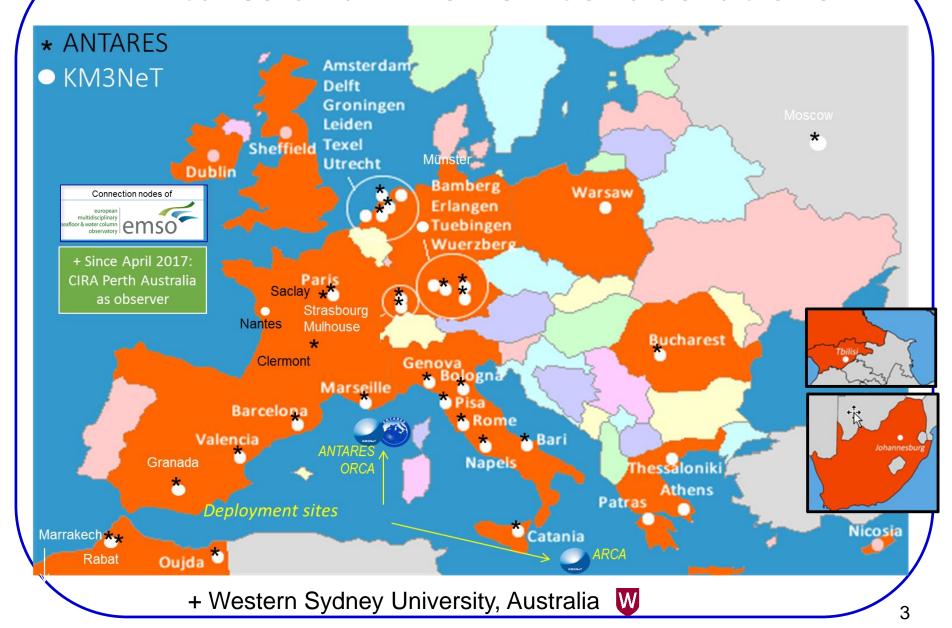


Mediterranean Neutrino Telescopes

- Physics motivation and Detection principle
 - High energy v astronomy and neutrino properties
 - Detection: large volume of transparent medium surveyed by photodetectors
- Location:
 - Northern terrestrial hemisphere:
 - Complementary to IceCube
 - Golden channel for southern sky sources. "Milky-Way optimized"
- Medium:
 - Deep Sea water
 - Very small light scattering (good angular resolution)
 - Natural backgrounds (⁴⁰K and biolum) can be handled.



Antares and KM3NeT Collaborations

ANTARES Buoy 40 km to shore 350 m LED Beacon Junction 100 m Box

Optical

Modules

10" PMT

Hydrophone

12 lines (885 PMTs)

25 storeys / line

3 PMTs / storey

5-line setup in 2007

Completed in 2008

Junction Box

Shore station


NIM A484 (2002) 369, AP 19 (2003) 253 AP 23 (2005) 131, NIM A555 (2005) 132 at 2500 m depth AP **26** (2006) 314, NIM **A570** (2007) 107 NIM **A578** (2007) 498,NIM **A581** (2007) 695 AP 31 (2009) 277, NIM A622 (2010) 59-73 AP **34** (2011) 539, NIM **A656** (2011) 11

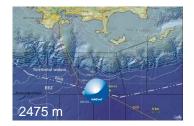
© François Montanel

Mediterranean Sea

(near Toulon)

- **Building Block:**
- 115 strings
- 18 DOMs / string
- 31 PMTs / DOM
- Total: 64k*3" PMTs

KM3NeT

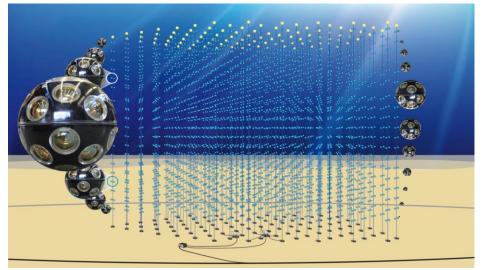


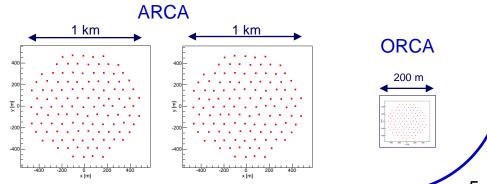
ARCA

Astroparticle Research

Capo Passero, Sicily, Italy

ORCA Oscillation Research with Cosmics in the Abyss


Toulon, Var, France


- ORCA (NMH+ v properties)
 - Same technology, denser layout

	ORCA	ARCA
String spacing	23 m	90 m
OM spacing	9 m	36 m
Depth	2470 m	3500 m
Instrumented mass	5.7 Mton	0.6*2 Gton

Stages:

- Phase 1: 24 ARCA + 7 ORCA strings (already funded, being deployed)
- KM3NeT 2.0: 2 ARCA +1 ORCA blocks (~50% funded)
- Phase 3: 6 ARCA + 1 ORCA blocks

KM3NeT **Technology**

Digital Optical Module


- DOM: 31 3" PMTs
- Digital photon counting
- Directional information
- Wide acceptance angle
- Cost reduction

- Gbit/s on optical fibre
- Hybrid White Rabbit
- LED flasher & hydrophone
- Tiltmeter/compass

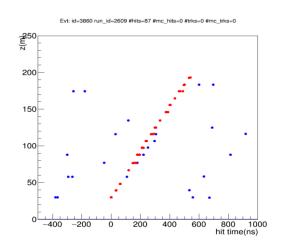
String (Detector Unit)

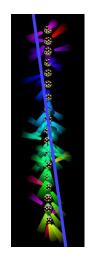
- High modulus polyethylene ropes
- Oil-filled backbone
- Low drag
- Low cost

Deployment Vehicle

- Rapid deployment
- Multiple strings in one sea campaign

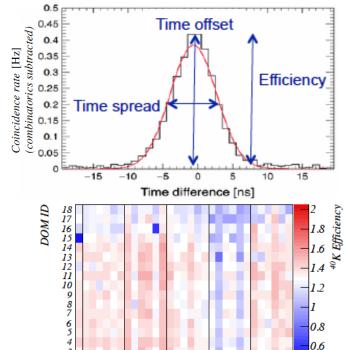
- Unfurling started by ROV
- Reuseable




First KM3NeT Detection Units

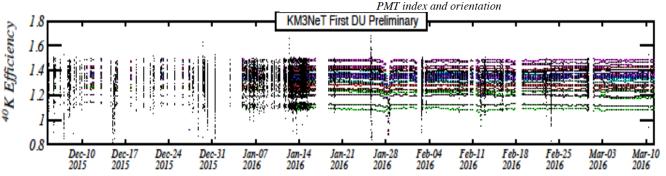
- Two full strings in ARCA site
 - Dec 2015 and May 2016
 - Muon reconstruction
 - Muons vs depth

- One full string in ORCA site
 - Sept 2017
 - Atmospheric neutrinos
- Some seafloor infrastructure teething problems, soon to be fixed



KM3NeT

K40 Calibration


 e^{-} (β decay)

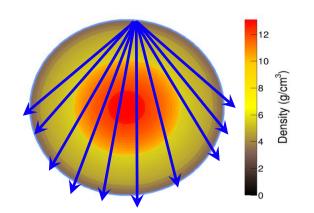
Up to 150 Cherenkov photons per decay; stable ⁴⁰K concentration

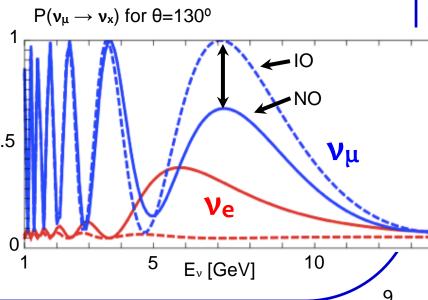
a

(3)

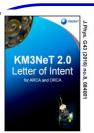
0

precise PMT efficiencies vs time and location


Neutrino mass hierarchy with ORCA

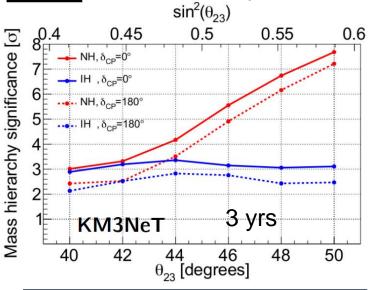

- A "free beam" of known composition (v_e, v_u)
- Wide range of baselines (50 → 12800 km) and energies (GeV → PeV)
- Oscillation affected by matter (ordering-dependent):
 - maximum difference IO vs. NO at $\theta = 130^{\circ} (7645 \text{ km}) \text{ and } E_{v} = 7 \text{ GeV}$
- Opposite effects on neutrinos and anti-neutrinos: $IO(v) \approx NO(anti-v)$

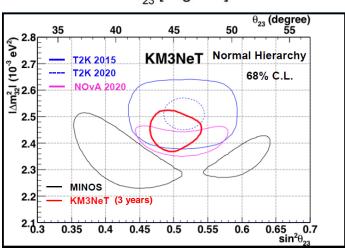
But differences in flux and cross-section:

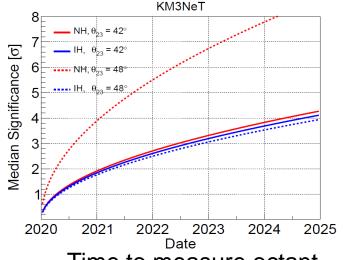

$$\Phi_{\text{atm}}(v) \approx 1.3 \text{ x } \Phi_{\text{atm}}(\text{anti-v})$$

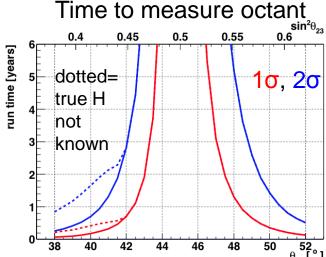
 $\sigma(v) \approx 2\sigma(\text{anti-v})$ at low energies

- Approach: measure zenith angle and energy of upgoing atmospheric GeV-scale neutrinos, identify and count track and shower channel events
- Careful treatment of systematics mandatory!

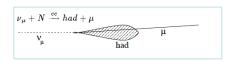


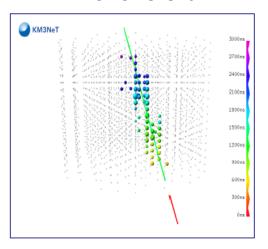



ORCA- neutrino properties

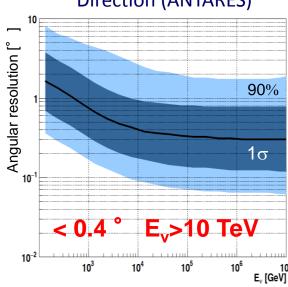

<u>KM3NeT 2.0: Letter of Intent</u> <u>http://dx.doi.org/10.1088/0954-3899/43/8/084001</u>

J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001

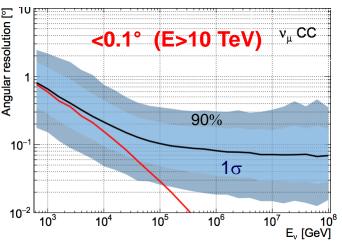


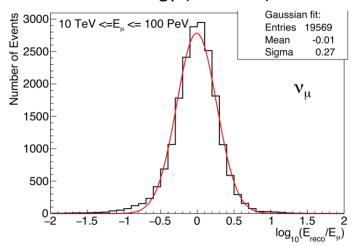

Performance – Track events

$CC \nu_{\mu}$



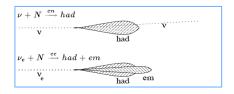
- Golden channel
- High angular accuracy
- Enhanced volume (100's m to a few km muon range)

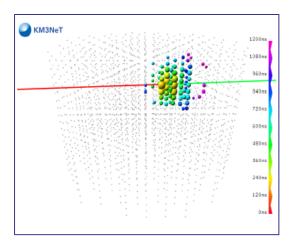

KM3NeT event


Direction (ANTARES)

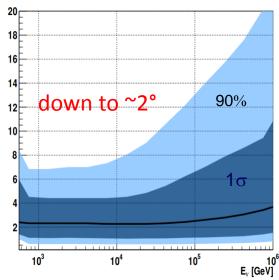
Direction (KM3NeT)

Energy (KM3NeT)

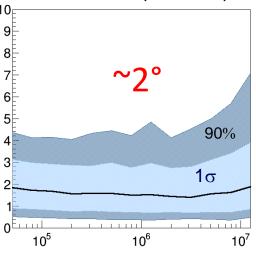

0.3 Log E (E>10 TeV)

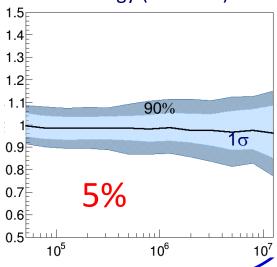

Performance - Shower events

$\begin{array}{ccc} \mathsf{NC} \ \mathbf{v}_{\mathsf{all}} \\ \mathsf{CC} \ \mathbf{v}_{\mathsf{e}} \end{array}$

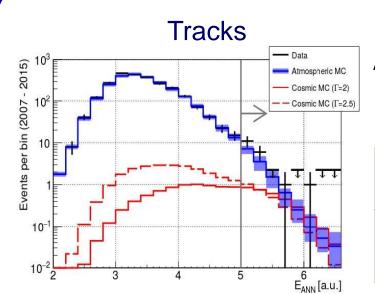


- Good energy reconstruction
- Fair angular resolution (low light scattering in water)

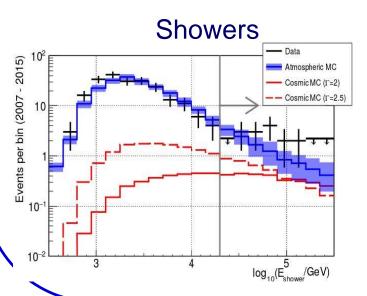

KM3NeT event

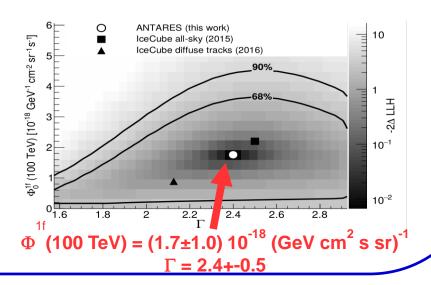

Direction (ANTARES)

Direction (KM3NeT)


Energy (KM3NeT)

ANTARES – Diffuse Flux Search

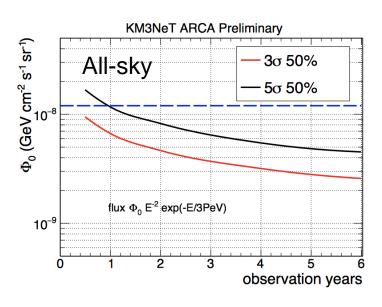

ApJL 853, L7 (2018)

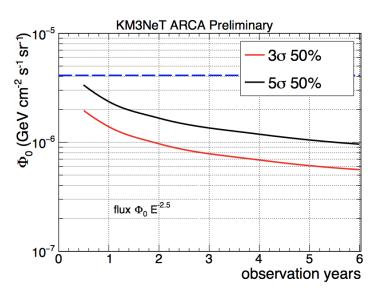

All-sky / All-flavor neutrino search

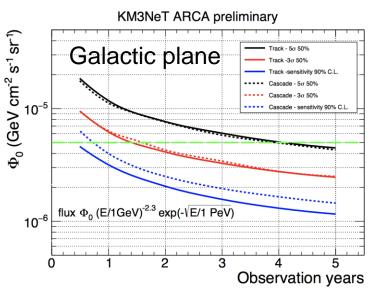
- Look for excess above a given Eth
- 9 (7) yrs of data for tracks (cascades)

	Bkg expectation	Signal exceptation	Nb events measured
Track	13.5+/-4	3-3.5	19
Shower	10.5+/-4	3-3.5	14

=> 1.6σ excess, null cosmic rejected at 85% CL



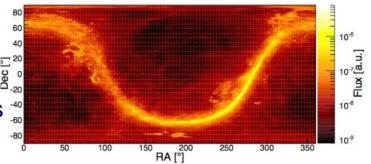


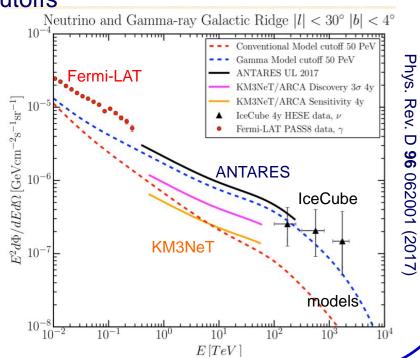

KM3NeT- Diffuse Flux

KM3NeT/ARCA is expected to observe the IC signal in less than 1 yr.

- Precise characterization (spectral shape, flavor composition, anisotropy)
- → Excellent sensitivity in the galactic plane: identify gal/extra-gal components?

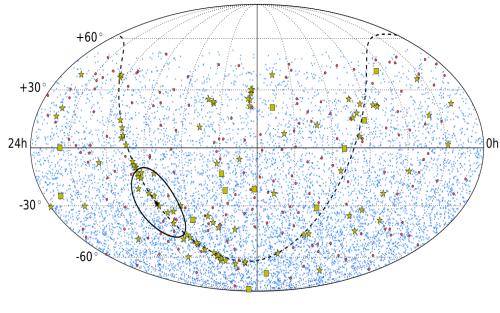
Galactic Plane


- v's from CR-gas interactions
- KRA_v model of diffuse gammas
 - CR local features and gamma observations reproduced


- Signal map according to KRA_v modelling
- Two ref models: 5 PeV and 50 PeV cutoffs

- 7300 Tracks and 208 showers
- Results:
 - No excess of events
 - 90% flux limits for ref models:
 - $< 1.1 \Phi(5 \text{ PeV}) < 1.2 \Phi(50 \text{ PeV})$
 - Not the source of "spectral anomaly" (IC spectrum in hemispheres)

(a) KRA- γ (50 PeV cutoff) template



Antares - Point Sources

- Sample:
- 2007-2015
- 2424 days of live time
- 7629 Tracks, 180 Showers (all flavour analysis)

- TrackShowers
- ★ Source candidate
- HESE track

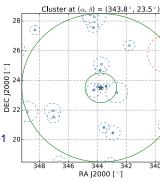
Phys. Rev. D 96, 082001 (2017)

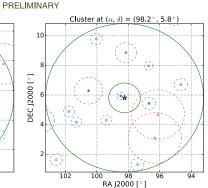
- Full-sky Search
- Candidate list Search
 - 106 objects (pulsars, SNRs, etc.)
 - 13 IceCube HESE tracks
- Galactic Centre Region
 - Ellipse 15°x 20°
 - Test:

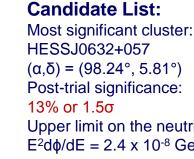
Spectral indices γ = 2.1, 2.3, 2.5 Extension σ = 0.5°, 1.0°, 2.0°

- Sagittarius A* location
 - Extended source. Gaussian profile of various widths:

 $\sigma = 0^{\circ}, 0.5^{\circ}, 1.0^{\circ}, 2.0^{\circ}$




Full sky


Most significant cluster $(\alpha, \delta) = (343.8^{\circ}, 23.5^{\circ})$ Post-trial significance:

5.9% or 1.9σ

Upper limit on the neutrino flux: $E^2d\phi/dE = 3.8 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1}$

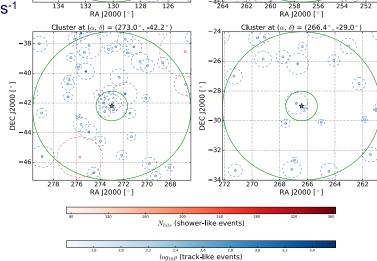
Upper limit on the neutrino flux: $E^2d\phi/dE = 2.4 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1}$

13 HESE tracks

Most significant cluster: $(\alpha, \delta) = (130.1^{\circ}, -29.8^{\circ})$ at a distance of 1.5° from the HESE track with ID 3 Post-trial significance:

20% or 1.3σ

Upper limit on the neutrino flux: $E^2d\phi/dE = 2.1 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1}$


Cluster at $(\alpha, \delta) = (130.1^{\circ}, -29.8^{\circ})$ Cluster at $(\alpha, \delta) = (257.4^{\circ}, -41.0^{\circ})$ 128 2 130 RA [2000 [°] RA J2000 [°]

Galactic Centre

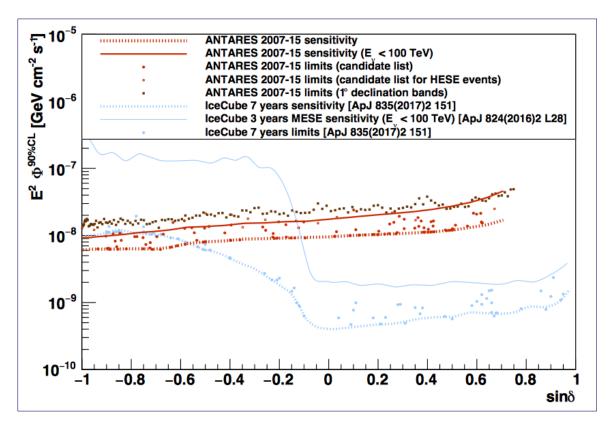
Most significant cluster: $(\alpha, \delta) = (257.4^{\circ}, -41.0^{\circ})$ for a E⁻² spectrum + point-like source Post-trial significance: $60\% \text{ or } 0.5\sigma$

Galactic Centre

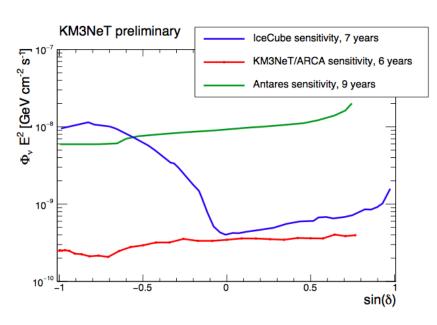
Most significant cluster: $(\alpha, \delta) = (273.0^{\circ}, -42.2^{\circ})$ E^{-2.5} spectrum Point-like source Post-trial significance: 30% or 1.0σ

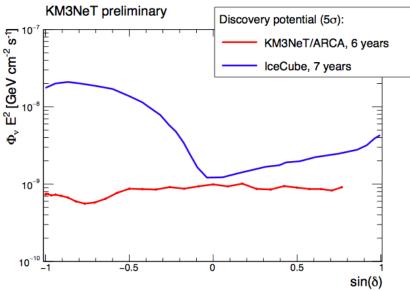
Sagittarius A*:

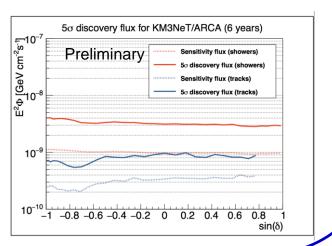
 $(\alpha, \delta) = (266.42^{\circ}, -29.01^{\circ})$ Point-like source ($\sigma = 0^{\circ}$) and Extended source ($\sigma = 0.5^{\circ}, 1.0^{\circ}, 2.0^{\circ}$) Largest excess as point-like Pre-trial significance: 22% or 1.2σ


Phys. Rev. D 96 062001 (2017)

Sensitivities and upper limits at a 90% C.L. on the signal flux from the Full-sky and the Candidate list searches

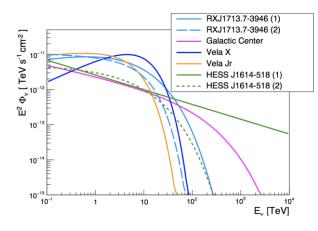



ANTARES provides the best results for low declination or soft spectra or 100 TeV-ish cutoff

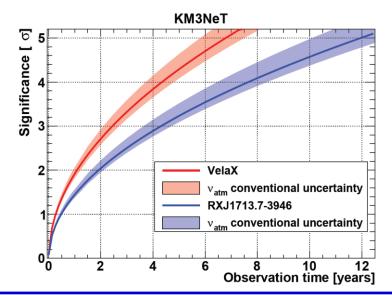

KM3NeT/ARCA Expectations (E-2 Spectrum)

KM3NeT/ARCA is expected to have more than one order of magnitude better sensitivity than IC in the Southern sky.

- → Due to the good angular resolution for shower events, the shower point-source search is also very efficient.
- → Expect better performances for the transient neutrino sources (GRB, AGN...)



KM3NeT/ARCA - point sources


Specific galactic sources

Source	δ	extension	Φ_0	Γ	E_{cut}	β	γ -ray data
RX J1713.7-3946 (1)	-39.77°	0.6°	1.68	1.72	2.1	0.5	[13]
RX J1713.7-3946 (2)	-39.77°	0.6°	0.89	2.06	8.04	1	[14]
Vela X	-45.6°	0.8°	0.72	1.36	7	1	[15]
Vela Jr	-46.36°	1°	1.30	1.87	4.5	1	[16]
HESSJ1614-518 (1)	-51.82°	0.42°	0.26	2.42	-	-	[17]
HESSJ1614-518 (2)	-51.82°	0.42°	0.51	2	3.71	0.5	[17]
Galactic Centre	-28.87°	0.45°	0.25	2.3	85.53	0.5	[18]
MGRO J1908+06 (1)	6.27°	0.34°	0.18	2	17.7	0.5	see text
MGRO J1908+06 (2)	6.27°	0.34°	0.16	2	177	0.5	see text
MGRO J1908+06 (3)	6.27°	0.34°	0.16	2	472	0.5	see text

$\gamma \rightarrow v$ flux conversion:

- F. Vissani, Astropart. Phys. 26 (2006), 310.
- F. L. VILLANTE AND F. VISSANI, Phys. Rev. D 78 (2008), 103007.
- F. VISSANI AND F. VILLANTE, Nucl. Instrum. Methods A 588 (2008), 123.

Galactic sources in reach

Constrain hadronic component

Starting-event study in pipeline and also very promising

Multi-messenger Programme

- Advantages:
- A-priori interesting sources or events
- Reduced background:
 - Uncorrelated between techniques
 - Transient/short time events
 - Spatial location
- Fully exploit the v telescopes features:
 - Continuous monitoring
 - Wide angle survey
 - High efficiency, low latency (all-data-to-shore, fast reconstruction)

GeV-TeV γ-rays

Fermi, HESS, HAWC

Radio-Visible-X

MWA, SUPERB TAROT, ZADKO, MASTER Swift

Send and receive alerts:

- Alerts from:
 - Flaring AGNs, X-ray binaries
 - GRBs, FRBs
 - Gravitational waves
 - SN lb,c
- Alerts sent out if:
 - High energy neutrino
 - Multiplets
 - Preferred direction

UHE Cosmic rays

Auger, TA

Gravitational waves

LIGO-VIRGO-EGO

Summary

ANTARES:

- 10 year experience. Thousand of neutrinos reconstructed (tracks and showers)
- Excellent resolution (down to 2° for showers!)
- Diffuse flux: a small excess at high energy compatible with a cosmic signal
- Point sources: best limits for southern sky Galactic sources (E<100 TeV)
- A lively and vibrant multi-messenger programme. We need a larger detector!

KM3NeT:

KM3NeT 2.0:

ESFRI Roadmap 2016, APPEC European Strategy 2017

ARCA: high-resolution follow up of IceCube flux (5 sigma within 1 yr)

ORCA: Measure neutrino mass hierarchy (3 sigma in 4 years)

- On the move!
 2 ARCA and 1 ORCA strings in water
- Mass production of DUs starting (about 400 DOMs mounted, and counting...)