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The Equilibration principle
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The whole system is always in a pure state!
Perhaps we should look at a subsystem!
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The GGE conjecture

Many experiments have shown a substantial difference between integrable and not-
integrable systems:
NOT-INTEGRABLE: Equilibrate to a thermal state.
INTEGRABLE: Does not thermalize!

It was proposed that the equilibrium state is described by a Generalized Gibbs Ensemble, i.e. one
needs to take into account all conserved quantities [M. Rigol et all. ‘07].

Let the GGE be...
Maximize the Entropy (similarly to the Gibbs ensemble construction)
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Taking into account a maximal set of conserved charges in involution: [I et | m] —=()

A charge should be local, i.e. it must be written as an integral of a local density:

A

= /dm J(z) [local], K = // dxdy K(x,y) [nonlocal]

The Lagrange multipliers are fixed
by the initial condition
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Inspecting the GGE

1) Quenches in a quadratic theory
* The linear mapping between pre- and post-quench field operators makes the work easy
and often possible to analytically solve the time-evolution of local observables.

[P. Calabrese, |. Cardy ‘06; M. A. Cazalilla ‘06; M. Cramer et all. ‘08; P. Calabrese, F. Essler, M. Fagotti '11; F. Essler, S.
Evangelisti, M. Fagotti '12;MC, S. Sotiriadis, and P. Calabrese, 13]

2) Quenches in integrable interacting systems
» The stationary properties can be deduced using more involved techniques (usually
starting from a specific initial state):
Quench Action Method (or GTBA) [].-S. Caux, E. Essler “13; |. De Nardis et all. ‘14]
Quantum Transfer Matrix Approach [M. Fagotti, F. Essler ‘13; B. Pozsgay '13]
* The time-evolution of local observable is accessible via numerical techniques (t-DMRG,

t-iTEBD, etc.) [M. Fagotti, MC, F. Essler, P. Calabrese “14]
o GTBA vs GGE [B. Wouters et all. ‘14; B. Pozsgay et all. ‘14; G. Goldstein, N. Andrei '14]

Is there anything in between (1) and (2) !?!?!?



Statement of the problem

Interaction quench in the Lieb-Liniger (LL) model [V. Gritsev, T. Rostunov, E. Demler ‘10]
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Correlation functions

(1) The Fermionic Two-Point Function:
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We can treat the hard-core boson fields as they were canonical bosonic fields...

B @ (1) 8 (2)8(z) - $2)60) = T3 5 _]j!_ 5

TRANSLATIONAL INVARIANCE IMPLIES TIME INDEPENDENCE

(W (@) T (y)) = ne™*™*7H, n(k) = (A(k)) = - 4+n4nz

THE GGE IS DIAGONAL IN TERM OF n(k)

(2) The Dynamical Density-Density Correlation Function:
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Dynamical density-density correlation function
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n.b.: symbols are from V. Gritsev, T. Rostunov,E. Demler, |. Stat. Mech. (2010) P05012.
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The density-density
correlation function is
described by the GGE.
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Stationary Entanglement Entropies

The GGE density matrix is diagonal in the momentum modes, Wick’s theorem is
restored and all multi-point correlators can be determined in terms of the fermionic

two-point function
P @)= ol sl

Rényi Entropies & Reduced Correlation Matrix
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Spectrum of the Reduced Correlation Matrix

£ 5 The integral equation can be recast P 5
/ dyne— B Um, (y) — N Uiy (y) as the 2°-order differential equation 0 Um (x ) — — W, Um (33 )
0 [where w? = 4n?(1/\,, — 1) ]

[p.s.: a similar approach as been used for a different kernel by V. Eisler and 1. Peschel in |. Stat. Mech. P04028 (2013)]

The eigenvalues are determined by the boundary conditions
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Stationary Entanglement Entropies

For large n¢, (), becomes a continuum variable in [0,c0] with density of roots
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From which we obtain analytically the leading

and sub-leading terms of the Rényi Entropies T _
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Conclusions

We studied the non-equilibrium dynamics of the
Lieb-Liniger model after an interaction quench from
c=0to c= oo,

We analytically obtained the dynamical density-
density correlation function.

The GGE properly describe the large-time limit of the
density-density correlators.

Using the full spectrum of the reduced two-point
fermionic function we evaluated the stationary Reényi
Entropies.

We analytically extract the leading and sub-leading
contribution of the stationary Rényi Entropies



