Ab-initio calculation: neutron-proton mass difference

Z. Fodor

University of Wuppertal & FZ Jülich for the Budapest-Marseille-Wuppertal Collaboration: Science 347 (2015) 1452

April 5, 2017, Cortona, Italy

why do we have mass at all? could the world look different?

Lattice QCD talk

Outline

- 2 QCD (old)
- 3 Mass of the nucleon (neutron, proton)
- 4 Neutron-proton mass dfference

A (1) > A (2) > A

Ordinary matter: three types of particles \Rightarrow H, He ...

All of them are massless!

Why do we have mass at all?

Why do not we just fly apart with c?

Three mechanisms

I. Strong mass

II. Electromagnetic mass

III. Mass from the Higgs-Mechanism

< ∰ > < ≣ >

The massless box

ъ

Mass from energy

The strong force (massless box) \implies hadrons

Quarks can not fly apart they are confined!

Three mechanisms

STRONG

ELECTRIC

HIGGS

The electric field

е

d

Electric energy from the field energy

Three mechanisms

STRONG

HIGGS

< 17 >

Higgs-Mechanism in 7s

"you need a better job of talking each other"

"the left hand now knows what the right hand is doing"

Higgs-Mechanism: Yukawa couplings

Three mechanisms

STRONG

HIGGS

QCD: need for a systematic non-perturbative method

pressure at high temperatures converges at T=10³⁰⁰ MeV

Lattice field theory

systematic non-perturbative approach (numerical solution):

quantum fields on the lattice

quantum theory: path integral formulation with $S = E_{kin} - E_{pot}$

quantum mechanics: for all possible paths add exp(iS) quantum fields: for all possible field configurations add exp(iS)

Euclidean space-time (t= $i\tau$): exp(-S) sum of Boltzmann factors

use a space-time grid \Rightarrow formally: four-dimensional statistical system extrapolate to the continuum limit: $a \rightarrow 0$

 \Rightarrow stochastic approach, with reasonable spacing/size: solvable theory, algorithm, CPU; easy to make it 1000 \times more expensive

▲ □ ▶ ▲ □ ▶

Lattice Lagrangian: gauge fields

 $\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + \bar{\psi} (D_{\mu} \gamma^{\mu} + m) \psi$

anti-commuting $\psi(x)$ quark fields live on the sites gluon fields, $A^a_{\mu}(x)$ are used as links and plaquettes

 $egin{aligned} U(x,y) &= \exp\left(ig_s\int_x^y dx'^\mu A^a_\mu(x')\lambda_a/2
ight) \ P_{\mu
u}(n) &= U_\mu(n)U_
u(n+e_\mu)U^\dagger_\mu(n+e_
u)U^\dagger_
u(n) \end{aligned}$

 $S = S_g + S_f$ consists of the pure gluonic and the fermionic parts

 $S_g = 6/g_s^2 \cdot \sum_{n,\mu,\nu} [1 - \operatorname{Re}(P_{\mu\nu}(n))]$

Lattice Lagrangian: fermionic fields

quark differencing scheme:

$$\begin{split} \bar{\psi}(\mathbf{x})\gamma^{\mu}\partial_{\mu}\psi(\mathbf{x}) &\to \bar{\psi}_{n}\gamma^{\mu}(\psi_{n+e_{\mu}}-\psi_{n-e_{\mu}})\\ \bar{\psi}(\mathbf{x})\gamma^{\mu}\mathcal{D}_{\mu}\psi(\mathbf{x}) &\to \bar{\psi}_{n}\gamma^{\mu}\mathcal{U}_{\mu}(\mathbf{n})\psi_{n+e_{\mu}}+\dots \end{split}$$

fermionic part as a bilinear expression: $S_f = \bar{\psi}_n M_{nm} \psi_m$ e.g. 2 degenerate light quarks (u,d) and the strange quark: $n_f = 2 + 1$

Euclidean partition function is given by the Boltzmann weights

$$\mathsf{Z} = \int \prod_{n,\mu} [dU_{\mu}(x)] [d\bar{\psi}_n] [d\psi_n] e^{-S_g - S_f} = \int \prod_{n,\mu} [dU_{\mu}(n)] e^{-S_g} \det(M[U])$$

A (B) > A (B) > A (B) >

Importance sampling

$$\mathsf{Z}=\int\prod_{n,\mu}[dU_{\mu}(n)]e^{-S_g}\det(M[U])$$

we do not take into account all possible gauge configuration

each of them is generated with a probability \propto its weight

importance sampling, Metropolis algorithm: (all other algorithms are based on importance sampling)

 $P(U \rightarrow U') = \min \left[1, \exp(-\Delta S_g) \det(M[U']) / \det(M[U])\right]$

gauge part: trace of 3×3 matrices (easy, without M: quenched) fermionic part: determinant of $10^6 \times 10^6$ sparse matrices (hard)

more efficient ways than direct evaluation (Mx=a), but still hard

Hadron spectroscopy in lattice QCD

Determine the transition amplitude between: having a "particle" at time 0 and the same "particle" at time t \Rightarrow Euclidean correlation function of a composite operator O:

 $C(t) = \langle 0 | \mathcal{O}(t) \mathcal{O}^{\dagger}(0) | 0 \rangle$

insert a complete set of eigenvectors $|i\rangle$

 $= \sum_{i} \langle 0| e^{Ht} \mathcal{O}(0) e^{-Ht} |i\rangle \langle i| \mathcal{O}^{\dagger}(0) |0\rangle = \sum_{i} |\langle 0| \mathcal{O}^{\dagger}(0) |i\rangle|^2 e^{-(E_i - E_0)t},$

where $|i\rangle$: eigenvectors of the Hamiltonian with eigenvalue E_i .

and
$$\mathcal{O}(t) = e^{Ht} \mathcal{O}(0) e^{-Ht}.$$

 $t \text{ large } \Rightarrow \text{ lightest states (created by } \mathcal{O} \text{) dominate: } C(t) \propto e^{-M \cdot t}$ $\Rightarrow \text{ exponential fits or mass plateaus } M_t = \log[C(t)/C(t+1)]$

▲ 臣 ▶ ▲ 臣 ▶ = = • • • • • • •

Quenched results

QCD is 40 years old \Rightarrow properties of hadrons (Rosenfeld table)

non-perturbative lattice formulation (Wilson) immediately appeared "did not have 35 years"; more optimistic scientists: 10 years (fusion) needed 20 years even for quenched result of the spectrum (cheap) instead of det(M) of a $10^6 \times 10^6$ matrix trace of 3×3 matrices

always at the frontiers of computer technology:

GF11: IBM "to verify QCD" (10 Gflops, '92) CP-PACS: Hitachi QCD machine (614 Gflops, '96)

the $\approx 10\%$ discrepancy was believed to be a quenching effect

Difficulties of full dynamical calculations

though the quenched result can be qualitatively correct uncontrolled systematics \Rightarrow full "dynamical" studies by two-three orders of magnitude more expensive (balance) present day machines offer several Pflops

no revolution but evolution in the algorithmic developments Berlin Wall '01: it is extremely difficult to reach small quark masses:

FLAG review of lattice results Colangelo et al. Eur. Phys. J. C71 (2011) 1695

S. Durr et al., Budapest-Marseille-Wuppertal Collaboration, Science 322 (2008) 1224

altogether 15 points for each hadrons

smooth extrapolation to the physical pion mass (or m_{ud}) small discretization effects (three lines barely distinguishable)

continuum extrapolation goes as $c \cdot a^n$ and it depends on the action in principle many ways to discretize (derivative by 2,3... points)

Final result for the hadron spectrum S. Durr et al., Science 322 1224 2008

Three mechanisms

STRONG

HIGGS

Introduction to isospin symmetry

Isospin symmetry: 2+1 or 2+1+1 flavor frameworks

if 'up' and 'down' quarks had identical properties (mass,charge) $M_n = M_p$, $M_{\Sigma^+} = M_{\Sigma^0} = M_{\Sigma^-}$, etc.

The symmetry is explicitly broken by

• up, down quark electric charge difference (up: $2/3 \cdot e \text{ down:-} 1/3 \cdot e)$ \Rightarrow proton: uud=2/3+2/3-1/3=1 whereas neutron: udd=2/3-1/3-1/3=0at this level (electric charge) the proton would be the heavier one • up, down quark mass difference ($m_d/m_u \approx 2$): 1+1+1+1 flavor

The breaking is large on the quark's level $(m_d/m_u \approx 2 \text{ or charges})$ but small (typically sub-percent) compared to hadronic scales.

These two competing effects provide the tiny M_n - M_p mass difference $\approx 0.14\%$ is required to explain the universe as we observe it M_p and M_p mass difference

Big bang nucleosynthesys and nuclei chart

if $\Delta m_N < 0.05\% \rightarrow$ inverse β decay leaving (predominantly) neutrons $\Delta m_N \gtrsim 0.05\%$ would already lead to much more *He* and much less *H* \rightarrow stars would not have ignited as they did

if $\Delta m_N > 0.14\% \rightarrow$ much faster beta decay, less neutrons after BBN burinng of *H* in stars and synthesis of heavy elements difficult

The whole nuclei chart is based on precise value of Δm_N

Could things have been different?

Jaffe, Jenkins, Kimchi, PRD 79 065014 (2009)

Three mechanisms

STRONG

HIGGS

Autocorrelation of the photon field

Standard HMC has $\mathcal{O}(1000)$ autocorrelation Improved HMC has none (for the pure photon theory) Small coupling to guarks introduces a small autocorrelation

Finite V dependence of the kaon mass

Neutral kaon shows essentially no (small $1/L^3$) volume dependence Volume dependence of the K splitting is perfectly described $1/L^3$ order is significant for kaon (baryons are not as precise)

Summary

Lattice spacings and pion masses

final result is quite independent of the lattice spacing & pion mass \implies four lattice spacings with a=0.102, 0.089, 0.077 and 0.064 fm four volumes for a large volume scan: L=2.4 ... 8.2 fm five charges for large electric charge scan: e=0 ... 1.41 41 ensembles with M_{π} =195–440 MeV (various cuts)

large parameter space: helps in the Kolmogorov-Smirnov analysis

Isospin splittings

splittings in channels that are stable under QCD and QED:

 ΔM_N , ΔM_{Σ} and ΔM_D splittings: post-dictions ΔM_{Ξ} , $\Delta M_{\Xi_{cc}}$ splittings and Δ_{CG} : predicitions

Quantitative anthropics

Precise scientific version of the great question: Could things have been different (string landscape)?

eg. big bang nucleosynthsis & today's stars need $\Delta M_N \approx 1.3$ MeV

(lattice message: too large or small α would shift the mass) a

Introduction

QCD (old)

Mass of the nucleon (neutron, proton)

Neutron-proton mass dfference

Summary

Gauging the allure of designer drugs p. 469 Blow-up brains for a better insode view pp.474 & 543

Single-crystal pervoskite solar cells pp.519 & 522

Measuring the legacy of child abuse pp. 1408 & 1480

Overlooked trade-offs in biofuel versus food debates p. 1420 The mass difference between protons and neutrons p. 1412

Gang of three

How dynactin, dynein, and Bicaudal-D2 motor together p. 1441

vision about a future, in which high precisions can be achieved for a broad spectrum of non-perturbative questions (lattice formalism)