### **GUT-scale inflation with sizeable tensor modes**

Felix Brümmer





1405.4868 (with V. Domcke, V. Sanz)

# Motivation I: What if...

- Primordial fluctuations can be decomposed in scalar and tensor modes
- Scalars: well measured in CMB (COBE, WMAP, PLANCK...)
- Tensors: PLANCK constrains tensor-to-scalar ratio

$$r \lesssim 0.1$$

single-field slow-roll inflation:

$$r = 16 \epsilon$$
 where  $\epsilon = \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2$ 

• Observation fixes scalar power spectrum amplitude:

$$A_s=2.2\cdot 10^{-9}\simeq rac{V}{24\pi^2\epsilon M_P^4}$$

If  $r \sim \mathcal{O}(0.1)$  then  $\epsilon \sim \mathcal{O}(0.01) \quad \Rightarrow \quad V \approx (10^{16} \text{ GeV})^4$ 

Observable  $r \Rightarrow \text{scale of inflation} \approx \text{SUSY GUT scale}$ 

## Motivation II: BICEP2

In March 2014 the BICEP2 collaboration reported

 $r \simeq 0.2$ 

(maybe 0.15 depending on dust foreground model)

- The Law of 21st Century ENP (Exciting New Physics): If there is a hint for ENP, it will
  - quickly become suspicious as all proposed explanations look implausible, and/or
  - eventually go away with more statistics, or
  - become dubious/untenable after re-examination of systematics or analysis methods
- Indications growing that BICEP2 "signal" is actually polarized dust
- PLANCK to put something out in autumn = around now. Not clear if this will settle the matter.

# Back to Motivation I: What if...

Assume Planck will not just put a bound on r but find a signal,

 $r \simeq 0.1$ 

Assume that the L21CENP will not hold in that case:

- Find a particle physics model connecting inflation with GUT breaking (easy & well known → Dvali/Shafi/Schaefer '94)
- Obtain a sizeable r in this model while keeping effects from Planck-scale physics under control (hard & well known to be hard → Lyth '96)

# Slow-roll inflation toolbox

Consider a single-field inflation model with an inflaton rolling down its potential

### Formulary:

FLRW metric

$$ds^{2} = dt^{2} - a(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\Omega^{2}\right)$$

Friedmann equation

$$H^2 + rac{k}{a^2} = rac{1}{M_P^2}
ho$$
  $H = \dot{a}/a$ , from now  $k = 0$  (flat universe)

Homogeneous classical scalar field:

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$

Klein-Gordon equation in this background:

$$\ddot{\phi} + 3 H \dot{\phi} + V'(\phi) = 0$$

Slow-roll parameters

$$\epsilon = \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2, \qquad \eta = M_P^2 \frac{V''}{V}$$

## Slow-roll inflation toolbox

#### Formulary continued:

When slow-roll conditions hold,

 $\epsilon \ll \mathbf{1} \qquad |\eta| \ll \mathbf{1},$ 

then Friedmann Eq. + Klein-Gordon Eq. become

$$3 \, H^2 pprox rac{1}{M_P^2} V \qquad \dot{\phi} pprox -rac{1}{3H} V'$$

Quasi de Sitter metric:  $a(t) \approx e^{Ht}$ . Number of e-folds from integrating:

$$N = \int_{t_0}^{t_0+\delta t} H \, dt = -\frac{1}{M_P^2} \int_{\phi_0}^{\phi_0+\delta \phi} \frac{V}{V'} d\phi = -\frac{1}{M_P} \int_{\phi_0}^{\phi_0+\delta \phi} \frac{1}{\sqrt{2\epsilon(\phi)}} d\phi$$

The flatter the potential, the more e-folds generated for fixed field excursion  $\delta\phi$ 

## The Lyth(-Boubekeur) bound

Number of e-folds generated during field excursion  $\delta \phi$ :

$${\it N}=-rac{1}{M_{\it P}}\int_{\phi_0}^{\phi_0+\delta\phi}rac{1}{\sqrt{2\epsilon(\phi)}}{\it d}\phi$$

Tensor-to-scalar ratio:

$$r = 16\epsilon_*$$

where  $\epsilon_* = \epsilon(\phi_*)$  at scales relevant for CMB (50-60 e-folds before inflation ends) If  $\epsilon \approx \text{const.}$  or increasing,  $\epsilon(\phi) \ge \epsilon_*$ :

$$\delta \phi \geq \sqrt{\frac{r}{8}} N M_P$$

- Over N=60 e-folds:  $r\gtrsim 0.01$  implies  $|\delta \phi|\gtrsim M_{P}$  ightarrow Lyth '96
- Over scales relevant for CMB (ca.  $N \approx 5$ ):  $r \gtrsim 0.3$  implies  $|\delta \phi| \gtrsim M_P$  $\rightarrow$  Lyth/Boubekeur '01

Observable  $r \Rightarrow$  need large-field model or nontrivial inflaton potential

### Digression: The trouble with large-field models

Eta problem in SUGRA:

$$V = e^{K/M_P^2} \left( D_j W \bar{D}_j \bar{W} K^{ij} - 3 \frac{|W|^2}{M_P^2} \right)$$
$$K = |S|^2 \qquad \Rightarrow \qquad e^{K/M_P^2} = 1 + \frac{|S|^2}{M_P^2} + \dots$$

 $|S| > M_P \Rightarrow$  large term in  $\eta \sim V''$ , hard to tune away: slow-roll violated **Proposed solution:** 

Shift symmetry  $S \rightarrow S + ia$ ,  $K = K(S + S^{\dagger})$ ,  $(S - S^{\dagger}) =$ inflaton

- Must be violated in W to build inflationary potential
- Should be justified by UV completion ⇒ question for string cosmologists...

# Review: F-term hybrid inflation

*F*-term hybrid inflation:  $\rightarrow$  Dvali/Shafi/Schaefer '94

- vacuum energy provided by F-term of chiral inflaton superfield
- inflation ends not by violation of slow-roll but by a phase transition

$$\pmb{W} = \lambda \pmb{S} \left( \pmb{\Lambda}^2 - \pmb{Q} ilde{\pmb{Q}} 
ight)$$

During inflation:  $S \gg \Lambda$ ,

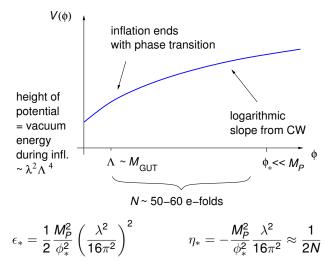
$$W_{\rm eff} = \lambda \Lambda^2 S \quad \Rightarrow \quad V_{\rm tree} = \lambda^2 \Lambda^4$$

Q and  $\tilde{Q}$  are massive: 1-loop Coleman-Weinberg potential

$$V_{\mathrm{CW}} = rac{\lambda^4}{16\pi^2} \Lambda^4 \log\left(rac{\lambda^2 |m{S}|^2}{\mu^2}
ight)$$

- After inflation ends, Q and  $\tilde{Q}$  take VEVs  $Q\sim \tilde{Q}\sim \Lambda$
- Identify with (or couple to) GUT Higgs  $\Rightarrow$  GUT breaking at scale  $\Lambda$
- Scale of inflation:  $\sqrt{\lambda}\Lambda$

## FHI in global SUSY: Small-field model, small r



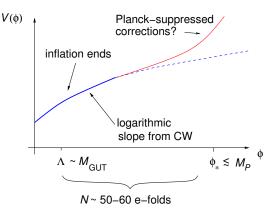
• Wrong spectral index:  $n_s - 1 = 2\eta_* - 6\epsilon_* \approx 2\eta_* \approx \frac{1}{N}$ 

• Unobservable tensor-to-scalar ratio:  $r = 16\epsilon_* \approx (\text{loop factor})/N$ 

## FHI in SUGRA: Planck corrections

By choosing larger  $\lambda$ , can increase  $\phi_*$  such that  $M_P$ -suppressed corrections become important

- SUGRA corrections:  $V = |W_i|^2 \rightarrow V = e^{K/M_P^2} (|D_iW|^2 3|W|^2/M_P^2)$
- higher Kähler terms:  $K = |\Phi|^2 \rightarrow K = |\Phi|^2 + \sum k_{nm} \Phi^n \Phi^{*m} / M_P^{n+m-2}$



# FHI in SUGRA

#### Goal: Adjust higher-order terms such that

• spectral index  $n_s = 0.96$  correctly reproduced?

 $\rightarrow$  Bastero-Gil/King/Shafi '06

- potential is steep enough at *φ*<sub>\*</sub> for *r* ~ *O*(0.1)? √ (requires *R*-symmetry breaking)
- $\phi_*/M_P$  expansion is under control?  $\sqrt{\times}$ (not really, in that  $\phi_*/M_P \approx 0.5$  is hardly a good expansion parameter)
- other PLANCK constraints on the power spectrum are satisfied? √ × (hard to say without further work)

Civiletti/Pallis/Shafi '14, Antusch/Nolde '14

### FHI in SUGRA: our ansatz

Allow for non-minimal Kähler terms:

$$K = |S|^2 + \sum_{m+n \ge 3} \left( k_{mn} \frac{S^m (S^{\dagger})^n}{M_P^{m+n-2}} + \text{h.c.} \right)$$

Allow for R-symmetry breaking constant term in superpotential:

$$W = W_0 + \lambda S\left(\Lambda^2 - Q\tilde{Q}\right)$$

- Higher-order terms involving Q, Q unimportant
- No R-breaking relevant operators (underlying two-sector model?)
- In global SUSY limit  $M_P \rightarrow \infty$ , FHI recovered

### Even more constraints from observation

Planck constrains not only the spectral index  $(n_s - 1) \sim V''(\phi_*)$ but also the running of the spectral index  $\alpha_s \sim V'''(\phi_*)$ as well as the running of the running  $\kappa_s \sim V''''(\phi_*)$ etc. etc. ... to be small

### Around $\phi_*$ the potential should be essentially linear

(also during the  $\sim$  5 e-folds afterwards  $\Rightarrow$  CMB scales)

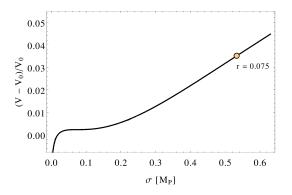
Also, need to ensure slow roll is preserved throughout

### Our strategy:

- Taylor-expand scalar potential including M<sub>P</sub> corrections
- Impose  $n_s = 0.960 \pm 0.007$  (PLANCK)
- Impose  $\alpha_{s} = 0.001^{+0.013}_{-0.014}$  and  $\kappa_{s} = 0.022^{+0.016}_{-0.013}$  (PLANCK)
- Constrain higher moments of the potential  $2|(V')^{n-2}(\partial^n V)/V^{n-1}| < \delta$ Try  $\delta = 0.3$  (optimistic),  $\delta = 0.03$  (conservative)

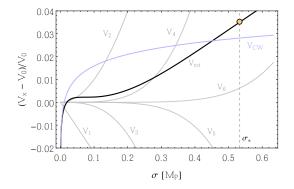
### Find solution with 50 e-folds and as small as possible $\phi_*$ for given r

# Shape of the potential



- steep(ish), ~ linear around φ<sub>\*</sub>:
   ε sizeable, higher derivatives constrained by PLANCK
- flat at small \u03c6: generate enough e-folds
- (Physical reason?)

## Contributions from higher-order terms



- Previous picture of log + (corrections at large φ) does not hold
- Fine-tuning of W<sub>0</sub> and k<sub>mn</sub> necessary
- Result still sensitive to even higher order terms (which we tuned to zero)  $\phi_*/M_P \approx 0.5$ , not a good expansion parameter

### Dynamical model

Variation of → Dimopoulos/Dvali/Rattazzi '97:

$$W_{\text{tree}} = \lambda S Q_I \tilde{Q}^I$$
 (R-symmetric)

SU( $N_c = n$ ) gauge theory with  $N_f = n$  flavours  $Q_l$ ,  $\tilde{Q}'$ , scale  $\Lambda$  $S \gg \Lambda \Rightarrow$  quark mass  $\lambda S \Rightarrow$  SU(n) SYM at low energies, scale  $\Lambda'$ Matching at scale  $\lambda S$ :

$$2n\log\frac{\lambda S}{\Lambda} = 3n\log\frac{\lambda S}{\Lambda'} \quad \Rightarrow \quad W_{\text{gaugino cond.}} = (\Lambda')^3 = \lambda S\Lambda^2$$

**Coupling to GUT Higgs:** 

$$W_{\text{tree}} = \lambda S Q_I \tilde{Q}^I - \frac{\lambda'}{2} S \operatorname{tr} \Sigma^2 + \frac{h}{3} \operatorname{tr} \Sigma^3$$
 (R-breaking)

Isolated SUSY vacuum from deformed moduli space constraint  $\rightarrow$  Seiberg '94

$$S \sim \Lambda, \qquad \Sigma \sim \text{diag} (2, 2, 2, -3, -3) \Lambda$$

#### GUT breaking at same scale as inflation

## More on dynamical model

To cancel vacuum energy after inflation:

$$W_0 = -rac{h}{3} \langle ext{tr} \, \Sigma^3 
angle \sim \Lambda^3$$

Energy density during inflation still  $\approx \lambda^2 \Lambda^4$  (important for self-consistency)

Other remarks:

- Monopoles no longer inflated away if GUT broken as inflation ends ⇒ "safe" gauge group, e.g. flipped SU(5)?
- Model ends up in a SUSY vacuum. For realistic particle physics, want to break SUSY (but at a much lower scale)

# Summary

- A nonzero tensor-to-scalar ratio may or may not have been observed
- It may or may not be observable
- In case it is: Difficult to construct a matching small-field inflation model
- F-term hybrid inflation + suitable *M*<sub>P</sub>-suppressed operators can give sizeable *r*...
- ... at the price of considerable fine-tuning
- *R*-symmetry breaking necessary. Dynamical models exist with this feature.
- Physical reason for shape of potential?
- Detailed comparison with PLANCK results needs more dedicated work. Should be able to do better than imposing (higher derivatives) < (some δ)</li>