$b \rightarrow c \tau \nu_{\tau}$ Decays : A Catalogue to Compare, Constrain, and Correlate New Physics

Srimoy Bhattacharya

QCD@Work 2018 : International Workshop on QCD June 25 to 28, 2018, Matera, Italy

June 26, 2018

Srimoy Bhattacharya

Direct and Indirect Search

- New physics search can follow one of two tracks :
 - Direct detection of new particles at the collider
 - Indirect probes for new physics from precision measurements
- No direct evidence for physics beyond SM by LHC.
- Indirect hints for new physics (NP) in the flavour sector.
- NP can show up as a deviation of the experimental data from SM prediction.

• Observables with less theoretical uncertainty :

$$\mathcal{R}(D) = \frac{\mathcal{B}(\overline{B} \to D\tau\nu_{\tau})}{\mathcal{B}(\overline{B} \to D\ell\nu_{\ell})}$$

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\overline{B} \to D^* \tau \nu_{\tau})}{\mathcal{B}(\overline{B} \to D^* \ell \nu_{\ell})}$$

• Observables with less theoretical uncertainty :

$$\mathcal{R}(D) = \frac{\mathcal{B}(\overline{B} \to D\tau\nu_{\tau})}{\mathcal{B}(\overline{B} \to D\ell\nu_{\ell})}$$

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\overline{B} \to D^* \tau \nu_{\tau})}{\mathcal{B}(\overline{B} \to D^* \ell \nu_{\ell})}$$

Stefania Vecchi's talk today morning R(D*) 0.5 $\Delta \chi^2 = 1.0$ contours Belle, PRD92,072014(2015) ,111803(2015) SM Predictions Belle, PRD94,072007(2016) 0.45 R(D)=0.300(8) HPOCD (2015) Belle, PRL118,211801(2017) LHCh, FPCP2017 R(D)=0.299(11) FNAL/MILC (2015) R(D*)=0.252(3) S. Fajfer et al. (2012) 0.4 Average 0.35 0.3 20 0.25 HFLAV **EPCP 201** 0.2 0.2 0.3 0.4 0.5 0.6 R(D)

• For both $\mathcal{R}(D)$, $\mathcal{R}(D^*)$: Deviations 4.1 σ (Global) and 3.5 σ ($\mathcal{R}(D^*)$).

Srimoy Bhattacharya

More Observables...

• Present experimenta	l status o	of these	observables	with 1	their	correlation:
-----------------------	------------	----------	-------------	--------	------------------------	--------------

	\mathcal{R}_D	\mathcal{R}_{D^*}	\rightarrow Correlation	$P_{\tau}(D^*)$	$\mathcal{R}_{J/\Psi}$
BABAR	0.440(58)(42)	0.332(24)(18)	-0.27	-	-
Belle (2015)	0.375(64)(26)	0.293(38)(15)	-0.49	-	-
Belle (2016)	-	0.302(30)(11)	-	-	-
Belle (2016)	-	0.270(35)(37)	0.33	-0.38(51)(26)	-
LHCb (2015)	-	0.336(27)(30)	-	-	-
LHCb (2017)	-	0.286(19)(25)	-	-	-
LHCb (2017)	-	-	-	-	0.71(17)(18)

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{(*)\lambda_{\tau} = 1/2} - \Gamma^{(*)\lambda_{\tau} = -1/2}}{\Gamma^{(*)\lambda_{\tau} = 1/2} + \Gamma^{(*)\lambda_{\tau} = -1/2}}$$

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c \to J/\psi \tau \nu_{\tau})}{\mathcal{B}(B \to J/\psi \ell \nu_{\ell})}$$

٠

۲

More Observables...

• Present experimenta	l status o	of these	observables	with 1	their	correlation:
-----------------------	------------	----------	-------------	--------	------------------------	--------------

	\mathcal{R}_D	\mathcal{R}_{D^*}	\rightarrow Correlation	$P_{\tau}(D^*)$	$\mathcal{R}_{J/\Psi}$
BABAR	0.440(58)(42)	0.332(24)(18)	-0.27	-	-
Belle (2015)	0.375(64)(26)	0.293(38)(15)	-0.49	-	-
Belle (2016)	-	0.302(30)(11)	-	-	-
Belle (2016)	-	0.270(35)(37)	0.33	-0.38(51)(26)	-
LHCb (2015)	-	0.336(27)(30)	-	-	-
LHCb (2017)	-	0.286(19)(25)	-	-	-
LHCb (2017)	-	-	-	-	0.71(17)(18)

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{(*)\lambda_{\tau} = 1/2} - \Gamma^{(*)\lambda_{\tau} = -1/2}}{\Gamma^{(*)\lambda_{\tau} = 1/2} + \Gamma^{(*)\lambda_{\tau} = -1/2}}$$

 ${\cal P}_\tau(D^*)$: Large uncertainty, Consistent with SM

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c \to J/\psi\tau\nu_{\tau})}{\mathcal{B}(B \to J/\psi\ell\nu_{\ell})}$$

٠

۲

More Observables...

	\mathcal{R}_D	\mathcal{R}_{D^*}	\rightarrow Correlation	$P_{\tau}(D^*)$	$\mathcal{R}_{J/\Psi}$
BABAR	0.440(58)(42)	0.332(24)(18)	-0.27	-	-
Belle (2015)	0.375(64)(26)	0.293(38)(15)	-0.49	-	-
Belle (2016)	-	0.302(30)(11)	-	-	-
Belle (2016)	-	0.270(35)(37)	0.33	-0.38(51)(26)	-
LHCb (2015)	-	0.336(27)(30)	-	-	-
LHCb (2017)	-	0.286(19)(25)	-	-	-
LHCb (2017)	-	-	-	-	0.71(17)(18)

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{(*)\lambda_{\tau} = 1/2} - \Gamma^{(*)\lambda_{\tau} = -1/2}}{\Gamma^{(*)\lambda_{\tau} = 1/2} + \Gamma^{(*)\lambda_{\tau} = -1/2}}$$

 ${\cal P}_\tau(D^*)$: Large uncertainty, Consistent with SM

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c \to J/\psi \tau \nu_{\tau})}{\mathcal{B}(B \to J/\psi \ell \nu_{\ell})}$$

 $\mathcal{R}_{J/\Psi}$: Large uncertainty, 2σ above SM prediction.

Srimoy Bhattacharya

٠

۲

Srimoy Bhattacharya

Srimoy Bhattacharya

Srimoy Bhattacharya

Srimoy Bhattacharya

SM prediction (Exclusive)

- For SM calculation in $B \to D^{(*)} \tau \nu_{\tau}$: CLN parametrization is used. (Nucl. Phys. B530 (1998) 153–181)
- For SM calculation in $\Lambda_B \rightarrow \Lambda_c \tau \nu_{\tau}$: Lattice QCD in relativistice heavy quark limit. (Phys. Rev. D92 (2015), no. 3 034503)
- Unavailability of precise calculation of $B_c \to J/\psi$ form factors :
 - Option to choose different parametrization.
 - Two different parametrizations are considered
 - Light-front Covariant Quark Model (LFCQ) (Phys. Rev. D79 (2009) 054012)
 - Perturbative QCD (pQCD) (Chin. Phys. C37 (2013) 093102)
 - SM central value varying within range 0.25-0.29

Srimoy Bhattacharya

Inclusive SM prediction

• For Inclusive decay :

$$\mathcal{R}_{X_c} = \frac{\mathcal{B}\left(B \to X_c \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \to X_c \ell \bar{\nu}_{\ell}\right)},$$

- Upto NNLO corrections in α_s are considered (Phys. Lett. B346 (1995) 335–341, JHEP 02 (2010) 089).
- The contributions, both at the order $1/m_b^2$ and $1/m_b^3$ are considered separately. (Phys. Lett. B326 (1994) 145–153, Nucl. Phys. B921 (2017) 211–224)

SM prediction for \mathcal{R}_{X_c}					
m_c in scheme:					
\overline{MS} upt	o order	Kinetic up	o to order		
$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b^3)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b^3)$		
0.242(8)	0.218(8)	0.232(3)	0.209(4)		

Phys. Rev. Lett. 114, 061802 (2015).

Inclusive SM prediction

b-quark mass: Kinetic scheme, *c*-quark mass: both Kinetic and Ms scheme

• For Inclusive decay :

$$\mathcal{R}_{X_c} = \frac{\mathcal{B}\left(B \to X_c \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \to X_c \ell \bar{\nu}_{\ell}\right)},$$

- Upto NNLO corrections in α_s are considered (Phys. Lett. B346 (1995) 335–341, JHEP 02 (2010) 089).
- The contributions, both at the order $1/m_b^2$ and $1/m_b^3$ are considered separately. (Phys. Lett. B326 (1994) 145–153, Nucl. Phys. B921 (2017) 211–224)

SM prediction for \mathcal{R}_{X_c}					
m_c in scheme:					
\overline{MS} upt	o order	Kinetic up	o to order		
$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b^3)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b^3)$		
0.242(8)	0.218(8)	0.232(3)	0.209(4)		

Phys. Rev. Lett. 114, 061802 (2015).

Inclusive SM prediction

 $b-\mathrm{quark}$ mass: Kinetic scheme, $c-\mathrm{quark}$ mass: both Kinetic and \bar{MS} scheme

• For Inclusive decay :

$$\mathcal{R}_{X_c} = \frac{\mathcal{B}\left(B \to X_c \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \to X_c \ell \bar{\nu}_{\ell}\right)},$$

- Upto NNLO corrections in α_s are considered (Phys. Lett. B346 (1995) 335–341, JHEP 02 (2010) 089).
- The contributions, both at the order $1/m_b^2$ and $1/m_b^3$ are considered separately. (Phys. Lett. B326 (1994) 145–153, Nucl. Phys. B921 (2017) 211–224) scheme dependence deviates the central value $\approx 4\%$ (consistent within error bar)

SM prediction for \mathcal{R}_{X_c}						
	m_c in scheme:					
\overline{MS} upt	to order	Kinetic up	to order			
$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b^3)$	$\mathcal{O}(1/m_b^2)$	$\mathcal{O}(1/m_b^3)$			
0.242(8)	0.218(8)	0.232(3)	0.209(4)			

Phys. Rev. Lett. 114, 061802 (2015).

@ MARK ANDERSON

WWW.ANDERTOONS.COM

"What we need is something new! Something fresh!

New Physics Analysis

- Varieties of NP models can contribute to $B \to D^{(*)} \tau \nu_{\tau}$
- An observable not equally sensitive to all types of NP.
- Useful to know :
 - Which type of new physics can best explain the present experimental data??
- Data- based Model Selection → a multi-scenario analysis on the experimentally available binned data, to obtain a data-based selection of a best NP scenario and ranking and weighting of the remaining models.

Model Independent Analysis

 Most general effective Hamiltonian describing the b → cτν_τ [Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, PRD 91, no. 11, 114028 (2015)]

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \Big[(1 + C_{V_1}) \mathcal{O}_{V_1} + C_{V_2} \mathcal{O}_{V_2} \\ + C_{S_1} \mathcal{O}_{S_1} + C_{S_2} \mathcal{O}_{S_2} + C_T \mathcal{O}_T \Big],$$

Operator basis :

$$\begin{aligned} \mathcal{O}_{V_1} &= (\bar{c}_L \gamma^{\mu} b_L) (\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}), \ \mathcal{O}_{V_2} &= (\bar{c}_R \gamma^{\mu} b_R) (\bar{\tau}_L \gamma_{\mu} \nu_{\tau L}), \\ \mathcal{O}_{S_1} &= (\bar{c}_L b_R) (\bar{\tau}_R \nu_{\tau L}), \qquad \mathcal{O}_{S_2} &= (\bar{c}_R b_L) (\bar{\tau}_R \nu_{\tau L}), \\ \mathcal{O}_T &= (\bar{c}_R \sigma^{\mu \nu} b_L) (\bar{\tau}_R \sigma_{\mu \nu} \nu_{\tau L}) \end{aligned}$$

• Neutrinos are assumed to be left handed.

Srimoy Bhattacharya

Data- Based Model Selection

• Work Plan : Data-based selection of a 'best' case and ranking the remaining cases.

Data- Based Model Selection

- Work Plan : Data-based selection of a 'best' case and ranking the remaining cases.
- Akaike Information criteria (Second Order) [N. Sugiura, Commun. Stat. Theor. Meth. A 7, 13 (1978).]

$$AIC_c = \chi^2_{min} + 2K + \frac{2K(K+1)}{n - K - 1}$$

K = number of parameters ; n = sample size; n/K < 40.

Δ^{AIC}_i(AICⁱ_c - AIC^{min}_c) ⇒ Comparison and ranking of candidate models
'Best' model ⇒ Δ^{AIC}_i ≡ Δ^{AIC}_{min} = 0.

Δ_i^{AIC}	Level of Empirical Support for Model i
0 - 2	Substantial
4 - 7	Considerably Less
> 10	Essentially None

• Akaike Weight : weight of evidence in favor of model i

$$w_{i} = \frac{e^{(-\Delta_{i}^{AIC}/2)}}{\sum_{r=1}^{R} e^{(-\Delta_{r}^{AIC}/2)}}$$

Srimoy Bhattacharya

Model Selection

- Model Independent multi-scenario analysis with experimentally available results \rightarrow data-based selection of a 'best' scenario.
- Four different combination of datasets :

• 3 variations of similar combinations of datasets.

- Without $\mathcal{R}_{J/\psi}$
- With $\mathcal{R}_{J/\psi}$ in LFCQ
- With $\mathcal{R}_{J/\psi}$ in pQCD
- Apparent tension among experimental and SM value $\Rightarrow \mathcal{R}_{J/\psi}$ treated separately.

			Data Without $\mathcal{R}_{J/\Psi}$	2	
	χ^2_{min}	p-val	Param.s	w^{AIC_c}	$B_{C}\rightarrow$
Index	/ DoF	(%)			$\tau \nu$
1	4.05/8	85.3	$\mathcal{R}e(C_T)$	35.85	~
2	4.58/8	80.13	$\mathcal{R}e(C_{V_1})$	20.99	~
3	4.64/8	79.54	$\mathcal{R}e(C_{S_2})$	19.82	×
4	3.54/7	83.07	$\mathcal{I}m(C_{S_2}), \mathcal{R}e(C_{S_2})$	1.92	×
5	3.54/7	83.07	$\mathcal{R}e(C_{S_1}), \mathcal{R}e(C_{S_2})$	1.92	×
6	3.56/7	82.9	$\mathcal{R}e(C_{S_2}), \mathcal{R}e(C_{V_1})$	1.89	√!
7	3.56/7	82.9	$\mathcal{R}e(C_{S_2}), \mathcal{R}e(C_T)$	1.89	√!
8	3.56/7	82.88	$\mathcal{R}e(C_{S_2}), \mathcal{R}e(C_{V_2})$	1.89	√!
9	3.62/7	82.23	$\mathcal{R}e(C_T), \mathcal{R}e(C_{V_2})$	1.78	~
10	3.69/7	81.45	$\mathcal{R}e(C_{S_1}), \mathcal{R}e(C_T)$	1.66	√!
11	3.7/7	81.31	$\mathcal{R}e(C_{S_1}), \mathcal{R}e(C_{V_2})$	1.64	√!
12	3.76/7	80.71	$\mathcal{R}e(C_{S_1}), \mathcal{R}e(C_{V_1})$	1.55	√!
13	3.79/7	80.37	$\mathcal{R}e(C_{V_1}), \mathcal{R}e(C_{V_2})$	1.5	~
14	3.79/7	80.37	$\mathcal{I}m(C_{V_2}), \mathcal{R}e(C_{V_2})$	1.5	~
15	3.82/7	80.08	$\mathcal{R}e(C_T), \mathcal{R}e(C_{V_1})$	1.46	~
16	3.87/7	79.49	$\mathcal{I}m(C_T), \mathcal{R}e(C_T)$	1.39	~
17	4.58/7	71.09	$\mathcal{I}m(C_{V_1}), \mathcal{R}e(C_{V_1})$	0.68	~

- In absence of $P_{\tau}(D^*)$ the conclusions remain same.
- Without considering BABAR data : two more one-operator scenarios $\mathcal{R}e(C_{V_2})$ and $\mathcal{R}e(C_{S_1})$ are allowed.
- Considering only \mathcal{R}_{D^*} data : All of $\mathcal{O}_{V_1}, \mathcal{O}_{V_2}, \mathcal{O}_{S_1}, \mathcal{O}_{S_2}, \mathcal{O}_T$ are allowed with $\mathcal{R}e(C_W)$. $\mathcal{B}(B_c \to \tau \nu_{\tau})$ disfavors the scenarios with scaler operators.
- In all these analysis, conclusions remain unchanged in presence of $\mathcal{R}_{J/\psi}$ data.
- For all the scenarios allowed by ΔAIC_c as well as $\mathcal{B}(B_c \to \tau \nu_{\tau})$ constraints the values of NP parameters with their uncertainties and correlations are estimated.

	Data W	Thout $\mathcal{R}_{J/\Psi}$	
Index	Param.s	Best-fit	Correlation
1	$\mathcal{R}e(C_T)$	0.387(11)	-
2	$\mathcal{R}e(C_{V_1})$	0.098(22)	-
6	$\mathcal{R}e(C_{S_2})$	0.073(79)	-0.409
	$\mathcal{R}e(C_{V_1})$	0.089(24)	
7	$\mathcal{R}e(C_{S_2})$	0.181(67)	0.075
	$\mathcal{R}e(C_T)$	-0.043(11)	
8	$\mathcal{R}e(C_{S_2})$	0.279(68)	-0.302
	$\mathcal{R}e(C_{V_2})$	-0.111(29)	
9	$\mathcal{R}e(C_T)$	-0.112(26)	-0.93
	$\mathcal{R}e(C_{V_2})$	0.196(74)	
10	$\mathcal{R}e(C_{S_1})$	0.179(66)	0.351
	$\mathcal{R}e(C_T)$	-0.033(12)	
11	$\mathcal{R}e(C_{S_1})$	0.245(60)	-0.01
	$\mathcal{R}e(C_{V_2})$	-0.075(28)	
12	$\mathcal{R}e(C_{S_1})$	0.086(90)	-0.684
	$\mathcal{R}e(C_{V_1})$	0.078(30)	
13	$\mathcal{R}e(C_{V_1})$	0.117(31)	0.709
	$\mathcal{R}e(C_{V_2})$	0.037(41)	
14	$Im(C_{V_2})$	0.497(68)	0.716
	$\mathcal{R}e(C_{V_2})$	0.042(46)	
15	$\mathcal{R}e(C_T)$	0.030(34)	0.917
	$\mathcal{R}e(C_{V_1})$	0.142(54)	
16	$\mathcal{I}m(C_T)$	0.16(15)	-0.995
	$\mathcal{R}e(C_T)$	0.32(15)	
17		See Plot	

Srimoy Bhattacharya

• Using these NP results, the values of all the observables are predicted.

- Trying to explain the deviation in $\mathcal{R}_{D^{(*)}}$ for a specific NP \Rightarrow Information about the expected deviations in other associated observables.
- Any result, inconsistent with SM, but consistent with a future prediction of some observable \Rightarrow indirect evidence in support for that specific scenario.
- The correlations between the observables will play an important role.

• asymmetric and angular observables : insensitive to $\mathcal{O}_{V_1} \Rightarrow$ canceled in the ratios.

• asymmetric and angular observables : insensitive to $\mathcal{O}_{V_1} \Rightarrow$ canceled in the ratios.

• asymmetric and angular observables : insensitive to $\mathcal{O}_{V_1} \Rightarrow$ canceled in the ratios.

• asymmetric and angular observables : insensitive to $\mathcal{O}_{V_1} \Rightarrow$ canceled in the ratios.

In future measured value consistent with \mathcal{R}_{D^*} large deviation in $P_{\tau}(D)$: tensor NP

presence of \mathcal{O}_T : \mathcal{R}_{D^*} is with negative correlation with $P_{\tau}(D)$ 0.1 0.30 0.0 presence of \mathcal{O}_T : \mathcal{R}_{D^*} is with positive correlation with $P_{\tau}(D^*)$ ° 0, −0.2 -0.3SM Re(CT) 0.20 -0.4---- Re(C_{V1}) SM -0.5 $Im(C_{V_2}), Re(C_{V_2})$ 0.26 0.28 0.30 0.32 0.34 0.26 0.28 0.30 0.32 0.34 0.36 All Data \mathcal{R}_{D^*} \mathcal{R}_{D^*} (W/0 RI/4)

presence of \mathcal{O}_T : \mathcal{R}_{D^*} is with negative correlation with $P_{\tau}(D)$ 0. 0.30 0.0 presence of \mathcal{O}_T : \mathcal{R}_{D^*} is with positive correlation with $P_\tau(D^*)$ Q 0.25 ° 0, −0.2 -0.3SM Re(CT) -0.40.20 ---- Re(C_{V1}) SA -0.5 $Im(C_{V_2}), Re(C_{V_2})$ 0.32 0.26 0.28 0.26 0.28 0.30 0.34 0.30 0.32 0.34 0.36 All Data \mathcal{R}_{D^*} \mathcal{R}_{D^*} (W/0 RI/4)

presence of \mathcal{O}_T : $P_{\tau}(D)$ and $P_{\tau}(D^*)$ below and above SM predictions

Srimoy Bhattacharya

QCD@Work, Matera

Srimoy Bhattacharya

QCD@Work, Matera

Large uncertainty in SM for $\mathcal{R}_{J/\psi} \Rightarrow$ NP predictions consistent with its SM

Srimoy Bhattacharya

Large uncertainty in SM for $\mathcal{R}_{J/\psi} \Rightarrow$ NP predictions consistent with its SM

Srimoy Bhattacharya

Conclusion

- In the first part of analysis :
 - Following the result of up-to-date analysis on $B \to D^{(*)} \ell \nu_{\ell} \Rightarrow SM$ prediction of angular observables associated with $B \to D^{(*)} \tau \nu_{\tau}$
 - The SM prediction of inclusive semitaunic observable \mathcal{R}_{X_c} is updated. These predictions are based on two different schemes of the charm quark mass (\overline{MS} and Kinetic). These include the NNLO perturbative corrections, and power-corrections up to order $1/m_b^3$.
- In the next part :
 - we have analysed the semitaunic $b\to c\tau\nu_\tau$ decays in a model independent framework.
 - Among all the data sets the one operator scenario with real Wilson coefficient can best explain the available data.
 - Scalar operators are not allowed by the constraint $\mathcal{B}(B_c \to \tau \nu_{\tau}) \leq 30\%$
 - The most favoured scenarios are the ones with tensor (\mathcal{O}_T) or (V A) (\mathcal{O}_{V_1}) type of operators.
 - These one operator scenarios are easily distinguishable from each other by studying the correlations of \mathcal{R}_{D^*} with \mathcal{R}_D and all the other asymmetric and angular observables.

Thank You

Srimoy Bhattacharya

SM prediction (Exclusive)

Observable	SM Prediction	Correlation						
\mathcal{R}_{D^*}	0.260(6)	1.	0.118	0.617	0.118	0.604	0.628	-0.118
\mathcal{R}_D	0.305(3)		1.	-0.023	1.	0.021	0.007	-1.
$P_{\tau}(D^*)$	-0.491(25)			1.	-0.023	0.803	0.895	0.023
$P_{\tau}(D)$	0.3355(4)				1.	0.021	0.007	-1.
$F_L^{D^*}$	0.457(10)					1.	0.921	-0.021
$\mathcal{A}_{FB}^{\overline{*}}$	-0.058(14)						1.	-0.007
A_{FB}	0.3586(3)							1.
$\mathcal{R}_{J/\Psi}$ (LFCQ)	0.249(42)							
$\mathcal{R}_{J/\Psi}$ (PQCD)	0.289(28)							
$\mathcal{R}^{\mu}_{\Lambda}$	0.329(13)							
$\mathcal{R}^{e}_{\Lambda}$	0.328(13)							
$\mathcal{B}(B_c \to \tau \nu)$	0.0208(18)							

Formalism

• q^2 -distributions of the differential decay rates in $B \to D^{(*)} \tau \nu_{\tau}$ decays are given by

$$\begin{split} \frac{d\Gamma(\overline{B} \to D\tau \overline{\nu}_{\tau})}{dq^2} = & \frac{G_F^2 |V_{cb}|^2}{192\pi^3 m_B^3} q^2 \sqrt{\lambda_D(q^2)} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \times \left\{ \\ & |1 + C_{V_1} + C_{V_2}|^2 \left[\left(1 + \frac{m_{\tau}^2}{2q^2}\right) H_{V,0}^{s\,2} + \frac{3}{2} \frac{m_{\tau}^2}{q^2} H_{V,t}^{s\,2} \right] \\ & + \frac{3}{2} |C_{S_1} + C_{S_2}|^2 H_S^{s\,2} + 8|C_T|^2 \left(1 + \frac{2m_{\tau}^2}{q^2}\right) H_T^{s\,2} \\ & + 3Re[(1 + C_{V_1} + C_{V_2})(C_{S_1}^{*} + C_{S_2}^{*})] \frac{m_{\tau}}{\sqrt{q^2}} H_S^s H_{V,t}^s \\ & - 12Re[(1 + C_{V_1} + C_{V_2})C_T^{*}] \frac{m_{\tau}}{\sqrt{q^2}} H_T^s H_{V,0}^s \ \end{split}$$

Formalism

$$\begin{split} &\frac{d\Gamma(\overline{B} \to D^* \tau \overline{\nu}_{\tau})}{dq^2} = \frac{G_F^2 |V_{cb}|^2}{192 \pi^3 m_B^3} q^2 \sqrt{\lambda_{D^*}(q^2)} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \times \left\{ \\ &(|1 + C_{V_1}|^2 + |C_{V_2}|^2) \left[\left(1 + \frac{m_{\tau}^2}{2q^2}\right) \left(H_{V,+}^2 + H_{V,-}^2 + H_{V,0}^2\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} H_{V,t}^2 \right] \\ &- 2Re[(1 + C_{V_1})C_{V_2}^*] \left[\left(1 + \frac{m_{\tau}^2}{2q^2}\right) \left(H_{V,0}^2 + 2H_{V,+}H_{V,-}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} H_{V,t}^2 \right] \\ &+ \frac{3}{2} |C_{S_1} - C_{S_2}|^2 H_S^2 + 8|C_T|^2 \left(1 + \frac{2m_{\tau}^2}{q^2}\right) \left(H_{T,+}^2 + H_{T,-}^2 + H_{T,0}^2\right) \\ &+ 3Re[(1 + C_{V_1} - C_{V_2})(C_{S_1}^* - C_{S_2}^*)] \frac{m_{\tau}}{\sqrt{q^2}} H_S H_{V,t} \\ &- 12Re[(1 + C_{V_1})C_T^*] \frac{m_{\tau}}{\sqrt{q^2}} \left(H_{T,0}H_{V,0} + H_{T,+}H_{V,+} - H_{T,-}H_{V,-}\right) \\ &+ 12Re[C_{V_2}C_T^*] \frac{m_{\tau}}{\sqrt{q^2}} \left(H_{T,0}H_{V,0} + H_{T,+}H_{V,-} - H_{T,-}H_{V,+}\right) \right\} \end{split}$$

Srimoy Bhattacharya

QCD@Work, Matera

Backup Slides

• A true model with true parameter values :

$$\chi^2 = d.o.f$$
 i.e. $\chi^2_{red} = 1$ (no fit involved)

- Not sufficient to assess convergence or compare different models ! (noise present in the data)
- For the true model, with a-priori known measurement errors:

Distribution of normalized residuals (in our case, $\frac{R_{bin}^{th} - R_{bin}^{exp}}{\delta R_{bin}}$) is a Gaussian with mean $\mu = 0$ and variance $\sigma^2 = 1$.

- Test of significance of the fit \rightarrow Fitting the distribution of residuals to the Gaussian.
- Validity of a hypothesis : *p*-value of the goodness of fit test $\geq 5\%$.
- *p*-value : probability that a random variable having a χ^2 -distribution with $d.o.f \ge 1$ assumes a value which is larger than a given value of $\chi^2 (\ge 0)$

Backup Sides

• To compare the latest BABAR and Belle binned data with a specific model, we devise a χ^2 defined as:

$$\chi^{2}_{NP} = \sum_{i,j=1}^{n_{b}} \left(R^{exp}_{i} - R^{th}_{i} \right) \left(V^{exp} \right)^{-1}_{ij} \left(R^{exp}_{j} - R^{th}_{j} \right) + \chi^{2}_{Nuisance} \,,$$

- $V_{ij}^{exp} = \delta_{ij} \, \delta R_i^{exp} \, \delta R_j^{exp}$, where δ_{ij} is the Kronecker delta. (Assumptions : correlations negligible)
- Total 10 unknown NP parameters and 26 observables for BABAR (14 bins for $B \to D\tau\nu$ and 12 bins for $B \to D^*\tau\nu$) and 17 observables for Belle.
- Minimize the χ^2_{NP} for different cases and different set of observables.
- Define reduced statistic $\chi^2_{red} = \chi^2_{min}/d.o.f$ where $d.o.f = N_{Obs} N_{Params}$

- In information theory, the Kullback-Leibler (K-L) Information or measure $I(f,g) \Rightarrow$ information lost when g is used to approximate f. Here f is a notation for full reality or truth and g denotes an approximating model in terms of probability distribution.
- Akaike proposed the use of the K-L information as a fundamental basis for model selection.
- This is a rigorous way to estimate K-L information, based on the empirical log-likelihood function at its maximum point. 'Akaike's information criterion'(AIC) with respect to our analysis can be defined as,

$$AIC = \chi^2_{min} + 2K \tag{1}$$

where K is the number of estimable parameters.

AIC may perform poorly if there are too many parameters in relation to the size of the sample. second-order variant of AIC,

$$AIC_c = \chi^2_{min} + 2K + \frac{2K(K+1)}{n-K-1}$$
(2)

where n is the sample size. As a rule of thumb, Use of AIC_c is preferred in literature when n/K < 40.

 $5 C_W$'s $\rightarrow C_{V_1}, C_{V_2}, C_{S_1}, C_{S_2}, C_T$. Each one complex \rightarrow total 10 parameters. We took a severl such combinations. Which one fits the data best? Standard method in Heavy Flavor physics: $\Delta \chi^2$ test (Likelihood-Ratio test):

• Can only be applied to nested models.

•
$$\Delta \chi^2 = \chi^2_{min, S} - \chi^2_{min, L}$$
.

- When model S (fewer parameters: null) is true (under certain conditions), Wilks' Theorem $\rightarrow \Delta \chi^2$ has a χ^2 distribution with the $d.of = p_L - p_S$.
- compute a p-value, compare it to a critical value \rightarrow decide to reject the null in favor of the alternative.