Beyond the LHCb Phase-1 Upgrade *Opportunities in flavour physics in the HL-LHC era* **Isola d'Elba - 29-31 Maggio 2017**

Pixels with timing

(the UFSD project) Maria Margherita Obertino University and INFN, Torino on behalf of the UFSD group

The effect of timing information

The inclusion of track-timing in the event information has the capability of changing radically how we design experiments.

Timing can be available at different stages in the event reconstruction:

1) Track timing in the event reconstruction

 → CMS timing layer for HL-LHC (see T. Tabarelli's talk)

or track timing at the trigger level

→ ATLAS timing layer for HL-LHC [ref]

2) Timing at each point along the track: massive simplification of patter recognition, new tracking algorithms will be faster even in very dense environments

> **UFSD final goal 90 x 90** µ**m2 d ~ 50** µ**m** σ**^t ~ 30 ps**

Use only "time compatible points"

Ultra-Fast Silicon Detectors (UFSD)

High electric field accelerates eenough to start multiplication

Thin, highly doped, p-implant near the p-n junction $(N_d \sim 10^{16}$ Boron/cm³)

Gain changes very smoothly with bias voltage.

 $→$ **Easy to set the value of gain requested.**

Silicon time-tagging detector

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the pre-Amplifier and by the TDC binning.

M.M.Obertino

M.M.Obertino

Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

 \pm

Torino

e INFN,

Università

 $\, \parallel$

Beyond the LHCb Phase-1 Upgrade

Time resolution in silicon detectors

$$
\sigma_t = \left(\frac{N}{dV/dt}\right)^2 + \left(\text{Landau Shape}\right)^2 + \left(\frac{\text{TDC}}{\sqrt{12}}\right)^2
$$

Jitter: here enters the noise and the slope of the signal around the comparator threshold

 reduced by optimized sensor and electronics design

Negligible Es. HPTDC binning: 25 ps $25 ps/\sqrt{12}$ ~ 7 ps

Time walk: change in the signal amplitude due to variation in the deposited energy

$→$ **corrected in electronics**

Landau Noise: shape variations due to non homogeneous energy deposition

mitigated by optimized sensor design

Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

- Beyond the

Torino

e INFN,

Università

п.

Upgrade

LHCb Phase-1

Uniformity of signals: key to good timing

Local density of electron-hole pairs created along the particle path varies on event by event \rightarrow Irregular current signal

PEGLIE

Ingredients for uniform signals

Signal shape is determined by Ramo's Theorem:

$$
\frac{i \propto v_d E_w}{\sqrt{\frac{1}{2} m}}
$$

Drift velocity and **Weighting field** need to be **as uniform as possible**

 $\frac{1}{10^6}$ High electric field in the bulk to saturate V_{dd}

50 µ**m thickness 300** µ**m pitch 290** µ**m implant**

NO Parallel plate geometry: strip implant ~ strip pitch >> thickness

Slew rate in silicon sensors with gain

For a fixed gain:

- amplitude = constant
- rise time increases with thickness

The slew rate:

- Increases with gain
- Increases ~

8 Significant improvements in time resolution require gain and thin sensors but gain cannot be too high …

DEGLI

Noise in silicon sensors with gain

→ Noise increases faster than then signal

→ the ratio S/N becomes worse at higher gain

 Set the lowest gain sufficient to perform accurate time measurements: between 10 an 20 for σ_t **~ 30 ps**

Choice of pre-amp architecture

Integrator or current amplifier?

- **Current amplifiers work best with very fast signals**
- Integrators work best with signals that are longer than their integration time

Time walk correction circuit

Constant Fraction Discriminator

The time is set when a fixed fraction of

the amplitude is reached

- **Very well suited to the UFDS sensors read out by BBA**
- **→ More circuitry required**

Time over Threshold

The amount of time over the threshold

is used to correct for time walk

 \rightarrow Better if pixel area is small

CAN BE IMPLEMENTED PER PIXEL WITHIN THE ROC

Multiple sampling

Most accurate method, needs a lot of computing power.

LGAD – UFSD: a bit of history

2010: LGAD proposed & developed at CNM within **RD50 collaboration**

- **2012**: First 4 inch wafer, 300 µm thick, LGAD produced by **CNM**
- **2014: UFSD** project founded by EC
- **2016**: First 75 µm and 50 µm thick LGAD produced by **CNM** for Timing applications (ATLAS HGTD and CMS CT-PPS) - SOI and SOS, 4" wafer First 300 µm thick LGAD produced **FBK**, Trento (p-side and n-side segmentation, pixel, strip, AC coupling, …)
- **2017**: First 50 and 80 µm thick LGAD produced **HPK** New 50 µm thick LGAD in production at **CNM** First 50 µm thick LGAD in production at **FBK** (delivery foreseen in a month from now) -

Today 3 suppliers (CNM Spain, FBK Italy and HPK Japan)

Sensors: FBK, CNM and HPK

FBK 300-micron production CNM 75-micron

HPK-micron production

- \blacksquare 2 different thickness: 50 μ m 80 μ m
- **4 different gains**
- **Circular single pad sensors**
- Sensor active area: ~1 mm²
- Different guard ring design
-

CNM 50-micron production

Summary of UFSD (CNM) beam test results

<u>prout</u>

Latest results on UFSD time resolution

1 mm2, 50 µ**m thick UFSD pads from Hamamatsu Readout: custom made BBA optimized for 50** µ**m LGAD**

16

DEGLI

Radiation damage in silicon sensors

Radiation effects on silicon sensors can be classified as:

surface damage

 \rightarrow modification to breakdown properties, electrode isolation and surface e-h recombination

bulk damage

Radiation effects specific of LGAD (I)

Increased bulk current is multiplied by gain

To minimize Shot noise:

- Low gain (below \sim 20)
- Keep the sensor cold
- Use small pads to have less leakage current

Radiation effects specific of LGAD (II)

Change in doping profile affect the gain value

This term indicates the "removal" of the initially present p-doping. For UFSD this is particularly problematic as it removes the gain layer

WATKIN'S REPLACEMENT MECHANISM

The **boron** doping is **still there**, only it has been moved into a different position and it does not contribute to the doping profile, it is **inactive**

M.M.Obertino

Gain vs gain layer doping

The gain is very sensitive to the doping level

Studies of radiation damage in LGAD important part of RD50 program

Initial acceptor removal: mitigation

Gallium doping: Gallium less prone to become interstitial

Ga Ga Carbon enriched wafer: interstitial defects filed with C instead of with B

Productions with Ga, B/C, Ga/C gain layer completed at CNM and FBK Results coming soon!

Short term solution: compensation with V_{bias}

The necessary field can be recovered by increasing the external Vbias: proven to work up to 3 10¹⁴ n_{eq}/cm^2

Collected Charge [e]

Time resolution for irradiated sensors

 \checkmark At 3 10¹⁴ n_{eq}/cm_2 similar time resolution as before irradiation (at higher V) σ**^t ~ 33 ps at 445V and T=-6°C** σ**^t ~ 28 ps at 430V and T=-20°C**

 \checkmark At 10¹⁵ gain is highly reduced and voltage stability not high enough to compensate for it ($\sigma_t \sim 55{\text -}60$ ps at 620V)

M.M.Obertino

M.M.Obertino

Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

 \pm

Torino

INFN,

 \circ

Università

Beyond the

Upgrade

LHCb Phase-1

Merging timing with position resolution

Electrode segmentation makes the E field non uniform, and therefore

ruins the timing properties of the sensor

We need to find the smallest pixel area which allows :

- very uniform E field and gain in the sensor pixel
- high fill factor
- enough space for the timing circuit in the ROC pixel

3D sensors for timing measurements

Very fast: decouple signal amplitude from collection time

Sensor thickness (D) \sim 200 μ m

amplitude ~ 15000 e-

- Drift distance $(L) \sim 50 \mu m$
	- **collection time ~ 500 ps**
	- \rightarrow rise time: tens of ps
- **3D geometry minimizes time uncertainties from non-uniform ionization density**

Optimized design and fabrication technology necessary to fully exploit these features

Excellent radiation hardness (tested up to 1.4 10¹⁶ n_{eq}/cm^2)

Null field points and delayed signals

26

2 6

"Tens of ps" timing

M.M.Obertino

M.M.Obertino

Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

 $\bar{1}$

Torino

Università e INFN,

Beyond the LHCb Phase-1 Upgrade

SSTT (Fast3DPix)-ERC-2013(14)-CoG-M.M.Obertino with University of Trento and Microelectronic Lab INFN Torino

Conclusions

The VELO Phase-II upgrade is a very interesting project It is challenging **Pixel area: 27.5 x 27.5** µ**m2 Thickness ~ 100** µ**m** σ**^t < 200 ps** but gives you the possibility to develop a new type of pixel

detector (and new pattern recognition strategy!)

UFSD with low gain (-15) thin ($-50 \mu m$) LGAD sensors with custom ad hoc electronics might be the right solution but … there are still open issues to be studied:

- Radiation hardness
- Small segmentation

3D sensors are another interesting solution to be exploited but more studies and dedicated productions are necessary

If you are interested in developing UFSD for the VELO, we are glad to collaborate!

PEGLIE

The UFSD R&D program

Sensor and electronics designs need to be optimized concurrently

Cross experiment R&D within the RD50 collaboration

 Strong collaboration between CMS and ATLAS for the development of the forward timing layer *LHCC in November will evaluate the timing layer proposal of CMS and ATLAS*

ACKNOWLEDGEMENTS

We kindly acknowledge the following funding agencies, collaborations:

- INFN Gruppo V
- Horizon 2020 Grant URC 669529
- Ministero degli Affari Esteri, Italy, MAE
- U.S. Department of Energy grant number DE-SC0010107
- The RD50 collaboration

I thank the following colleagues for all the useful discussions: Prof. Gian Franco Dalla Betta (University of Trento) Dr. Manuel Rolo (University of Torino) Dr. N. Cartiglia (INFN - Torino)

30

BACKUPS

Are TDC fast enough?

J TDCs are now reaching the sub-ps resolution Many different architectures Dynamic range low in many high resolution TDC

M.M.Obertino

M.M.Obertino

Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

 $\mathbf{1}$

e INFN, Torino

Università

 \mathbf{I}

Beyond the LHCb Phase-1 Upgrade

Slew rate in standard silicon sensors

Thick detectors have longer signals, not higher signals

Best result : NA62, 150 ps on a 300 x 300 micron pixels

To do better: add internal gain

Low Gain Avalanche Detectors (LGADs)

The LGAD sensors, as proposed and manufactured by CNM (National Center for Micro-electronics, Barcelona): **High field obtained by adding an extra doping layer**

E ~ 300 kV/cm, closed to breakdown voltage

Gain layer design

The doping profile of the Gain layer controls the shape of the Electric Field 2 technological approaches are possible:

The deep implant approach has

several advantages:

- Avoid peaked Electric Field -> less noise
- Is more reliable (independent of thermal diffusion and of doping compensation effect) **CMM** TRE FOR MATERIALS AND MICROSYSTEMS

How gain shapes the signal

36

The players: signal, noise and slope

There are 3 quantities determining the output rise time after the amplifier:

- 1. The signal rise time (t_{cur})
- 2. The RC circuit formed by the detector capacitance and the amplifier input impedance (t_{RC})
- 3. The amplifier rise time (t_{Amn})

Sensor - State of the art

M.M.Obertino

Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

- Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

Track timing in the event reconstruction

Timing allows distinguishing overlapping events by means of an extra dimension.

Track timing at the trigger decision

Timing at the trigger decision: it allows reducing the trigger rate, rejecting topologies that look similar, but they are actually different.

ATLAS timing layer for HL-LHC [ref]

Università e INFN, Torino - Beyond the LHCb Phase-1 Upgrade

Torino

e INFN,

Università

Τ.

M.M.Obertino

M.M.Obertino

Proposed 3D Sensors

- Reduced material budget \rightarrow thinner sensors: 100 to 150 μ m active thickness \rightarrow active edge
- Better geometrical efficiency \rightarrow narrower electrodes: 5 μ m column diameter
- Increased granularity \rightarrow Two pixel layouts: 50x50 μ m² and 25x100 μ m²

Single-sided process with support wafer

FBK 3D-SS technology: 1st batch

Segmentation: AC coupling

Standard n-in-p LGAD, with AC read-out

PEGLIE