$b \rightarrow c \tau \nu_{\tau}$ Decays : A Catalogue to Compare, Constrain, and Correlate New Physics

Srimoy Bhattacharya

QCD@Work 2018 : International Workshop on QCD
June 25 to 28, 2018, Matera, Italy

June 26, 2018

Direct and Indirect Search

- New physics search can follow one of two tracks :
- Direct detection of new particles at the collider
- Indirect probes for new physics from precision measurements
- No direct evidence for physics beyond SM by LHC.
- Indirect hints for new physics (NP) in the flavour sector.
- NP can show up as a deviation of the experimental data from SM prediction.

$\mathcal{R}(D), \mathcal{R}\left(D^{*}\right)$: Experimental Status

- Observables with
less theoretical uncertainty :

$$
\begin{aligned}
\mathcal{R}(D) & =\frac{\mathcal{B}\left(\bar{B} \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D \ell \nu_{\ell}\right)} \\
\mathcal{R}\left(D^{*}\right) & =\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \nu_{\ell}\right)}
\end{aligned}
$$

$\mathcal{R}(D), \mathcal{R}\left(D^{*}\right):$ Experimental Status

- Observables with less theoretical uncertainty :

$$
\begin{aligned}
\mathcal{R}(D) & =\frac{\mathcal{B}\left(\bar{B} \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D \ell \nu_{\ell}\right)} \\
\mathcal{R}\left(D^{*}\right) & =\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \nu_{\ell}\right)}
\end{aligned}
$$

Stefania Vecchi's talk today morning

$\mathcal{R}(D), \mathcal{R}\left(D^{*}\right):$ Experimental Status

- Observables with less theoretical uncertainty :
$\mathcal{R}(D)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D \ell \nu_{\ell}\right)}$

$$
\mathcal{R}\left(D^{*}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \nu_{\ell}\right)}
$$

Stefania Vecchi's talk today morning

[^0]S. Fajfer, J. F. Kamenik, and I. Nisandzic, Phys. Rev. D85 (2012) 094025

$\mathcal{R}(D), \mathcal{R}\left(D^{*}\right):$ Experimental Status

- Observables with less theoretical uncertainty :

$$
\begin{aligned}
\mathcal{R}(D) & =\frac{\mathcal{B}\left(\bar{B} \rightarrow D \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D \ell \nu_{\ell}\right)} \\
\mathcal{R}\left(D^{*}\right) & =\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \tau \nu_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{*} \ell \nu_{\ell}\right)}
\end{aligned}
$$

Stefania Vecchi's talk today morning
 S. Jaiswal, S. Nandi, and S. K. Patra, JHEP 12, 060(2017). D. Bigi and P. Gambino, Phys. Rev. D94 (2016), no. 9094008.

$$
\text { S. Fajfer, J. F. Kamenik, and I. Nisandzic, Phys. Rev. D85 (2012) } 094025
$$

- For both $\mathcal{R}(D), \mathcal{R}\left(D^{*}\right)$: Deviations 4.1σ (Global) and $3.5 \sigma\left(\mathcal{R}\left(D^{*}\right)\right)$.

More Observables...

- Present experimental status of these observables with their correlation:

	\mathcal{R}_{D}	$\mathcal{R}_{D^{*}}$	\rightarrow Correlation	$P_{\tau}\left(D^{*}\right)$	$\mathcal{R}_{J / \Psi}$
BABAR	$0.440(58)(42)$	$0.332(24)(18)$	-0.27	-	-
Belle (2015)	$0.375(64)(26)$	$0.293(38)(15)$	-0.49	-	-
Belle (2016)	-	-	-	-	
Belle (2016)	-	$0.302(30)(11)$	0.33	$-0.38(51)(26)$	-
LHCb (2015)	-	-	-	-	
LHCb (2017)	-	$0.336(35)(37)(30)$	-	-	$0.71(17)(18)$
LHCb (2017)	-	-	-	$-286(19)(25)$	

$$
P_{\tau}\left(D^{(*)}\right)=\frac{\Gamma^{(*) \lambda_{\tau}=1 / 2}-\Gamma^{(*) \lambda_{\tau}=-1 / 2}}{\Gamma^{(*) \lambda_{\tau}=1 / 2}+\Gamma^{(*) \lambda_{\tau}=-1 / 2}}
$$

$$
\mathcal{R}(J / \psi)=\frac{\mathcal{B}\left(B_{c} \rightarrow J / \psi \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow J / \psi \ell \nu_{\ell}\right)}
$$

More Observables...

- Present experimental status of these observables with their correlation:

	\mathcal{R}_{D}	$\mathcal{R}_{D^{*}}$	\rightarrow Correlation	$P_{\tau}\left(D^{*}\right)$	$\mathcal{R}_{J / \Psi}$
BABAR	$0.440(58)(42)$	$0.332(24)(18)$	-0.27	-	-
Belle (2015)	$0.375(64)(26)$	$0.293(38)(15)$	-0.49	-	-
Belle (2016)	-	$0.302(30)(11)$	-	-	
Belle (2016)	-	$0.270(35)(37)$	0.33	$-0.38(51)(26)$	-
LHCb (2015)	-	$0.336(27)(30)$	-	-	-
LHCb (2017)	-	$0.286(19)(25)$	-	-	$0.71(17)(18)$
LHCb (2017)	-	-	-	-	

$$
P_{\tau}\left(D^{(*)}\right)=\frac{\Gamma^{(*) \lambda_{\tau}=1 / 2}-\Gamma^{(*)} \lambda_{\tau}=-1 / 2}{\Gamma^{(*)} \lambda_{\tau}=1 / 2+\Gamma^{(*)} \lambda_{\tau}=-1 / 2}
$$

$P_{\tau}\left(D^{*}\right)$: Large uncertainty, Consistent with SM

$$
\mathcal{R}(J / \psi)=\frac{\mathcal{B}\left(B_{c} \rightarrow J / \psi \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow J / \psi \ell \nu_{\ell}\right)}
$$

More Observables...

- Present experimental status of these observables with their correlation:

	\mathcal{R}_{D}	$\mathcal{R}_{D^{*}}$	\rightarrow Correlation	$P_{\tau}\left(D^{*}\right)$	$\mathcal{R}_{J / \Psi}$
BABAR	$0.440(58)(42)$	$0.332(24)(18)$	-0.27	-	-
Belle (2015)	$0.375(64)(26)$	$0.293(38)(15)$	-0.49	-	-
Belle (2016)	-	$0.302(30)(11)$	-	-	
Belle (2016)	-	$0.270(35)(37)$	0.33	$-0.38(51)(26)$	-
LHCb (2015)	-	$0.336(27)(30)$	-	-	-
LHCb (2017)	-	$0.286(19)(25)$	-	-	$0.71(17)(18)$
LHCb (2017)	-	-	-	-	

$$
P_{\tau}\left(D^{(*)}\right)=\frac{\Gamma^{(*) \lambda_{\tau}=1 / 2}-\Gamma^{(*)} \lambda_{\tau}=-1 / 2}{\Gamma^{(*)} \lambda_{\tau}=1 / 2+\Gamma^{(*)} \lambda_{\tau}=-1 / 2}
$$

$P_{\tau}\left(D^{*}\right)$: Large uncertainty, Consistent with SM

$$
\mathcal{R}(J / \psi)=\frac{\mathcal{B}\left(B_{c} \rightarrow J / \psi \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow J / \psi \ell \nu_{\ell}\right)}
$$

$\mathcal{R}_{J / \Psi}$: Large uncertainty, 2σ above SM prediction.

More Channels... More Observables...

More Channels... More Observables...

More Channels... More Observables...

Correlations among observables Important!!

$F_{L}^{D^{*}}$
Precise measurements: constraint on model specific NP parameters
$\mathcal{A}_{F B}^{(*)}$

More Channels... More Observables...

Correlations among observables Important!!

$F_{L}^{D^{*}}$
Precise measurements: constraint on model specific NP parameters

Prediction in NP model : Consistency check with future measurements $\mathcal{A}_{\text {FB }}$

SM prediction (Exclusive)

- For SM calculation in $B \rightarrow D^{(*)} \tau \nu_{\tau}$: CLN parametrization is used. (Nucl. Phys. B530 (1998) 153-181)
- For SM calculation in $\Lambda_{B} \rightarrow \Lambda_{c} \tau \nu_{\tau}$: Lattice QCD in relativistice heavy quark limit. (Phys. Rev. D92 (2015), no. 3 034503)
- Unavailability of precise calculation of $B_{c} \rightarrow J / \psi$ form factors :
- Option to choose different parametrization.
- Two different parametrizations are considered
- Light-front Covariant Quark Model (LFCQ) (Phys. Rev. D79 (2009) 054012)
- Perturbative QCD (pQCD) (Chin. Phys. C37 (2013) 093102)
- SM central value varying within range $0.25-0.29$

Inclusive SM prediction

- For Inclusive decay :

$$
\mathcal{R}_{X_{c}}=\frac{\mathcal{B}\left(B \rightarrow X_{c} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}_{\ell}\right)},
$$

- Upto NNLO corrections in α_{s} are considered (Phys. Lett. B346 (1995) 335-341, JHEP 02 (2010) 089).
- The contributions, both at the order $1 / m_{b}{ }^{2}$ and $1 / m_{b}{ }^{3}$ are considered separately. (Phys. Lett. B326 (1994) 145-153, Nucl. Phys. B921 (2017) 211-224)

SM prediction for $\mathcal{R}_{X_{C}}$

m_{c} in scheme:			
$\overline{M S}$ upto order	Kinetic up to order		
$\mathcal{O}\left(1 / m_{b}^{2}\right)$	$\mathcal{O}\left(1 / m_{b}^{3}\right)$	$\mathcal{O}\left(1 / m_{b}^{2}\right)$	$\mathcal{O}\left(1 / m_{b}^{3}\right)$
$0.242(8)$	$0.218(8)$	$0.232(3)$	$0.209(4)$

Phys. Rev. Lett. 114, 061802 (2015).

Inclusive SM prediction

${ }^{b}$-quark mass: Kinetic scheme, c-quark mass: both Kinetic and $\bar{M} S$ scheme

- For Inclusive decay :

$$
\mathcal{R}_{X_{c}}=\frac{\mathcal{B}\left(B \rightarrow X_{c} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}_{\ell}\right)},
$$

- Upto NNLO corrections in α_{s} are considered (Phys. Lett. B346 (1995) 335-341, JHEP 02 (2010) 089).
- The contributions, both at the order $1 / m_{b}{ }^{2}$ and $1 / m_{b}{ }^{3}$ are considered separately. (Phys. Lett. B326 (1994) 145-153, Nucl. Phys. B921 (2017) 211-224)

SM prediction for $\mathcal{R}_{X_{c}}$

m_{c} in scheme:			
$\overline{M S}$ upto order	Kinetic up to order		
$\mathcal{O}\left(1 / m_{b}^{2}\right)$	$\mathcal{O}\left(1 / m_{b}^{3}\right)$	$\mathcal{O}\left(1 / m_{b}^{2}\right)$	$\mathcal{O}\left(1 / m_{b}^{3}\right)$
$0.242(8)$	$0.218(8)$	$0.232(3)$	$0.209(4)$

Phys. Rev. Lett. 114, 061802 (2015).

Inclusive SM prediction

${ }^{b}$-quark mass: Kinetic scheme, c-quark mass: both Kinetic and $\bar{M} S$ scheme

- For Inclusive decay :

$$
\mathcal{R}_{X_{c}}=\frac{\mathcal{B}\left(B \rightarrow X_{c} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}_{\ell}\right)},
$$

- Upto NNLO corrections in α_{s} are considered (Phys. Lett. B346 (1995) 335-341, JHEP 02 (2010) 089).
- The contributions, both at the order $1 / m_{b}{ }^{2}$ and $1 / m_{b}{ }^{3}$ are considered separately. (Phys. Lett. B326 (1994) 145-153, Nucl. Phys. B921 (2017) 211-224) scheme dependence deviates the central value $\approx 4 \%$ (consistent within error bar) SM prediction for $\mathcal{R}_{X_{c}}$
m_{c} in scheme:
$\overline{M S}$ upto order \quad Kinetic up to order

$\mathcal{O}\left(1 / m_{b}^{2}\right)$	$\mathcal{O}\left(1 / m_{b}^{3}\right)$	$\mathcal{O}\left(1 / m_{b}^{2}\right)$	$\mathcal{O}\left(1 / m_{b}^{3}\right)$
$0.242(8)$	$0.218(8)$	$0.232(3)$	$0.209(4)$

Phys. Rev. Lett. 114, 061802 (2015).

New Physics Analysis

- Varieties of NP models can contribute to $B \rightarrow D^{(*)} \tau \nu_{\tau}$
- An observable not equally sensitive to all types of NP.
- Useful to know :
- Which type of new physics can best explain the present experimental data??
- Data- based Model Selection \rightarrow a multi-scenario analysis on the experimentally available binned data, to obtain a data-based selection of a best NP scenario and ranking and weighting of the remaining models.

Model Independent Analysis

- Most general effective Hamiltonian describing the $b \rightarrow c \tau \nu_{\tau}$ [Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe,PRD 91, no. 11, 114028 (2015)]

$$
\begin{aligned}
\mathcal{H}_{e f f} & =\frac{4 G_{F}}{\sqrt{2}} V_{c b}\left[\left(1+C_{V_{1}}\right) \mathcal{O}_{V_{1}}+C_{V_{2}} \mathcal{O}_{V_{2}}\right. \\
& \left.+C_{S_{1}} \mathcal{O}_{S_{1}}+C_{S_{2}} \mathcal{O}_{S_{2}}+C_{T} \mathcal{O}_{T}\right]
\end{aligned}
$$

Operator basis :

$$
\begin{aligned}
\mathcal{O}_{V_{1}} & =\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{\tau L}\right), \mathcal{O}_{V_{2}}=\left(\bar{c}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\tau}_{L} \gamma_{\mu} \nu_{\tau L}\right) \\
\mathcal{O}_{S_{1}} & =\left(\bar{c}_{L} b_{R}\right)\left(\bar{\tau}_{R} \nu_{\tau L}\right), \quad \mathcal{O}_{S_{2}}=\left(\bar{c}_{R} b_{L}\right)\left(\bar{\tau}_{R} \nu_{\tau L}\right) \\
\mathcal{O}_{T} & =\left(\bar{c}_{R} \sigma^{\mu \nu} b_{L}\right)\left(\bar{\tau}_{R} \sigma_{\mu \nu} \nu_{\tau L}\right)
\end{aligned}
$$

- Neutrinos are assumed to be left handed.

Data- Based Model Selection

- Work Plan : Data-based selection of a 'best' case and ranking the remaining cases.

Data- Based Model Selection

- Work Plan: Data-based selection of a 'best' case and ranking the remaining cases.
- Akaike Information criteria(Second Order) [N. Sugiura, Commun. Stat. Theor. Meth. A 7, 13 (1978).]

$$
\mathrm{AIC}_{c}=\chi_{\text {min }}^{2}+2 K+\frac{2 K(K+1)}{n-K-1}
$$

$K=$ number of parameters ; $n=$ sample size; $n / K<40$.

- $\Delta_{i}^{A I C}\left(\mathrm{AIC}_{c}^{i}-\mathrm{AIC}_{c}^{\min }\right) \Rightarrow$ Comparison and ranking of candidate models
- 'Best' model $\Rightarrow \Delta_{i}^{A I C} \equiv \Delta_{\text {min }}^{A I C}=0$.

$\Delta_{i}^{\text {AIC }}$	Level of Empirical Support for Model i
$0-2$	Substantial
$4-7$	Considerably Less
>10	Essentially None

- Akaike Weight : weight of evidence in favor of model i

$$
w_{i}=\frac{e^{\left(-\Delta_{i}^{A I C} / 2\right)}}{\sum_{r=1}^{R} e^{\left(-\Delta_{r}^{A I C} / 2\right)}}
$$

Model Selection

- Model Independent multi-scenario analysis with experimentally available results \rightarrow data-based selection of a 'best' scenario.
- Four different combination of datasets :

- 3 variations of similar combinations of datasets.
- Without $\mathcal{R}_{J / \psi}$
- With $\mathcal{R}_{J / \psi}$ in LFCQ
- With $\mathcal{R}_{J / \psi}$ in pQCD
- Apparent tension among experimental and SM value $\Rightarrow \mathcal{R}_{J / \psi}$ treated separately.

Results

Index	Data Without $\mathcal{R}_{J / \Psi}$				
	$\begin{array}{\|l} \hline x_{\min }^{2} \\ / \operatorname{DoF} \end{array}$	p-val (\%)	Param.s	$w^{\mathrm{AIC}_{c}}$	$\begin{gathered} B_{c} \rightarrow \\ \tau \nu \\ \hline \end{gathered}$
1	4.05/8	85.3	$\mathcal{R e}\left(C_{T}\right)$	35.85	\checkmark
2	$4.58 / 8$	80.13	$\mathcal{R e}\left(C_{V_{1}}\right)$	20.99	\checkmark
3	4.64/8	79.54	$\mathcal{R e}\left(C_{S_{2}}\right)$	19.82	\times
4	$3.54 / 7$	83.07	$\mathcal{I} m\left(C_{S_{2}}\right), \mathcal{R e}\left(C_{S_{2}}\right)$	1.92	\times
5	3.54/7	83.07	$\mathcal{R e}\left(C_{S_{1}}\right), \mathcal{R e}\left(C_{S_{2}}\right)$	1.92	\times
6	$3.56 / 7$	82.9	$\mathcal{R e}\left(C_{S_{2}}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	1.89	\checkmark !
7	$3.56 / 7$	82.9	$\mathcal{R e}\left(C_{S_{2}}\right), \mathcal{R e}\left(C_{T}\right)$	1.89	\checkmark !
8	3.56/7	82.88	$\mathcal{R e}\left(C_{S_{2}}\right), \mathcal{R e}\left(C_{V_{2}}\right)$	1.89	\checkmark !
9	$3.62 / 7$	82.23	$\mathcal{R e}\left(C_{T}\right), \mathcal{R e}\left(C_{V_{2}}\right)$	1.78	\checkmark
10	$3.69 / 7$	81.45	$\mathcal{R e}\left(C_{S_{1}}\right), \mathcal{R e}\left(C_{T}\right)$	1.66	\checkmark !
11	$3.7 / 7$	81.31	$\mathcal{R e}\left(C_{S_{1}}\right), \mathcal{R} e\left(C_{V_{2}}\right)$	1.64	\checkmark !
12	$3.76 / 7$	80.71	$\mathcal{R e}\left(C_{S_{1}}\right), \mathcal{R e}\left(C_{V_{1}}\right)$	1.55	\checkmark !
13	$3.79 / 7$	80.37	$\mathcal{R e}\left(C_{V_{1}}\right), \mathcal{R e}\left(C_{V_{2}}\right)$	1.5	\checkmark
14	3.79/7	80.37	$\operatorname{Im}\left(C_{V_{2}}\right), \mathcal{R} e\left(C_{V_{2}}\right)$	1.5	\checkmark
15	$3.82 / 7$	80.08	$\mathcal{R e}\left(C_{T}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	1.46	\checkmark
16	$3.87 / 7$	79.49	$\mathcal{I} m\left(C_{T}\right), \mathcal{R} e\left(C_{T}\right)$	1.39	\checkmark
17	$4.58 / 7$	71.09	$\mathcal{I} m\left(C_{V_{1}}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	0.68	\checkmark

Results

Best One operator scenarios: $\mathcal{O}_{T} / \mathcal{O}_{V_{1}}$ with $\operatorname{Re}\left(C_{W}\right)$

Index	$/ \mathrm{DoF}$	$(\%)$			$\tau \nu$
1	$4.05 / 8$	85.3	$\mathcal{R} e\left(C_{T}\right)$	25.85	\checkmark
2	$4.58 / 8$	80.13	$\mathcal{R} e\left(C_{V_{1}}\right)$	20.99	\checkmark
3	$4.64 / 8$	79.54	$\mathcal{R e}\left(C_{S_{2}}\right)$	19.82	\times
4	$3.54 / 7$	83.07	$\mathcal{I} m\left(C_{S_{2}}\right), \mathcal{R e}\left(C_{S_{2}}\right)$	1.92	\times
5	$3.54 / 7$	83.07	$\mathcal{R} e\left(C_{S_{1}}\right), \mathcal{R} e\left(C_{S_{2}}\right)$	1.92	\times
6	$3.56 / 7$	82.9	$\mathcal{R} e\left(C_{S_{2}}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	1.89	$\checkmark!$
7	$3.56 / 7$	82.9	$\mathcal{R e}\left(C_{S_{2}}\right), \mathcal{R e} e\left(C_{T}\right)$	1.89	$\checkmark!$
8	$3.56 / 7$	82.88	$\mathcal{R} e\left(C_{S_{2}}\right), \mathcal{R} e\left(C_{V_{2}}\right)$	1.89	$\checkmark!$
9	$3.62 / 7$	82.23	$\mathcal{R} e\left(C_{T}\right), \mathcal{R e} e\left(C_{V_{2}}\right)$	1.78	\checkmark
10	$3.69 / 7$	81.45	$\mathcal{R} e\left(C_{S_{1}}\right), \mathcal{R} e\left(C_{T}\right)$	1.66	$\checkmark!$
11	$3.7 / 7$	81.31	$\mathcal{R} e\left(C_{S_{1}}\right), \mathcal{R} e\left(C_{V_{2}}\right)$	1.64	$\checkmark!$
12	$3.76 / 7$	80.71	$\mathcal{R} e\left(C_{S_{1}}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	1.55	$\checkmark!$
13	$3.79 / 7$	80.37	$\mathcal{R} e\left(C_{V_{1}}\right), \mathcal{R} e\left(C_{V_{2}}\right)$	1.5	\checkmark
14	$3.79 / 7$	80.37	$\mathcal{I} m\left(C_{V_{2}}\right), \mathcal{R} e\left(C_{V_{2}}\right)$	1.5	\checkmark
15	$3.82 / 7$	80.08	$\mathcal{R} e\left(C_{T}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	1.46	\checkmark
16	$3.87 / 7$	79.49	$\mathcal{I} m\left(C_{T}\right), \mathcal{R} e\left(C_{T}\right)$	1.39	\checkmark
17	$4.58 / 7$	71.09	$\mathcal{I} m\left(C_{V_{1}}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	0.68	\checkmark

Results

Best One operator scenarios: $\mathcal{O}_{T} / \mathcal{O}_{V_{1}}$ with $\operatorname{Re}\left(C_{W}\right)$

Results

Best One operator scenarios: $\mathcal{O}_{T} / \mathcal{O}_{V_{1}}$ with $\operatorname{Re}\left(C_{W}\right)$

$\mathcal{O}_{V_{2}}$: Less favored, allowed with complex C_{W}

14	$3.79 / 7$	80.37	$\mathcal{I} m\left(C_{V_{2}}\right), \mathcal{R} e\left(C_{V_{2}}\right)$	1.5	\checkmark
15	$3.82 / 7$	80.08	$\mathcal{R} e\left(C_{T}\right), \mathcal{R e}\left(C_{V_{1}}\right)$	1.46	\checkmark
16	$3.87 / 7$	79.49	$\mathcal{I} m\left(C_{T}\right), \mathcal{R} e\left(C_{T}\right)$	1.39	\checkmark
17	$4.58 / 7$	71.09	$\mathcal{I} m\left(C_{V_{1}}\right), \mathcal{R} e\left(C_{V_{1}}\right)$	0.68	\checkmark

Results

- In absence of $P_{\tau}\left(D^{*}\right)$ the conclusions remain same.
- Without considering BABAR data : two more one-operator scenarios $\mathcal{R} e\left(C_{V_{2}}\right)$ and $\mathcal{R} e\left(C_{S_{1}}\right)$ are allowed.
- Considering only $\mathcal{R}_{D^{*}}$ data : All of $\mathcal{O}_{V_{1}}, \mathcal{O}_{V_{2}}, \mathcal{O}_{S_{1}}, \mathcal{O}_{S_{2}}, \mathcal{O}_{T}$ are allowed with $\mathcal{R} e\left(C_{W}\right) . \mathcal{B}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ disfavors the scenarios with scaler operators.
- In all these analysis, conclusions remain unchanged in presence of $\mathcal{R}_{J / \psi}$ data.
- For all the scenarios allowed by $\Delta A I C_{c}$ as well as $\mathcal{B}\left(B_{c} \rightarrow \tau \nu_{\tau}\right)$ constraints the values of NP parameters with their uncertainties and correlations are estimated.

Results

Data Without $\mathcal{R}_{J / \Psi}$			
Index	Param.s	Best-fit	Correlation
1	$\mathcal{R e} e\left(C_{T}\right)$	$0.387(11)$	-
2	$\mathcal{R e} e\left(C_{V_{1}}\right)$	$0.098(22)$	-
6	$\mathcal{R e}\left(C_{S_{2}}\right)$	$0.073(79)$	-0.409
	$\mathcal{R e}\left(C_{V_{1}}\right)$	$0.089(24)$	
7	$\operatorname{Re}\left(C_{S_{2}}\right)$	$0.181(67)$	0.075
	$\mathcal{R e}\left(C_{T}\right)$	-0.043(11)	
8	$\mathcal{R} e\left(C_{S_{2}}\right)$	$0.279(68)$	-0.302
	$\mathcal{R e}\left(C_{V_{2}}\right)$	-0.111 (29)	
9	$\mathcal{R e}\left(C_{T}\right)$	-0.112 (26)	-0.93
	$\mathcal{R e}\left(C_{V_{2}}\right)$	$0.196(74)$	
10	$\operatorname{Re}\left(C_{S_{1}}\right)$	$0.179(66)$	0.351
	$\mathcal{R} e\left(C_{T}\right)$	-0.033(12)	
11	$\mathcal{R} e\left(C_{S_{1}}\right)$	$0.245(60)$	-0.01
	$\mathcal{R} e\left(C_{V_{2}}\right)$	-0.075(28)	
12	$\mathcal{R e}\left(C_{S_{1}}\right)$	$0.086(90)$	-0.684
	$\mathcal{R e}\left(C_{V_{1}}\right)$	$0.078(30)$	
13	$\mathcal{R e}\left(C_{V_{1}}\right)$	$0.117(31)$	0.709
	$\mathcal{R e}\left(C_{V_{2}}\right)$	$0.037(41)$	
14	$\operatorname{Im}\left(C_{V_{2}}\right)$	$0.497(68)$	0.716
	$\mathcal{R} e\left(C_{V_{2}}\right)$	$0.042(46)$	
15	$\mathcal{R e}\left(C_{T}\right)$	$0.030(34)$	0.917
	$\mathcal{R} e\left(C_{V_{1}}\right)$	$0.142(54)$	
16	$\operatorname{Im}\left(C_{T}\right)$	$0.16(15)$	-0.995
	$\mathcal{R e}\left(C_{T}\right)$	$0.32(15)$	
17		See Plot	

Results

- Using these NP results, the values of all the observables are predicted.
- Trying to explain the deviation in $\mathcal{R}_{D^{(*)}}$ for a specific NP \Rightarrow Information about the expected deviations in other associated observables.
- Any result, inconsistent with SM, but consistent with a future prediction of some observable \Rightarrow indirect evidence in support for that specific scenario.
- The correlations between the observables will play an important role.

Correlation Plots

SM	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{T}}\right)$	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{1}}\right)$	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{2}}\right)$	
. \cdot R	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{S}_{1}}\right)$
$\begin{aligned} & \text { Belle }+\mathrm{I} \\ & \text { (w/o } \mathcal{R} \end{aligned}$	$\begin{aligned} & \mathrm{le}+\mathrm{LHCb} \\ & \left.o \mathcal{R}_{\mathrm{J} / \Psi}\right) \end{aligned}$

Correlation Plots

Only with $\mathcal{O}_{V_{2}} \mathcal{R}_{D}$ and $\mathcal{R}_{D^{*}}$ are negatively correlated

Correlation Plots

Only with $\mathcal{O}_{V_{2}} \mathcal{R}_{D}$ and $\mathcal{R}_{D^{*}}$ are negatively correlated

For $\operatorname{Re}\left(C_{V_{2}}\right), \operatorname{Re}\left(C_{S_{1}}\right)$ and $\operatorname{Re}\left(C_{V_{1}}\right)$: simultaneously consistency with SM

SM	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{T}}\right)$	
$\cdots \operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{1}}\right)$	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{2}}\right)$	
R	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{S}_{1}}\right)$
Belle+ (w/o	$\begin{aligned} & \text { e+LHCb } \\ & \left.\mathcal{R}_{\mathrm{J} / \Psi}\right) \end{aligned}$

Correlation Plots

Only with $\mathcal{O}_{V_{2}} \mathcal{R}_{D}$ and $\mathcal{R}_{D^{*}}$ are negatively correlated
\square
For $\operatorname{Re}\left(C_{V_{2}}\right), \operatorname{Re}\left(C_{S_{1}}\right)$ and $\operatorname{Re}\left(C_{V_{1}}\right)$: simultaneously consistency with SM 0 ¢
For $\mathcal{R e}\left(C_{T}\right)$: consistency of $\mathcal{R}_{D^{*}}$, large deviation of \mathcal{R}_{D} with SM

SM	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{T}}\right)$	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{1}}\right)$	
$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{2}}\right)$	
$\cdots \cdots \operatorname{Re}\left(\mathrm{C}_{\mathrm{S}_{1}}\right)$	
Belle+ (w/o	$\begin{aligned} & \mathrm{e}+\mathrm{LHCb} \\ & \left.\mathrm{o} \mathcal{R}_{\mathrm{J} / \Psi}\right) \end{aligned}$

Correlation Plots

- asymmetric and angular observables : insensitive to $\mathcal{O}_{V_{1}} \Rightarrow$ canceled in the ratios.

Correlation Plots

- asymmetric and angular observables : insensitive to $\mathcal{O}_{V_{1}} \Rightarrow$ canceled in the ratios.

Correlation Plots

- asymmetric and angular observables : insensitive to $\mathcal{O}_{V_{1}} \Rightarrow$ canceled in the ratios.

measured value, above SM: explained by the scalar operator.

	SM
- R	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{T}}\right)$
... R	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{1}}\right)$
R	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{2}}\right)$
R	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{S}_{1}}\right)$
$\begin{aligned} & \text { Belle+LHCb } \\ & \left(\mathrm{w} / \mathrm{o} \mathcal{R}_{\mathrm{J} / \Psi}\right) \end{aligned}$	

Correlation Plots

- asymmetric and angular observables : insensitive to $\mathcal{O}_{V_{1}} \Rightarrow$ canceled in the ratios.

measured value, above SM: explained by the scalar operator.

In future measured value consistent with $\mathcal{R}_{D^{*}}$ large deviation in $P_{\tau}(D)$: tensor NP

Correlation Plots

Correlation Plots

presence of $\mathcal{O}_{T}: \mathcal{R}_{D^{*}}$ is with negative correlation with $P_{\tau}(D)$

Correlation Plots

presence of $\mathcal{O}_{T}: \mathcal{R}_{D^{*}}$ is with negative correlation with $P_{\tau}(D)$

presence of $\mathcal{O}_{T}: \mathcal{R}_{D^{*}}$ is with positive correlation with $P_{\tau}\left(D^{*}\right)$

\cdots	SM
\cdots	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{T}}\right)$
\cdots	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{\mathrm{L}}}\right)$
	$\operatorname{Im}\left(\mathrm{C}_{\mathrm{V}_{2}}\right), \operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{2}}\right)$
	All Data
	$\left(\mathrm{W} / \mathrm{o} R_{\mathrm{J} / \Psi}\right)$

($\mathrm{w} / \mathrm{o} \mathcal{R}_{\mathrm{J} / \mathrm{\Psi}}$)
presence of $\mathcal{O}_{T}: P_{\tau}(D)$ and $P_{\tau}\left(D^{*}\right)$ below and above SM predictions

Correlation Plots

	SM
- R	$\operatorname{Re}\left(C_{T}\right)$
- R	$\operatorname{Re}\left(\mathrm{C}_{\mathrm{V}_{1}}\right)$
. R	$\mathrm{Re}\left(\mathrm{CV}_{2}\right)$
. R	$\operatorname{Re}\left(C_{S_{1}}\right)$
Belle + LHCb	
(w/o R	- $\mathcal{R}_{\mathrm{J} / \Psi}$)

Correlation Plots

Correlation Plots

Large uncertainty in SM for $\mathcal{R}_{J / \psi} \Rightarrow$ NP predictions consistent with its SM

Correlation Plots

Large uncertainty in SM for $\mathcal{R}_{J / \psi} \Rightarrow$ NP predictions consistent with its SM

$\mathcal{R e}\left(C_{T}\right)$: allow a large deviation in $\mathcal{R}_{\Lambda}^{\mu}$, a sizeable effect in $\mathcal{R}_{D^{*}}$

Conclusion

- In the first part of analysis :
- Following the result of up-to-date analysis on $B \rightarrow D^{(*)} \ell \nu_{\ell} \Rightarrow \mathrm{SM}$ prediction of angular observables associated with $B \rightarrow D^{(*)} \tau \nu_{\tau}$
- The SM prediction of inclusive semitaunic observable $\mathcal{R}_{X_{c}}$ is updated. These predictions are based on two different schemes of the charm quark mass ($\bar{M} S$ and Kinetic). These include the NNLO perturbative corrections, and power-corrections up to order $1 / m_{b}^{3}$.
- In the next part :
- we have analysed the semitaunic $b \rightarrow c \tau \nu_{\tau}$ decays in a model independent framework.
- Among all the data sets the one operator scenario with real Wilson coefficient can best explain the available data.
- Scalar operators are not allowed by the constraint $\mathcal{B}\left(B_{c} \rightarrow \tau \nu_{\tau}\right) \leq 30 \%$
- The most favoured scenarios are the ones with tensor $\left(\mathcal{O}_{T}\right)$ or $(V-A)$ ($\mathcal{O}_{V_{1}}$) type of operators.
- These one operator scenarios are easily distinguishable from each other by studying the correlations of $\mathcal{R}_{D^{*}}$ with \mathcal{R}_{D} and all the other asymmetric and angular observables.

Thank You

SM prediction (Exclusive)

Observable	SM Prediction	Correlation						
$\mathcal{R}_{D^{*}}$	0.260(6)	1.	0.118	0.617	0.118	0.604	0.628	-0.118
\mathcal{R}_{D}	0.305(3)		1.	-0.023	1.	0.021	0.007	-1.
$P_{\tau}\left(D^{*}\right)$	-0.491(25)			1.	-0.023	0.803	0.895	0.023
$P_{\tau}(D)$	0.3355(4)				1.	0.021	0.007	-1.
$F_{L}^{D^{*}}$	0.457(10)					1.	0.921	-0.021
$\mathcal{A}_{F B}^{*}$	-0.058(14)						1.	-0.007
$\mathcal{A}_{\text {F } B}$	0.3586(3)							1.
$\mathcal{R}_{J / \Psi}(\mathrm{LFCQ})$	0.249(42)							
$\mathcal{R}_{J / \Psi}(\mathrm{PQCD})$	0.289(28)							
$\mathcal{R}_{\Lambda}^{\mu}$	0.329(13)							
$\mathcal{R}_{\Lambda}^{e}$	0.328(13)							
$\mathcal{B}\left(B_{c} \rightarrow \tau \nu\right)$	0.0208(18)							

Formalism

- q^{2}-distributions of the differential decay rates in $B \rightarrow D^{(*)} \tau \nu_{\tau}$ decays are given by

$$
\begin{aligned}
\frac{d \Gamma\left(\bar{B} \rightarrow D \tau \bar{\nu}_{\tau}\right)}{d q^{2}}= & \frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3} m_{B}^{3}} q^{2} \sqrt{\lambda_{D}\left(q^{2}\right)}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \times\{ \\
& \left|1+C_{V_{1}}+C_{V_{2}}\right|^{2}\left[\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right) H_{V, 0}^{s}+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}} H_{V, t}^{s}\right] \\
& +\frac{3}{2}\left|C_{S_{1}}+C_{S_{2}}\right|^{2} H_{S}^{s 2}+8\left|C_{T}\right|^{2}\left(1+\frac{2 m_{\tau}^{2}}{q^{2}}\right) H_{T}^{s 2} \\
& +3 \operatorname{Re}\left[\left(1+C_{V_{1}}+C_{V_{2}}\right)\left(C_{S_{1}}{ }^{*}+C_{S_{2}}{ }^{*}\right)\right] \frac{m_{\tau}}{\sqrt{q^{2}}} H_{S}^{s} H_{V, t}^{s} \\
& \left.-12 \operatorname{Re}\left[\left(1+C_{V_{1}}+C_{V_{2}}\right) C_{T}{ }^{*}\right] \frac{m_{\tau}}{\sqrt{q^{2}}} H_{T}^{s} H_{V, 0}^{s}\right\}
\end{aligned}
$$

Formalism

$$
\begin{aligned}
& \frac{d \Gamma\left(\bar{B} \rightarrow D^{*} \tau \bar{\nu}_{\tau}\right)}{d q^{2}}=\frac{G_{F}^{2} \mid V_{c b}{ }^{2}}{192 \pi^{3} m_{B}^{3}} q^{2} \sqrt{\lambda_{D^{*}}\left(q^{2}\right)}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2} \times\{ \\
& \left(\left|1+C_{V_{1}}\right|^{2}+\left|C_{V_{2}}\right|^{2}\right)\left[\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right)\left(H_{V,+}^{2}+H_{V,-}^{2}+H_{V, 0}^{2}\right)+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}} H_{V, t}^{2}\right] \\
& -2 \operatorname{Re}\left[\left(1+C_{V_{1}}\right) C_{V_{2}}{ }^{*}\right]\left[\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right)\left(H_{V, 0}^{2}+2 H_{V,+} H_{V,-}\right)+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}} H_{V, t}^{2}\right] \\
& +\frac{3}{2}\left|C_{S_{1}}-C_{S_{2}}\right|^{2} H_{S}^{2}+8\left|C_{T}\right|^{2}\left(1+\frac{2 m_{\tau}^{2}}{q^{2}}\right)\left(H_{T,+}^{2}+H_{T,-}^{2}+H_{T, 0}^{2}\right) \\
& +3 \operatorname{Re}\left[\left(1+C_{V_{1}}-C_{V_{2}}\right)\left(C_{S_{1}}{ }^{*}-C_{S_{2}}{ }^{*}\right)\right] \frac{m_{\tau}}{\sqrt{q^{2}}} H_{S} H_{V, t} \\
& -12 \operatorname{Re}\left[\left(1+C_{V_{1}}\right) C_{T}{ }^{*}\right] \frac{m_{\tau}}{\sqrt{q^{2}}}\left(H_{T, 0} H_{V, 0}+H_{T,+} H_{V,+}-H_{T,-} H_{V,-}\right) \\
& \left.+12 \operatorname{Re}\left[C_{V_{2}} C_{T}^{*}\right] \frac{m_{\tau}}{\sqrt{q^{2}}}\left(H_{T, 0} H_{V, 0}+H_{T,+} H_{V,-}-H_{T,-} H_{V,+}\right)\right\}
\end{aligned}
$$

Backup Slides

- A true model with true parameter values :

$$
\chi^{2}=\text { d.o.f i.e. } \chi_{\text {red }}^{2}=1 \text { (no fit involved) }
$$

- Not sufficient to assess convergence or compare different models ! (noise present in the data)
- For the true model, with a-priori known measurement errors:

Distribution of normalized residuals (in our case, $\frac{R_{b i n}^{t h}-R_{b i n}^{e x p}}{\delta R_{b i n}}$) is a Gaussian with mean $\mu=0$ and variance $\sigma^{2}=1$.

- Test of significance of the fit \rightarrow Fitting the distribution of residuals to the Gaussian.
- Validity of a hypothesis : p-value of the goodness of fit test $\geq 5 \%$.
- p-value : probability that a random variable having a χ^{2}-distribution with d.o.f ≥ 1 assumes a value which is larger than a given value of $\chi^{2}(\geq 0)$

Backup Sides

- To compare the latest BABAR and Belle binned data with a specific model, we devise a χ^{2} defined as:

$$
\chi_{N P}^{2}=\sum_{i, j=1}^{n_{b}}\left(R_{i}^{\text {exp }}-R_{i}^{t h}\right)\left(V^{\text {exp }}\right)_{i j}^{-1}\left(R_{j}^{e x p}-R_{j}^{t h}\right)+\chi_{N u i s a n c e}^{2}
$$

- $V_{i j}^{\text {exp }}=\delta_{i j} \delta R_{i}^{\text {exp }} \delta R_{j}^{e x p}$, where $\delta_{i j}$ is the Kronecker delta. (Assumptions : correlations negligible)
- Total 10 unknown NP parameters and 26 observables for BABAR (14 bins for $B \rightarrow D \tau \nu$ and 12 bins for $B \rightarrow D^{*} \tau \nu$) and 17 observables for Belle.
- Minimize the $\chi_{N P}^{2}$ for different cases and different set of observables.
- Define reduced statistic $\chi_{\text {red }}^{2}=\chi_{\text {min }}^{2} /$ d.o.f where d.o.f $=N_{\text {Obs }}-N_{\text {Params }}$
- In information theory, the Kullback-Leibler (K-L) Information or measure $I(f, g) \Rightarrow$ information lost when g is used to approximate f. Here f is a notation for full reality or truth and g denotes an approximating model in terms of probability distribution.
- Akaike proposed the use of the K-L information as a fundamental basis for model selection.
- This is a rigorous way to estimate K-L information, based on the empirical log-likelihood function at its maximum point.
'Akaike's information criterion'(AIC) with respect to our analysis can be defined as,

$$
\begin{equation*}
\mathrm{AIC}=\chi_{\min }^{2}+2 K \tag{1}
\end{equation*}
$$

where K is the number of estimable parameters.
AIC may perform poorly if there are too many parameters in relation to the size of the sample. second-order variant of AIC,

$$
\begin{equation*}
\mathrm{AIC}_{c}=\chi_{\min }^{2}+2 K+\frac{2 K(K+1)}{n-K-1} \tag{2}
\end{equation*}
$$

where n is the sample size. As a rule of thumb, Use of AIC_{c} is preferred in literature when $n / K<40$.
$5 C_{W}$'s $\rightarrow C_{V_{1}}, C_{V_{2}}, C_{S_{1}}, C_{S_{2}}, C_{T}$.
Each one complex \rightarrow total 10 parameters.
We took a severl such combinations.
Which one fits the data best?
Standard method in Heavy Flavor physics: $\Delta \chi^{2}$ test (Likelihood-Ratio test):

- Can only be applied to nested models.
- $\Delta \chi^{2}=\chi_{\text {min }, S}^{2}-\chi_{m i n, L}^{2}$.
- When model S (fewer parameters: null) is true (under certain conditions), Wilks' Theorem $\rightarrow \Delta \chi^{2}$ has a χ^{2} distribution with the d.of $=p_{L}-p_{S}$.
- compute a p-value, compare it to a critical value \rightarrow decide to reject the null in favor of the alternative.

[^0]: S. Jaiswal, S. Nandi, and S. K. Patra, JHEP 12, 060(2017).

