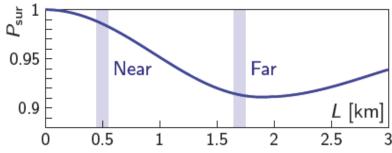
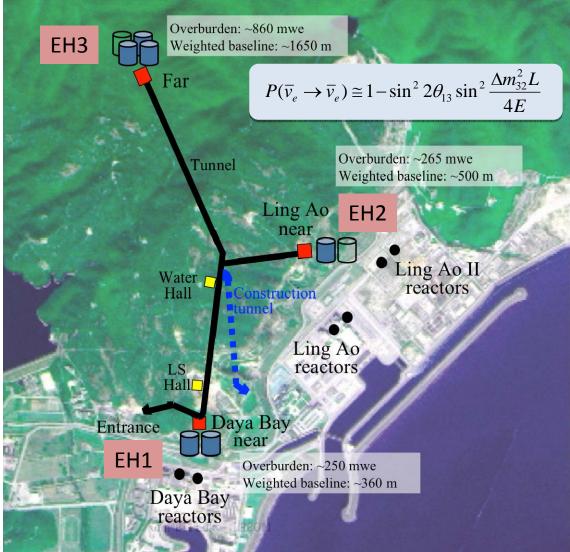


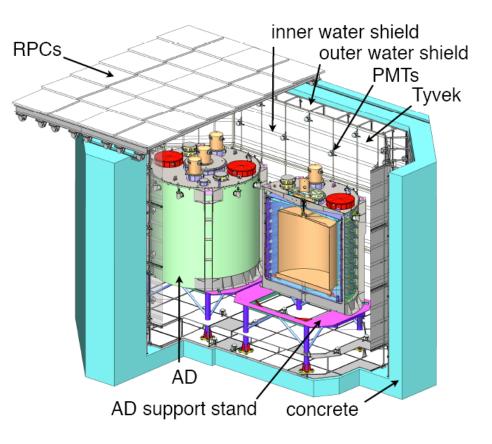
The Daya Bay Experiment is a well designed short baseline reactor neutrino

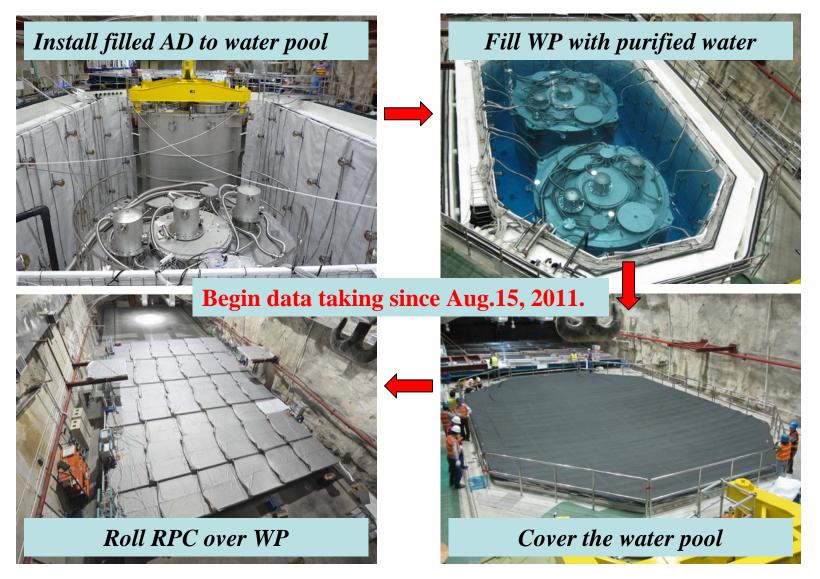

experiment to precisely determine θ_{13} .


Reactor: disappearance: clean in physics $P_{\overline{V}_{1} \to \overline{V}_{1}} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\Delta m_{31}^{2} L / 4E \right)$ $-\cos^4\theta_{13}\sin^22\theta_{12}\sin^2\left(\Delta m_{21}^2L/4E\right)$ Accelerator: appearance, related to CPV, etc. $P_{\nu_{u} \to \nu_{a}} = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\Delta m_{31}^{2} L / 4E \right)$ + (CPV term) + (matter term) + •••••

- Keys to precise measurement:
 - (stat.) Powerful reactors (17.6GW) + Large target mass (80t).
 - (syst.) Reactor related: near/far measurement at optimized baselines.
 - (syst.) Detector related: eight functional "identical" detectors for near/far measurement
 - (syst.) Background related: large overburden to reduce muon + active/passive shielding

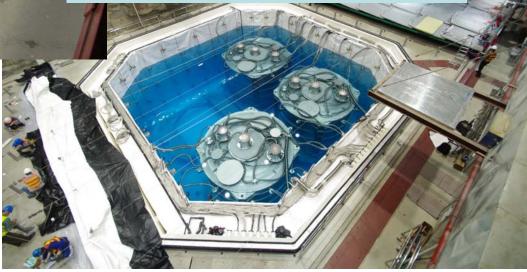
Anti-Neutrino Detector




Muon Veto Detector

- Water pool
 - Two layers separated by Tyvek.
 - Fill with purified water
 - Hundreds PMTs to collect Cherenkov lights from cosmic muon
- RPC
 - Four layers
 Multi detectors for efficiency crosscheck.

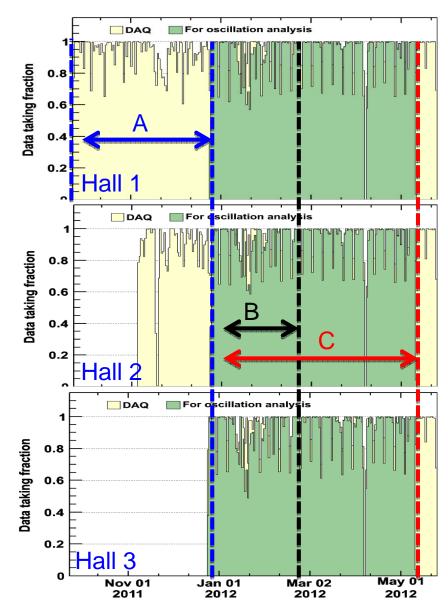

Water Cerenkov: Eff.>97% RPC Muon tracker: Eff. > 88%

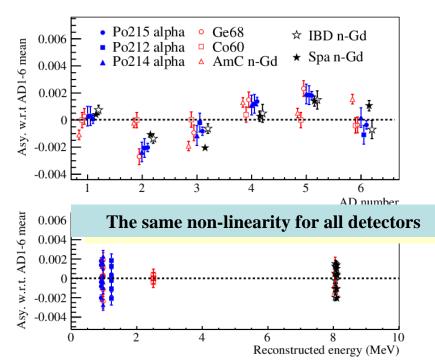


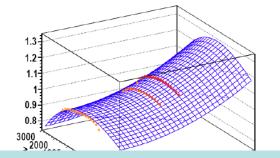
Daya Bay 13 Ling Ao Near Hall & Far Hall 13

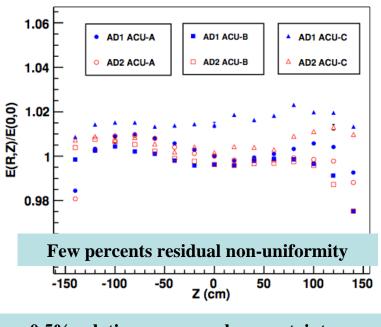
Far Hall with 3 ADs

Data taking begin since Dec.24, 2011

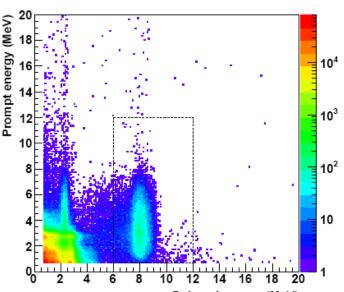


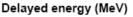


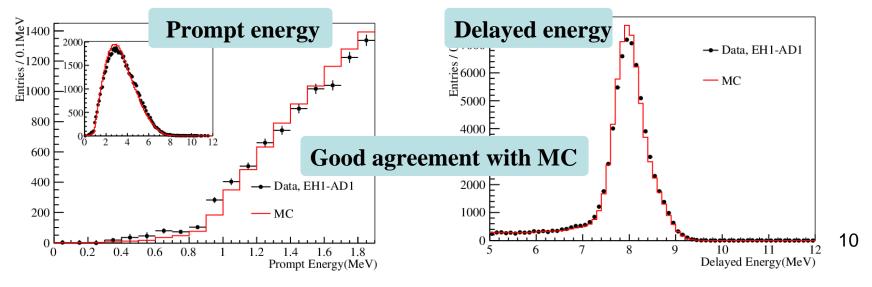

- A : Two Detector Comparison: Sep. 23, 2011 – Dec. 23, 2011 Nucl. Inst. and Meth. A 685 (2012), pp. 78-97
- B: First Oscillation Result: Dec. 24, 2011 – Feb. 17, 2012 Phys. Rev. Lett. 108, 171803 (2012)
- C: Updated oscillation analysis: Dec. 24, 2011 – May 11, 2012 Chinese Phys. C 37, (2013) 011001
 - Data volume: 40TB
 - DAQ eff. ~ 96%
 - Eff. for physics: ~ 94%


Calibration & reconstruction 13

- Low intensity LED for PMT gain.
- ⁶⁰Co at detector center for energy scale.
- ⁶⁰Co at different positions to correct spatial dependence (non-uniformity).
- Calibrate energy scale using neutron capture peak.

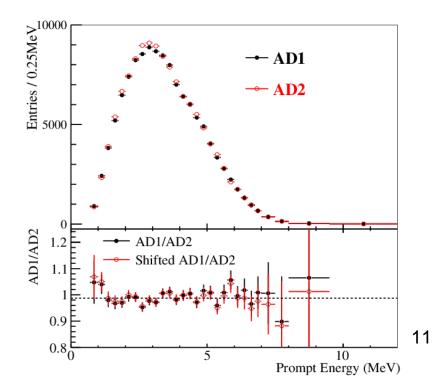

0.5% relative energy scale uncertainty:0.12% efficiency uncertainty among detectors





Anti-neutrino selection

- Anti-neutrino event selection
 - 0.7 MeV < E_p < 12.0 MeV
 - $6.0 \text{ MeV} < E_{d} < 12.0 \text{ MeV}$
 - $1 \ \mu \ s < \Delta \ t_{p\text{-}d} < 200 \ \mu \ s$
 - Muon Veto: 0.6 ms after a Pool muon (reject fast neutron), 1 ms after an AD muon (reject double neutron), 1 s after an AD shower muon (reject ⁹Li/⁸He)
 - Multiplicity cut: No other >0.7 MeV trigger in (t_p-200 µs, t_d+200 µs)



- Multi detectors in one site
 - Compare detector response, signals, backgrounds
 - Systematics well under control
- Expected neutrino ratio: R(AD1/AD2) = 0.982
 - Not one due to a little different baselines, target masses.
- Measured ratio: $R(AD1/AD2) = 0.987 \pm 0.004(stat) \pm 0.003(syst)$

Nucl. Inst. and Meth. A 685 (2012), pp. 78-97

Accidental rate(Events/day)

2

0

--- EH1-AD1 --- EH1-AD2

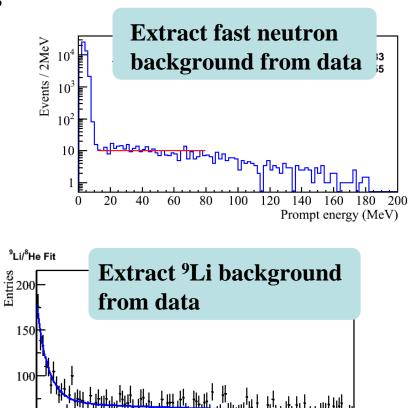
EH2-AD1
 EH3-AD1
 EH3-AD2

EH3-AD3

23/10/11

50

Date



- Uncorrelated background
 - Accidentals: two uncorrelated events pass selection and mimic neutrino event.
- Correlated background
 - Muon spallation
 - ⁹Li/⁸He
 - Fast neutrons
 - From ²⁴¹Am-¹³C calibration source

Accidentals vs. time

22/11/11 22/12/11 21/01/12 20/02/12 21/03/12 20/04/12

 $- 13C(\alpha, n)^{16}O$

3

4 time since last muon (s)

Backgrounds

	Near Halls		Far Hall		
	B/S %	σ _{B/S} %	B/S %	σ _{B/S} %	$\Delta \mathbf{B}/\mathbf{B}$
Accidentals	1.5	0.02	4.0	0.05	~1%
Fast neutrons	0.12	0.05	0.07	0.03	~40%
⁹ Li/ ⁸ He	0.4	0.2	0.3	0.2	~50%
²⁴¹ Am- ¹³ C	0.03	0.03	0.3	0.3	~100%
$^{13}C(\alpha, n)^{16}O$	0.01	0.006	0.05	0.03	~50%
Sum	2.1	0.21	4.7	0.37	~10%

- Total backgrounds are 5% (2%) at far (near) halls.
- Background uncertainties are 0.4% (0.2%) at far (near) halls.

Detector				
	Efficiency	Correlat	ed Uncorrelated	
Target Protons		0.47%	0.03%	
Flasher cut	99.98%	0.01%	0.01%	
Delayed energy cut	90.9%	0.6%	0.12%	
Prompt energy cut	99.88%	0.10%	0.01%	
Multiplicity cut		0.02%	< 0.01%	
Capture time cut	98.6%	0.12%	0.01%	
Gd capture ratio	83.8%	0.8%	< 0.1%	
Spill-in	105.0%	1.5%	0.02%	
Livetime	100.0%	0.002%	< 0.01%	
Combined	78.8%	1.9%	0.2%	

Reactor					
	Correla	ated		Uncorre	elated
Energy/fi	ssion	0.2%		Power	0.5%
$\overline{\nu}_{e}$ /fission	n	3%		Fission fraction	0.6%
				Spent fuel	0.3%
Combine	d	3%		Combined	0.8%

Correlated uncertainty fully canceled in near/far measurement

Detector						
	Efficiency	Correlated	Uncorrelated			
Target Protons		0.47%	0.03%			
Flasher cut	99.98%	0.01%	0.01%			
Delayed energy cut	90.9%	0.6%	0.12%			
Prompt energy cut	99.88%	0.10%	0.01%			
Multiplicity cut		0.02%	< 0.01%			
Capture time cut	98.6%	0.12%	0.01%			
Gd capture ratio	83.8%	0.8%	< 0.1%			
Spill-in	105.0%	1.5%	0.02%			
Livetime	100.0%	0.002%	< 0.01%			
Combined	78.8%	1.9%	0.2%			

Correlated uncertainty fully canceled in near/far measurement

Detector uncorrelated uncertainty:

Designed value: Baseline: 0.38% Goal: 0.18%

Reactor						
ed						

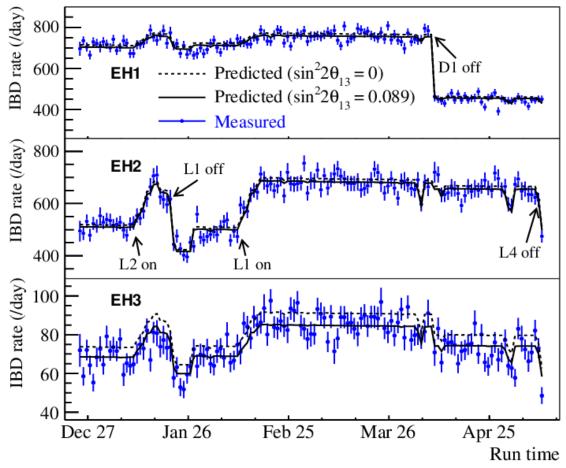
Correlate	ed	Uncorre	elated
Energy/fission	0.2%	Power	0.5%
$\overline{\nu}_{e}$ /fission	3%	Fission fraction	0.6%
		Spent fuel	0.3%
Combined	3%	Combined	0.8%

	Dete	ctor	
	Efficiency	Correlated	Uncorrelated
Target Protons		0.47%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	90.9%	0.6%	0.12%
Prompt energy cut	99.88%	0.10%	0.01%
Multiplicity cut		0.02%	< 0.01%
Capture time cut	98.6%	0.12%	0.01%
Gd capture ratio	83.8%	0.8%	< 0.1%
Spill-in	105.0%	1.5%	0.02%
Livetime	100.0%	0.002%	$<\!0.01\%$
Combined	78.8%	1.9%	0.2%

	R	eactor			
Correla	ted		Uncorr	elated	
Energy/fission	0.2%	Power		0.5%	
$\overline{\nu}_{e}$ /fission	3%	Fission fraction 0.6%			
		Spent	fuel	0.3%	
Combined	3%	Combi	ined	0.8%	

Correlated uncertainty fully canceled in near/far measurement

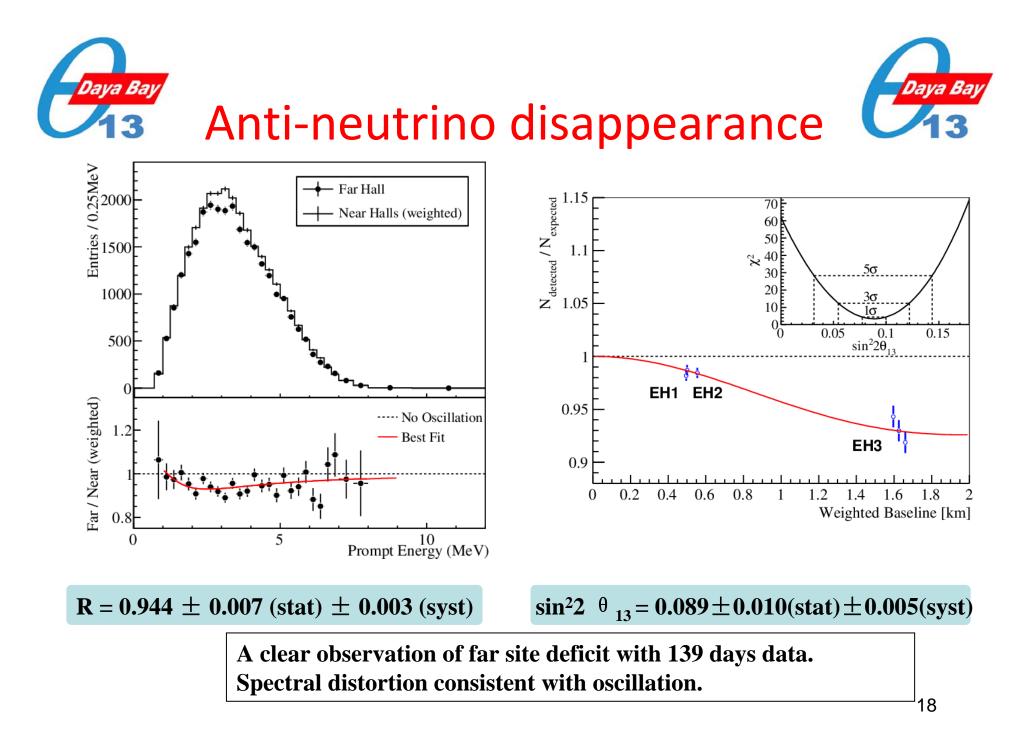
Detector uncorrelated uncertainty:


Designed value: Baseline: 0.38% Goal: 0.18%

Reactor uncorrelated uncertainty:

Reduced by a 1/20 factor in the near/far measurement

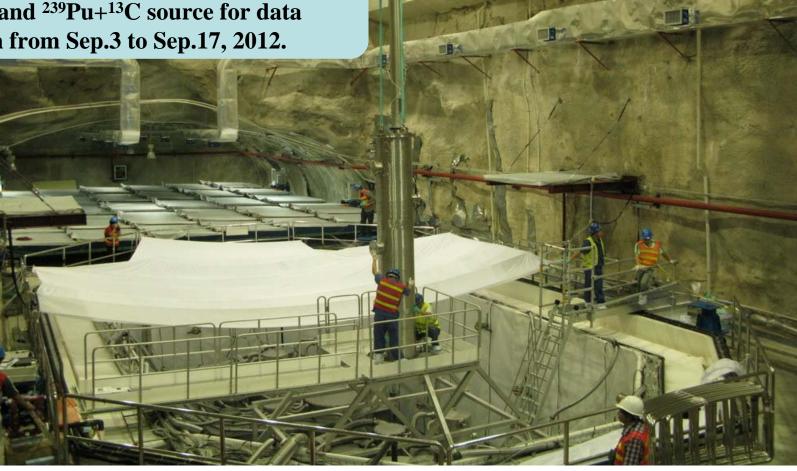
Daya Bay



Detected neutrino rates strongly correlated with reactor flux expectations.

• Predicted rate

- Normalization is determined by fit to near/far data.
- Absolute normalization is within a few percent of expectations.



Recent progress

Manual calibration system deployed on **AD1.**

⁶⁰Co and ²³⁹Pu+¹³C source for data taken from Sep.3 to Sep.17, 2012.

Recent progress

Summary

• Unambiguous observation of reactor electron anti-neutrino disappearance at ~2km baseline:

 $R = 0.944 \pm 0.007 \text{ (stat)} \pm 0.003 \text{ (syst)}$

• Interpreting the disappearance as neutrino oscillation yields the most precise measurement of θ_{13}

 $\sin^2 2 \theta_{13} = 0.089 \pm 0.010(\text{stat}) \pm 0.005(\text{syst})$

- Data taking with all eight detectors have began since Oct.19, 2012.
- Daya Bay will continue to provide the most precise measurement of θ_{13} over the world.
- Shape analysis results will come soon.
- More physics expected: reactor flux and spectrum, etc.

Political Map of the World, June 1999

Europe (2) JINR (Dubna) Russia Charles University, Czech Republic

North America (15)

BNL, Caltech, Iowa State Univ., Illinois Inst. Tech., LBNL, Princeton, RPI, Siena, UC-Berkeley, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary

Asia (22)

Beijing Normal Univ., Chengdu UST, CGNPG,
CIAE, Dongguan Univ. Tech., IHEP,
Nanjing Univ., Nankai Univ., NCEPU, NUDT,
Shandong Univ., Shanghai Jiaotong Univ.,
Shenzhen Univ., Tsinghua Univ., USTC,
Xi'an Jiaotong Univ., Zhongshan Univ.,
Chinese Univ. of Hong Kong, Univ. of Hong Kong,
National Taiwan Univ.,

National Chiao Tung Univ., National United Univ.

~230 Collaborators