- process statement
 process (I)
 begin
 -- use case statement
 case I is

 when "00" => O <= "0001";
 when "01" => O <= "0010";
 when "10" => O <= "0100";
 when "11" => O <= "1000";
 when others => O <= "XXXX";
end case;

 end process;
end behv;

Concurrent statement (with
sensitivity list)

Sequential statements inside a process
(you could use if-then-else as well but
case statement looks micer)

When using case statement you have
to specify what happen in ‘other cases’

SEQUENTIAL COMPONENTS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 24	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

Flip-flop is a basic component of sequential circuits. Besides input/output signals flip-flop
requires the reset and the clock signals (reset can be active high or active low flip-flop
transitions can occur both at the clock rising-edge or falling edge)	

--
library ieee;
use ieee.std_logic_1164.all;
--
entity JK_FF is
port (clock: in std_logic;

J, K: in std_logic;
reset: in std_logic;
Q, Qbar: out std_logic

);
end JK_FF;

architecture behv of JK_FF is
 -- define the useful signals here
 signal state: std_logic;
 signal input: std_logic_vector(1 downto 0);
begin
 -- combine inputs into vector
 input <= J & K;
 p: process(clock, reset) is
 begin

if (reset='1') then
 state <= '0';
elsif (rising_edge(clock)) then

 -- compare to the truth table
 case (input) is

when "11" =>
 state <= not state;
when "10" =>
 state <= '1';
when "01" =>
 state <= '0';
when others =>
 null;
end case;

end if;
 end process;

-- concurrent statements
 Q <= state;
 Qbar <= not state;
end behv;

reset active high

Clock rising edge

sequential statement
inside a process

SEQUENTIAL DESIGN (1)

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 25	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

S1	 S3	

S0	 S2	

1/0	

0/0	 1/1	

0/0	

1/0	

1/1	

0/1	

0/1	

Finite State Machine (FSM) is a key component of VHDL design. It consist of both
combinational logic and sequential components. Sequential components (registers) are
used to record the state of the circuit and are updated synchronously on the rising
edge of the clock signal.
Two types of state machine: Moore (outputs depend on current state only) and Mealy
(outputs depend on current state and inputs).

Mealy FSM example	

SEQUENTIAL DESIGN (2)

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 26	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

library ieee;
use IEEE.std_logic_1164.all;

entity mealy is
port (clk : in std_logic;
 reset : in std_logic;
 input : in std_logic;
 output : out std_logic
);
end mealy;

architecture behavioral of mealy is

type state_type is (s0,s1,s2,s3);

signal current_s,next_s: state_type;

begin

process (clk,reset)
begin
 if (reset='1') then
 current_s <= s0; .
elsif (rising_edge(clk)) then
 current_s <= next_s;
end if;
end process;type of state machine

current and next-state declaration

default state on reset

state change

SEQUENTIAL DESIGN (3)

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 27	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

process (current_s,input)
begin
 case current_s is
 when s0 =>
 if(input ='0') then
 output <= '0';
 next_s <= s1;
 else
 output <= '1';
 next_s <= s2;
 end if;
 when s1 =>;
 if(input ='0') then
 output <= '0';
 next_s <= s3;
 else
 output <= '0';
 next_s <= s1;
 end if;

 when s2 =>
 if(input ='0') then
 output <= '1';
 next_s <= s2;
 else
 output <= '0';
 next_s <= s3;
 end if;
 when s3 =>
 if(input ='0') then
 output <= '1';
 next_s <= s3;
 else
 output <= '1';
 next_s <= s0;
 end if;
 end case;
end process;
end behavioral	

when current state is s0

when current state is s1

when current state is s2

when current state is s3

CONCLUSIONS

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 28	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

u  This talk has only covered a small part of the VHDL language; many
constructs and features of state of the art FPGA have been omitted
(memory, high speed serial links, processor implementation ….)

u  For those interested in learning the VHDL language a good book
together with a Xilinx or Altera supported evaluation board could be
the next step

u  If the choice is for the XLINX products a good starting point could be
an evaluation board based on Zynq FPGA e.g. the ZedBoard, a
development kit based on Xilinx Zynq-7000 All Programmable SoC.

REMIND
WHEN WRITING VHDL CODE YOU HAVE ALWAYS KEEP IN

MIND THAT YOU ARE DESIGNING HARDWARE, NOT A
COMPUTER PROGRAM !!! !

BIBLIOGRAPHY

EDIT	2015	–	FRASCATI	OCTOBER	20-29	 29	M.BERETTA	–	G.FELICI	–	P.ALBICOCCO	

[1] Introduction to VHDL - Michael Lupberger - University of Bonn
[2] VHDL tutorial - William D. Bishop - Department of Electrical and Computer Engineering
University of Waterloo
[3] http://esd.cs.ucr.edu/labs/tutorial/

