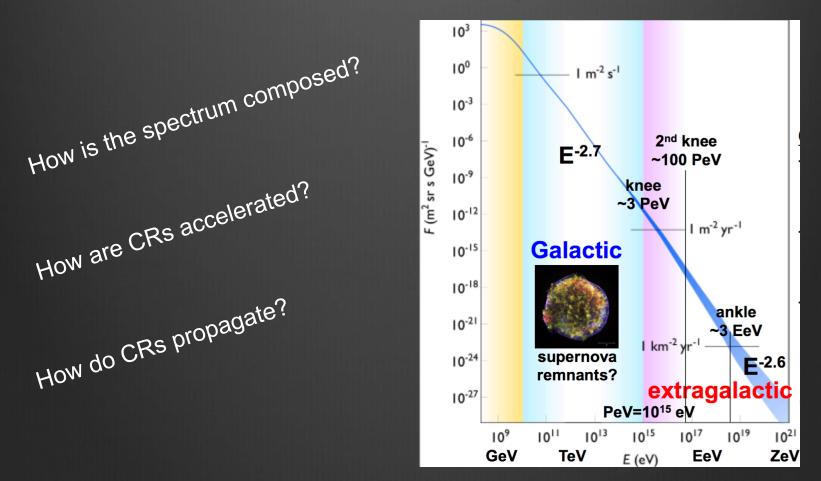
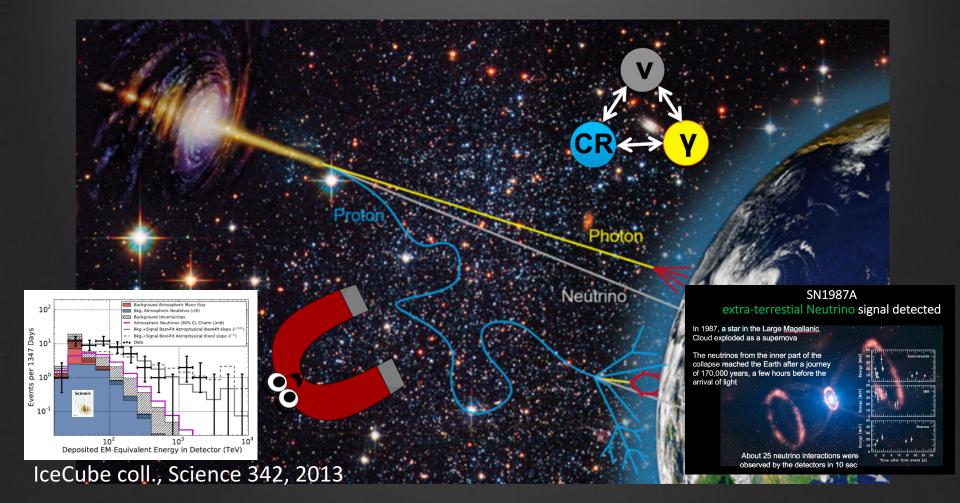
Multi-messenger astrophysics: Flaring blazars and neutrinos

Sara Buson

the second spectrum second second

NASA/Goddard Space Flight Center, USRA On behalf of the Fermi-LAT collaboration




Vulcano Workshop, May 2018

A Century Old Puzzle: Cosmic Rays

Neutrinos - an exciting step forward -

Production of astrophysical High-Energy Neutrinos

Variety of models:

- "CR accelerator models"
 - neutrinos are produced within the CR source
 - mesons are typically produced by interactions of CRs with radiation
- "CR reservoir models"
 - neutrinos are produced while they are confined within the environment surrounding the CR source
 - produced by inelastic hadronuclear collisions

Murase & Waxman Phys. Rev. D **94**, 103006

Cosmic Rays/Neutrinos: Extreme Universe

Astrophysical source candidates:

The heaviest black holes (M_{BH}~ 10⁸⁻⁹ M_{sun})

– AGNs

- The strongest magnetic fields (B ~ 10¹⁵ G)
 Magnetars
- The brightest explosions (L ~ 10⁵² erg/s)
 GRBs
- The biggest gravitationally bounded objects

 Galaxy clusters/groups

Astrophysical Extragalactic Scenarios

Cosmic-ray Accelerators

• Gamma-ray bursts (e.g. Waxman & Bahcall 97, KM et al. 06 // (Cholis & Hooper 13, Liu & Wang 13, Murase & Ioka 13, Winter 13, Senno, Murase & Meszaros 16)

Active Galactic Nuclei

 (e.g. Stecker et al. 91, Mannheim 95 // Reimer 2012, Kalashev, Kusenko & Essey 13, Stecker 13, Murase, Inoue & Dermer 14, Dermer, KM & Inoue 14, Tavecchio et al. 14, Kimura, Murase & Toma 15, Padovani et al. 15, Wang & Li 1, Lamastra 2017)

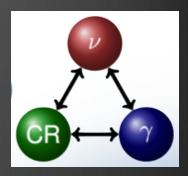
Cosmic-ray Reservoirs

Starburst galaxies

 (Loeb & Waxman 06,
 Thompson+ 07; Murase, Ahlers
 & Lacki 13, Katz et al. 13, Liu+ 14,
 Tamborra, Ando & Murase 14,
 Anchordoqui+ 14, Senno+ 15

• Galaxy groups/clusters (Berezinsky+ 97, KM et al. 08, Kotera+ 09 // Murase, Ahlers &

Lacki 13, Fang & Olinto 16)

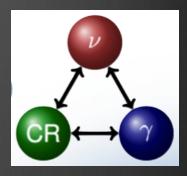

Constraints from neutrinos

- No single source detection & no significant clustering
- Neutrino data sample is isotropically distributed
- Equal contents of v_e, v_μ and v_τ and their anti-particles

→ hint to a cosmological origin of the observed neutrino flux
→ suggests a (dominant) extragalactic origins

Neutrinos are becoming a mature means to explore our Universe

HE NEUTRINO PRODUCTION PROCESSES


Hadronuclear

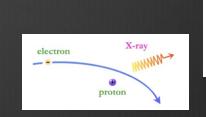
$$pp \rightarrow - \begin{bmatrix} \pi^{0} \rightarrow \gamma \gamma \\ \pi^{*} \rightarrow \mu^{*} \nu_{\mu} \rightarrow e^{*} \nu_{e} \nu_{\mu} \overline{\nu}_{\mu} \\ \pi^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu} \rightarrow e^{-} \overline{\nu}_{e} \overline{\nu}_{\mu} \nu_{\mu} \end{bmatrix}$$

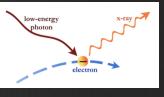
Photohadronic

$$p\gamma \rightarrow \Delta^{+} \rightarrow \left\{ \begin{array}{l} p \ \pi^{0} \rightarrow p \ \gamma \ \gamma \\ n \ \pi^{+} \rightarrow n \ \mu^{+} v_{\mu} \rightarrow n \ e^{+} v_{e} \ \overline{v}_{\mu} \ v_{\mu} \end{array} \right.$$

HE NEUTRINO PRODUCTION PROCESSES

Hadronuclear


$$pp \rightarrow \left\{ \begin{array}{l} \pi^{0} \rightarrow \gamma \gamma \\ \pi^{+} \rightarrow \mu^{+} \nu_{\mu} \rightarrow e^{+} \nu_{e} \nu_{\mu} \overline{\nu}_{\mu} \\ \pi^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu} \rightarrow e^{-} \overline{\nu}_{e} \overline{\nu}_{\mu} \nu_{\mu} \end{array} \right.$$

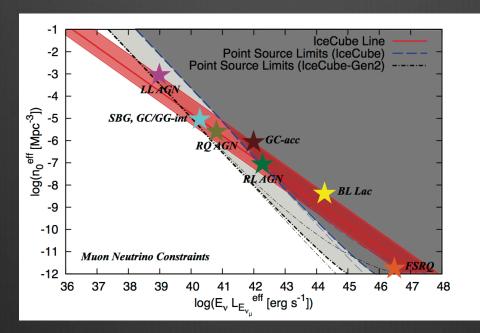

Photohadronic

$$p\gamma \rightarrow \Delta^{\scriptscriptstyle +} \rightarrow \left\{ \begin{array}{l} p \ \pi^0 \rightarrow p \ \gamma \ \gamma \\ n \ \pi^{\scriptscriptstyle +} \rightarrow n \ \mu^{\scriptscriptstyle +} v_{\mu} \rightarrow n \ e^{\scriptscriptstyle +} v_e \ \overline{v}_{\mu} \ v_{\mu} \end{array} \right.$$

(Caveats: multi-messenger relationship may be more complicated)

 Gamma-rays are not exclusively produced in hadronic processes

γ - v connection: strategies


Correlation with known catalogs

- 3LAC (>100MeV, 4years); 2FHL (>50 GeV, 6years); 2WHSP (most complete list of HSP)
- None of the three blazar catalogs tested showed any significant evidence for a neutrino signal above background expectations.
- All the outcomes from the three catalog stacking analyses are fully compatible with background fluctuations.

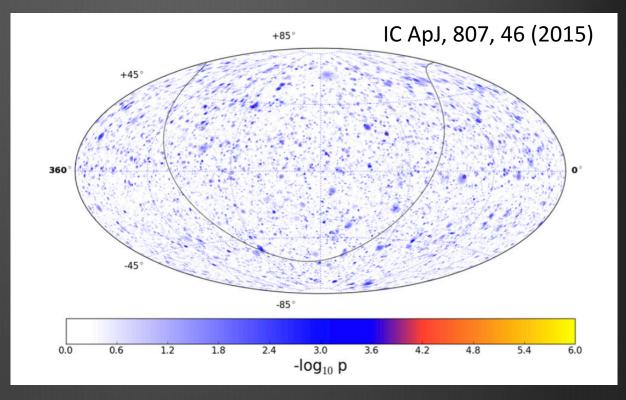
IC - PoS(ICRC2017)994

γ - v connection: strategies

 Limits on source density inferred by non-observation of neutrino multiplets

steady sources

Kowalski, 2014; Ahlers, Halzen, 2014; Murase, Waxman, 2016


Another key ingredient

TIME DOMAIN:

SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES

Searches for Neutrino Flares

 untriggered search: performed only using the neutrino data themselves

IC-86I skymap in equatorial coordinates showing the pre-trial p value for the best-fit flare hypothesis tested in each direction of the sky

Most significant point (smallest pre-trial p value) found in the IceCube data sample :

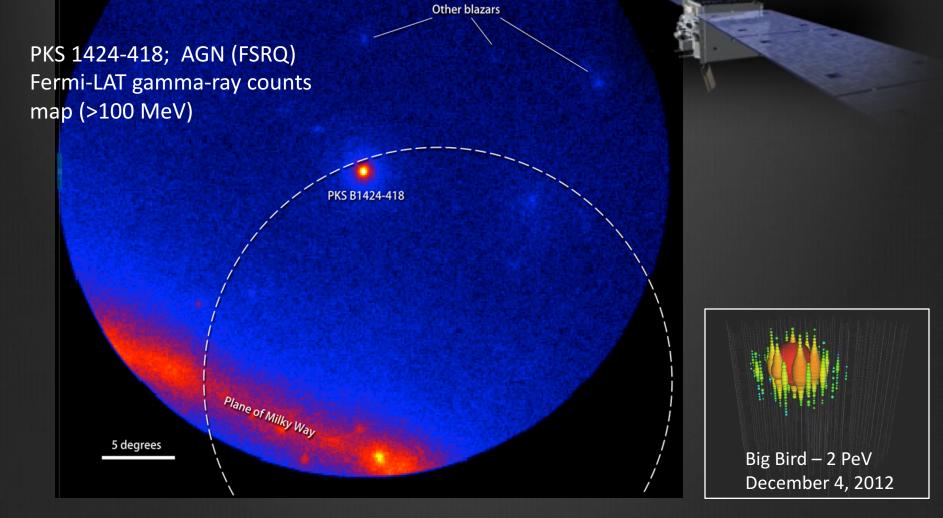
	`	`	•	,	*	*		,
Data Set	R.A.	Decl.	$\hat{n}_{ m s}$	Ŷ	\hat{T}_0 (MJD)	$\hat{\sigma}_T$ (days)	p value Pre-trial	p value Post-trial
IC-59	21:35	-0°25	14.5	3.9	55,259	5.5	2.04×10^{-7}	1.4%
IC-79	343:45	-31:65	7.2	3.95	55,466	1.8	1.07×10^{-5}	66.0%
IC-86I	235:95	42:95	13.1	2.0	55,882	7.57	1.06×10^{-5}	63.0%

The Power of

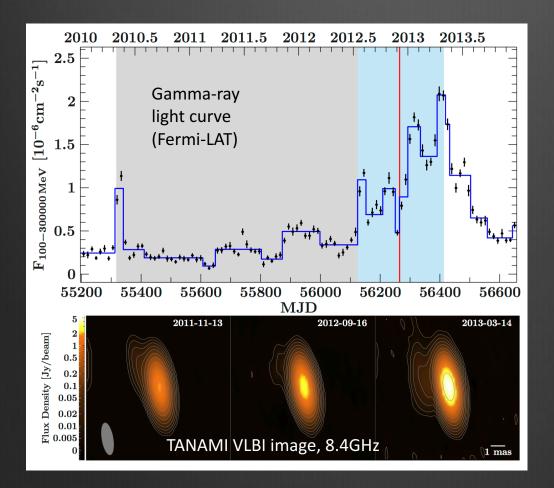
MULTI-MESSENGER + TIME DOMAIN

Search for neutrino emission correlated with g-ray flares

- Search for neutrino emission temporally consistent with g-ray blazars:
- Enhanced states pointed out by Fermi-LAT monitoring (IC ApJ, 807, 46 2015)
- TeV "orphaned" flares (IC ApJ, 744, 1 2012; ApJ, 807, 46 2015)
 - No significant neutrino excess pointed out


A previous suspect

The high-peaked BL Lac object **1ES 1959+650**:


- "Orphan" VHE flaring episode on June 4th, 2002 (WHIPPLE)
- Three neutrino events were found to arrive during the flaring episode (AMANDA); one within a few hours of the gamma ray observations
- Exhibited major flares in VHE gamma rays in the spring of 2016 (Buson+ Atel #9010, Fermi-LAT, FACT, MAGIC and VERITAS coll.)
- Test for time-clustering of neutrinos with IceCube
 - No significant emission neither by integrating over the whole flaring episode, nor by testing for clusters on shorter time scales

IC - PoS(ICRC2017)969

A Suggestive Hint

A Suggestive Hint

chance coincidence prob of about 5% (a-posteriori)

Kadler+ 2016 *Nature Physics* 12, 807 (Gao+ ApJ, 2017)

integrated emission of the blazar population has a sufficiently high electromagnetic flux to explain the observed IceCube events

ID	$E_{\rm dep}$ (TeV)	Time (MJD)	Decl. (deg.)	R.A. (deg.)	Ang. Err. (deg.)	Topology
55		56798.73029				Coincident
56	$104.2^{+9.7}_{-10.0}$	56817.38958	-50.1	280.5	6.5	Shower
57	$132.1^{+18.1}_{-16.8}$	56830.52665	-42.2	123.0	14.4	Shower
58	52.6+5.2	56859.75882	-32.4	102.1	<1.3	Track
59	$124.6^{+11.6}_{-11.7}$	56922.58530	-3.9	63.3	8.8	Shower
60	$93.0^{+12.9}_{-11.7}$	56931.93110	-37.9	32.7	13.3	Shower
61	$53.8^{+7.2}_{-6.3}$	56970.20736	-16.5	55.6	<1.2	Track
62	$75.8_{-7.1}^{+6.7}$	56987.77219	13.3	187.9	<1.3	Track
63	$97.4^{+9.6}_{-9.6}$	57000.14311	6.5	160.0	<1.2	Track
64	$70.8^{+8.1}_{-7.7}$	57036.74378	-27.3	144.5	10.6	Shower
65	$43.3^{+5.9}_{-5.2}$	57051.66378	-33.5	72.8	17.5	Shower
66	$84.2^{+10.7}_{-9.9}$	57053.12727	38.3	128.7	18.3	Shower
67	$165.7^{+16.5}_{-15.5}$	57079.96532	3.0	335.7	7.0	Shower
68	$59.1^{+8.0}_{-6.0}$	57081.53526	-15.7	294.3	11.7	Shower
69	$18.0^{+2.2}_{-2.0}$	57133.79007	0.3	236.2	15.7	Shower
70	$98.8^{+12.0}_{-11.1}$	57134.39812	-33.5	93.9	12.3	Shower
71	$73.5^{+10.0}_{-10.5}$	57140.47276	-20.8	80.7	<1.2	Track
72	$35.3^{+4.6}_{-4.1}$	57144.29607	28.3	203.2	19.5	Shower
73	$26.2^{+2.6}_{-2.3}$	57154.83679	11.1	278.4	6.9	Shower
74	$71.3^{+9.1}_{-8.1}$	57157.00077	-0.9	341.0	12.7	Shower
75	$164.0^{+20.7}_{-21.4}$	57168.40450	70.5	259.0	13.1	Shower
76	$126.3^{+12.0}_{-12.7}$	57276.56530	-0.4	240.2	<1.2	Track
77	$39.5^{+3.8}_{-3.7}$	57285.01732	2.1	278.4	7.2	Shower
78	$56.7^{+7.0}_{-6.9}$	57363.44233	7.5	0.4	<1.2	Track
79	$158.2^{+20.3}_{-19.8}$	57365.75249	-11.1	24.6	14.6	Shower
80	$85.6^{+11.1}_{-10.6}$	57386.35877	-3.6	146.6	16.1	Shower
81	$151.8^{+13.9}_{-21.6}$	57480.64736	-79.4	45.0	13.5	Shower
82	$159.3^{+15.5}_{-15.3}$	57505.24482	9.4	240.9	<1.2	Track

- Most of the results in the literature are based on archival IceCube neutrino dataset
- about 80 HE neutrinos

Real-Time Alerts

- Since April 2016, the IceCube collaboration began releasing real-time alerts of detections of high-energy (>100 TeV) neutrinos
 - 8 HESE + 6 EHE events

IceCube Alert – IC170922A

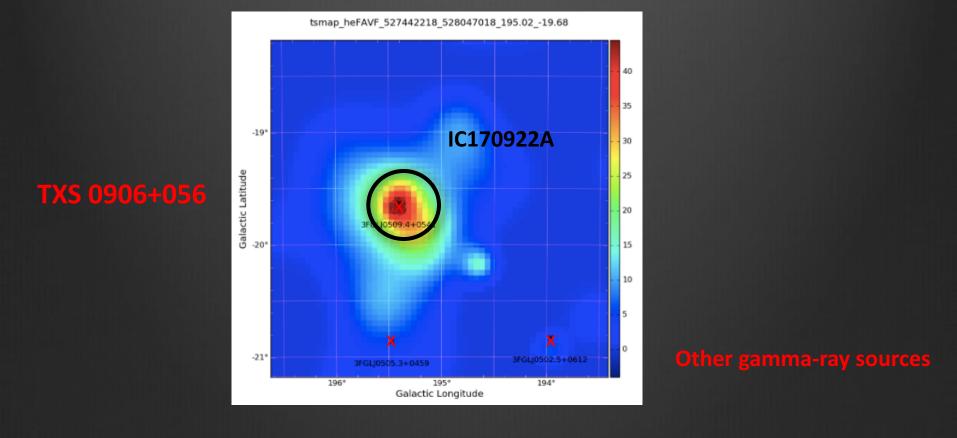
///////////////////////////////////////				
TITLE:	GCN/AMON NOTICE			
NOTICE_DATE:	Fri 22 Sep 17 20:55:13 UT			
NOTICE_TYPE:	AMON ICECUBE EHE			
RUN_NUM:				
EVENT_NUM:	50579430			
SRC_RA:	77.2853d {+05h 09m 08s} (J2000),			
	77.5221d {+05h 10m 05s} (current),			
	76.6176d {+05h 06m 28s} (1950)			
SRC_DEC:	+5.7517d {+05d 45' 06"} (J2000),			
	+5.7732d {+05d 46' 24"} (current),			
	+5.6888d {+05d 41' 20"} (1950)			
SRC_ERROR:	14.99 [arcmin radius, stat+sys, 50% containment]			
DISCOVERY_DATE:	18018 TJD; 265 DOY; 17/09/22 (yy/mm/dd)			
DISCOVERY_TIME:	75270 SOD {20:54:30.43} UT			
REVISION:	0			
N_EVENTS:	1 [number of neutrinos]			
STREAM:	2			
DELTA_T:	0.0000 [sec]			
SIGMA_T:	0.0000e+00 [dn]			
ENERGY :	1.1998e+02 [TeV]			
SIGNALNESS:	5.6507e-01 [dn]			
CHARGE :	5784.9552 [pe]			

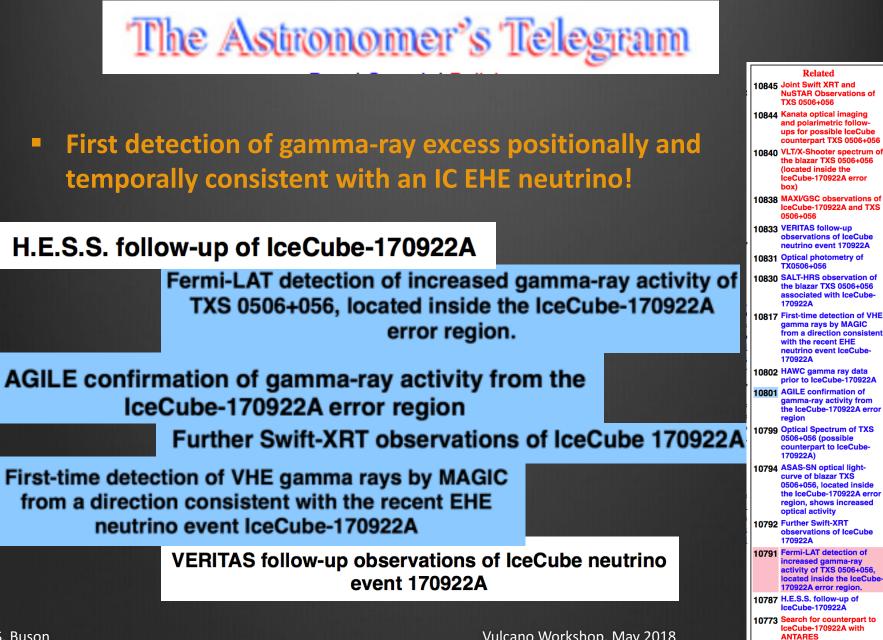
IC170922A – Updated Info

TITLE: GCN CIRCULAR
NUMBER: 21916
SUBJECT: IceCube-170922A - IceCube observation of a high-energy neutrino candidate event
DATE: 17/09/23 01:09:26 GMT
FROM: Erik Blaufuss at U. Maryland/IceCube <blaufuss@icecube.umd.edu>

Claudio Kopper (University of Alberta) and Erik Blaufuss (University of Maryland) report on behalf of the IceCube Collaboration (http://icecube.wisc.edu/).

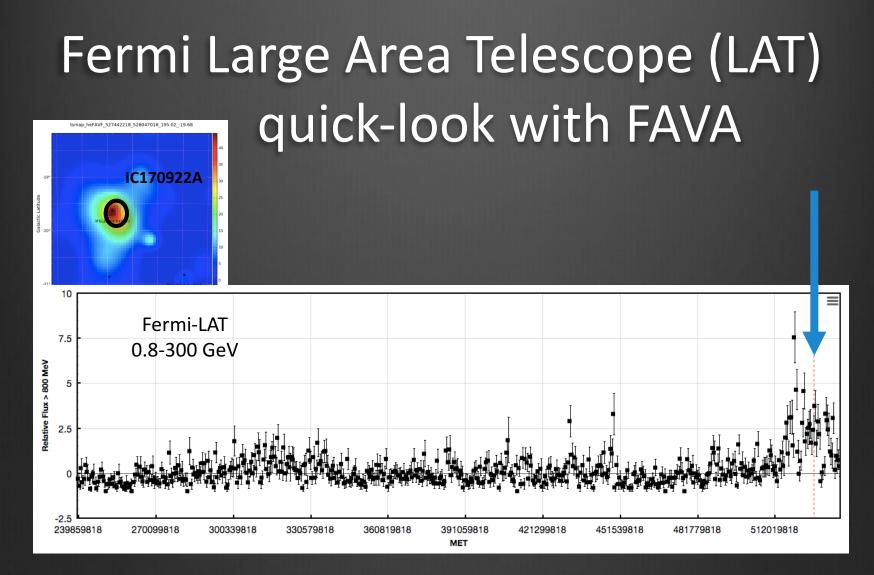
On 22 Sep, 2017 IceCube detected a track-like, very-high-energy event with a high probability of being of astrophysical origin. The event was identified by the Extremely High Energy (EHE) track event selection. The IceCube detector was in a normal operating state. EHE events typically have a neutrino interaction vertex that is outside the detector, produce a muon that traverses the detector volume, and have a high light level (a proxy for energy).

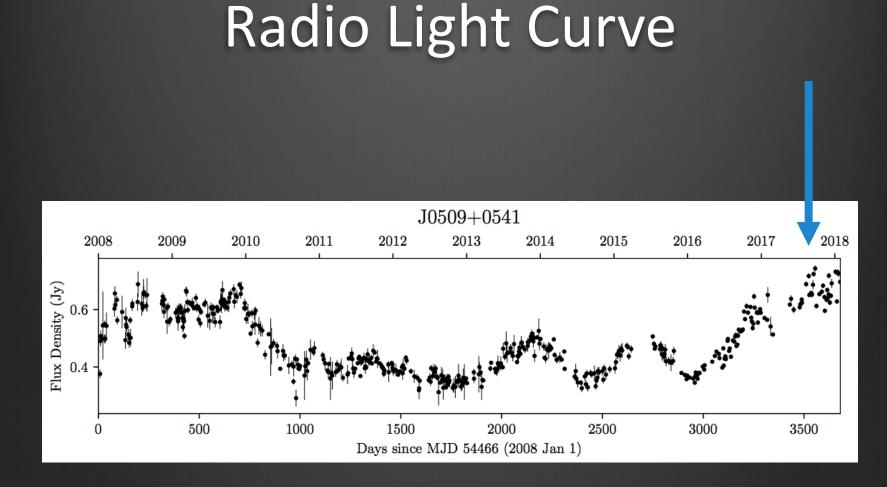

After the initial automated alert (https://gcn.gsfc.nasa.gov/notices_amon/50579430_130033.amon), more sophisticated reconstruction algorithms have been applied offline, with the direction refined to:


Date: 22 Sep, 2017 Time: 20:54:30.43 UTC RA: 77.43 deg (-0.80 deg/+1.30 deg 90% PSF containment) J2000 Dec: 5.72 deg (-0.40 deg/+0.70 deg 90% PSF containment) J2000

We encourage follow-up by ground and space-based instruments to help identify a possible astrophysical source for the candidate neutrino.

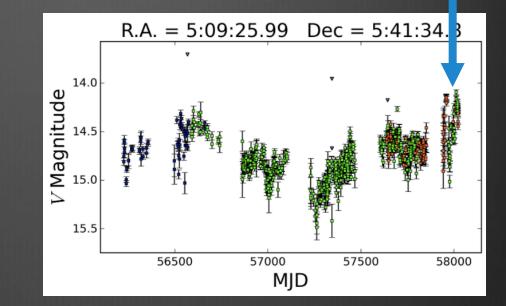
Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the lceCube-170922A error region.

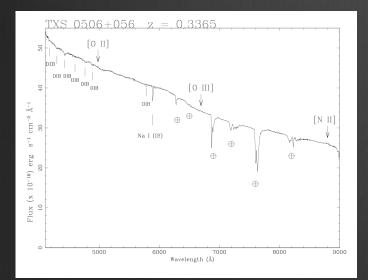

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT



Radio, optical, X-rays, g-rays, Antares follow up

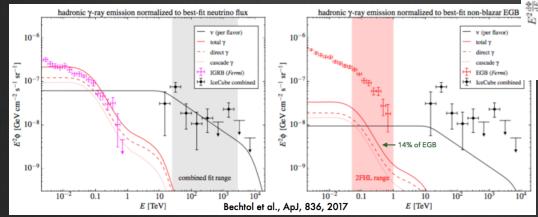
- 17/09/23 09:31:27 GMT (GCN 21917), INTEGRAL, upper limit
- 17/09/24 19:34:55 GMT (GCN 21923), ANTARES, upper limit (+/-1h, +/-1d)
- 17/09/25 01:55:22 GMT (GCN 21924), HAWC, upper limit
- 17/09/26 14:34:30 GMT (GCN 21930), Swift (3.25h after the neutrino trigger, 800s per field, 19-point tiling), 9 sources identified
- 17/09/27 14:33 GMT (ATel 10787), HESS, observation 4h after neutrino trigger (for ~1h) and consecutive night (1h), no detection
- 17/09/28 10:10 GMT (ATel 10791), Fermi-LAT, known gamma-ray source TXS 0506+056 (3FGL J0509.4+0541) in error circle, in flaring state, redshift unknown
- 17/09/28 11:58:48 GMT (GCN 21941), further Swift observations, additional 5ks of TXS position, possible spectral evolution
- 17/09/28 18:00 GMT (ATel 10794): ASAS-SN finds enhanced optical flux of TXS 0506+056
- 17/09/29 13:00 GMT (ATel 10799): Liverpool telescope takes optical spectrum, no redshift measurement possible
- 17/09/29 15:41 GMT (ATel 10801): AGILE confirms gamma-ray flare
- 17/09/30 02:10 GMT (ATel 10802): HAWC, no detection in 12day window

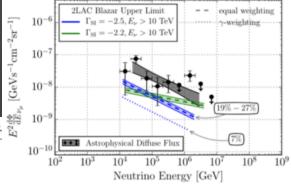

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/SourceReport.php?week=477&flare=27



OVRO 40m Telescope (15 GHz)

ASAS-SN Optical Light Curve

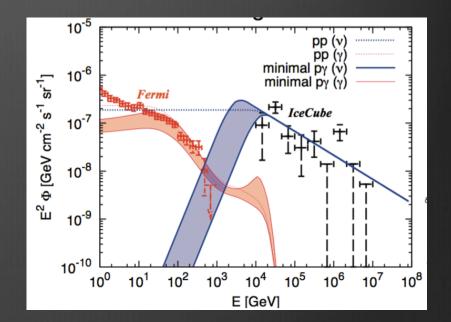




z = 0.3365±0.0010
 (Paiano+ 2018 ApJ, 854, 32)

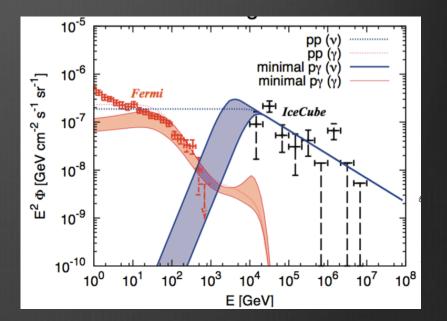
Lessons learned

- Decomposing the diffuse gamma-ray / neutrino bkg.
 - Latest results on the IGBR by Fermi and IC provide strong constraints on source populations
 - IceCube flux:
 - Blazars <10-20%
 - Star Forming Galaxies <30%
 - Less room for pp scenarios



IceCube coll 2017

(see also subthreshold sources studies, Fermi coll. 16, Lisanti+ 16)


Lessons learned

- Best fit spectral indices tend to be as soft as 2.5
- At 10-100 TeV, high flux (~1e⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹)
- If γ -ray transparent \rightarrow strong tensions w. diffuse γ -ray bkg. for both pp & p γ

Lessons learned

- Best fit spectral indices tend to be as soft as 2.5
- At 10-100 TeV, high flux (~1e⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹)
- If γ -ray transparent \rightarrow strong tensions w. diffuse γ -ray bkg. for both pp & p γ
- γ -ray dark cosmic-ray accelerators
 γγ→e+e- inevitable in pγ sources
 (e.g. GRBs, AGN)
- The same target photons prevent γray escape

Sources originating the astrophysical neutrinos detected by IceCube may be opaque to 1–100 GeV gamma-rays if the neutrino flux originates from photo-hadronic processes (Stecker 1991; Murase+ 2015, 2016)

Summary

- Multi-messenger + time-domain is a promising path to reveal the origin of neutrinos (and cosmic rays)
- Neutrino fans are eager users of gamma-ray data
- Warning:
 - the different messengers may not come from the same objects
 - and/or production regions within the same object
- Remarkable wealth of available data
 - Need improvements in theoretical models in order to interpret the current multi-messengers