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Introduction
• Goal: Compute hadron structure properties from QCD 

• Parton distribution functions (PDFs) 

• Operator product: Mellin moments are local matrix elements that can be computed in 
Lattice QCD  

• Power divergent mixing limits us to few moments 

• Few years ago X. Ji suggested an approach for obtaining PDFs from Lattice QCD 

• First calculations already available 

• A new approach for obtaining PDFs from LQCD introduced by A. Radyushkin  

• Hadronic tensor methods
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PDFs: Definition

5

We denote bare light-front PDFs by f (0)(⇠). Light-front PDFs are frequently represented by

f (0)
j/N (⇠), where j denotes the quark flavor and N the nucleon species, but here we will be considering

only non-singlet distributions, for which we can neglect mixing between parton species, and work

with su�cient generality that the nucleon species is not relevant to our discussion. We use light-

front coordinates, (x+, x�,xT) such that x± = (t ± z)/
p
2, and define ⇠ = k+/P+. We use ⇠

to distinguish this variable from the Bjorken-x parameter that characterizes the kinematics of

scattering experiments and is given in terms of the experimental momentum transfer Q2 = �q2

and hadron momentum P by x = Q2/(2P · q). The bare PDF is defined as [3]

f (0)(⇠) =

Z
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Here T is the time-ordering operator,  is a quark field, and the subscript C indicates that the

vacuum expectation value has been subtracted (in other words, only connected contributions are

included). The operator W (!�, 0) is the Wilson line,

W (!�, 0) = P exp

"
�ig0

Z !�

0
dy�A+

↵ (0, y
�,0T)T↵

#
, (2)

with P the path-ordering operator, g0 the QCD bare coupling, and Aµ = Aµ
↵T↵ the SU(3) gauge

potential with generator T↵ (summation over color index ↵ is implicit). The target state, |P i, is a

spin-averaged, exact momentum eigenstate with relativistic normalization

hP 0
|P i = (2⇡)32P+�

�
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�
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We define the moments of bare PDFs as

a(n)0 =

Z 1

0
d⇠ ⇠n�1

h
f (0)(⇠) + (�1)nf

(0)
(⇠)

i
=

Z 1

�1
d⇠ ⇠n�1f(⇠), (4)

where f
(0)

(⇠) is the anti-quark PDF and the second equality follows from the relation of the quark

to anti-quark PDFs

f (0)(�⇠) = �f
(0)

(⇠), (5)

which holds for the bare distributions if the quark and anti-quarks fields are classical, or quantized

using light-front quantization [33].

We can relate these bare moments, a(n)0 , to matrix elements of twist-two operators via

D
P |O

{µ1...µn}

0 |P
E
= 2a(n)0 (Pµ1 · · ·Pµn � traces) . (6)
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Light-cone PDFs:
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Moments:
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Local matrix elements:
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Here the bare twist-two operators are

O
{µ1···µn}

0 = in�1 (0)�{µ1Dµ2 · · ·Dµn}
�a

2
 (0)� traces . (7)

In these expressions the braces denote symmetrization, Dµ is the symmetric covariant derivative,

�a are SU(2) flavor matrices, and the subtraction of the trace terms ensures that the operator

transforms irreducibly under SU(2)L ⌦ SU(2)R.

B. Renormalized PDFs

To this point we have considered the bare light-front PDFs, with the understanding that such

objects are evaluated with some regulator that renders the bare distributions finite. We now intro-

duce renormalized light-front PDFs. We stress that in this section we consider a renormalization

scheme that respects rotational symmetry and, for definiteness, one can have in mind the MS

scheme. Complications will arise if a regulator that breaks rotational invariance, such as the lat-

tice regulator, is used. We do not discuss such complications here, because we will avoid explicit

computations of moments at finite lattice spacing. All correlation functions computed on the lattice

can be renormalized and extrapolated to the continuum limit, provided that no power divergent

mixing exists. In the next section, we propose a smeared correlation function that does not have

power-divergent mixing.

In general, renormalized light-front PDFs are written in terms of a kernel, Z(⇣/⇠, µ), as

f(⇠, µ) =

Z 1

x

d⇣

⇣
Z

✓
⇣

⇠
, µ

◆
f (0)(⇣), (8)

where µ is some renormalization scale. We do not need to consider mixing between parton species

for non-singlet distributions. In terms of the renormalized light-front PDF, the renormalized Mellin

moments are

a(n)(µ) =

Z 1
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d⇠ ⇠n�1
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f(⇠, µ) + (�1)nf(⇠, µ)

⇤
=

Z 1

�1
d⇠ ⇠n�1f(⇠, µ), (9)

which can be related to matrix elements of renormalized twist-two operators, O
{⌫1...⌫n}(µ) =

ZO(µ)O
{⌫1...⌫n}
0 , via

D
P |O

{⌫1...⌫n}(µ)|P
E
= 2a(n)(µ) (P ⌫1 · · ·P ⌫n � traces) . (10)

This relation holds provided the light-front PDFs and twist-two operators are renormalized in the

same scheme [33].
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Ê(0, z;A) = P exp


�ig

Z z

0
dz0µ A

µ
↵(z

0)T↵

�

Unpolarized PDFs proton:

z 0

p p
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F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Lorentz decomposition:

Collinear PDFs: Choose 
z = (0, z�, 0)

p = (p+, 0, 0)

�+

3

III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

M+(z, p) = 2p+Mp(�p+z�, 0)

Mp(�p+z�, 0) =

Z 1

�1
dx f(x) e�ixp+z�

Definition of PDF: 

A. Radyushkin Phys.Lett. B767 (2017)



Mp(�pz,�z2) is a Lorentz invariant therefore  
computable in any frame

⌫ = �zp

It can be shown that the  domain of x is [-1, 1] 
A. Radyushkin Phys.Lett. B767 (2017)

Mp(⌫,�z2) at small z2 is called Ioffe time PDF

ν is called Ioffe time B. L. Ioffe, Phys. Lett. 30B, 123 (1969)

V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

�z2 $ 1/µ2 P(x,�z2) $ f(x, µ2)

Mp(⌫,�z2) ⌘
Z 1

�1
dxP(x,�z2)eix⌫



Ji Quasi-PDF

Choose z = (0, 0, 0, z3)

�3

h(z3, p3) =
1

2p3
M3 = Mp(�z3p3,�z23) +

z3

2p3
Mz(�z3p3,�z23)

Q(y, p3) =
p3
2⇡

Z 1

�1
dz3h(z3, p3)e

iyp3z3

M3 On shell time local  matrix element  
computable in Euclidean space 

Briceno et al arXiv:1703.06072

p = (p0, 0, 0, p3)



Q(y, p3) =
1

2⇡

Z 1

�1
d⌫


Mp(⌫, ⌫

2/p23)�
⌫

2p23
Mz(⌫, ⌫

2/p23)

�
e�iy⌫

⌫ = �p3z3 Range of ν is (-∞, +∞)

⌫ ·
⇤2
qcd

p23
Artifacts scale as

at finite momentum the full range is not accessible resulting 
additional systematic error

Q(y, p3) =

Z 1

�1

dx

|x|
Z(

y

x
,
µ

p3
)f(x, µ) +O(

⇤2
qcd

p23
) + ….. ??

Chen et al. arXiv:1711.07858 

G. Rossi and M. Testa 10.1103/PhysRevD.96.014507  

* Potential issue with power divergences? 

http://arxiv.org/abs/arXiv:1711.07858
http://dx.doi.org/10.1103/PhysRevD.96.014507


Alternatively 

Choose z = (0, 0, 0, z3)

�0

Chosing       was also suggested also by M. Constantinou at GHP2017 based  
on an operator mixing argument for the renormalized matrix element

Alexandrou et al arXiv:1706.00265

A. Radyushkin Phys.Lett. B767 (2017)

p = (p0, 0, 0, p3)

Mp(⌫, z
2
3) =

1

2p0
M0(z3, p3)

Obtaining only the relevant 

Mp(⌫, z
2
3) =

Z 1

�1
dxP(x, z23)

�0

http://arxiv.org/abs/arXiv:1706.00265


Q(y, p3) =
1

2⇡

Z 1

�1
d⌫Mp(⌫, ⌫

2/p23)e
�iy⌫

P(x,�z2) =
1

2⇡

Z 1

�1
d⌫Mp(⌫,�z2)e�ix⌫

 v

z23

p3 ! 1

�z2{

Alternative approach to the light-cone:

�z2 ! 0 PDFs can be recovered

z3 = ⌫/p3Large values of are problematic



Lattice QCD requirements

a ⇠ 0.05fm ! Pmax = 20⇤

a ⇠ 0.1fm ! Pmax = 10⇤ ⇤ ⇠ 300MeV

For practical calculations large momentum is needed 
*Higher twist effect suppression (qpdfs) 
*Wide coverage of Ioffe time ν 

P= 3 GeV is already demanding due to statistical noise 
                 achievable with easily accessible lattice spacings

P= 6 GeV exponentially harder 
                 requires current state of the art lattice spacing

aPmax =
2⇡

4
⇠ O(1)



Statistical noise

C2p(P, t) = hON (P, t)O†
N (P, 0)i ⇠ Ze

�E(P )t

var [C2p(P, t)] = hON (P, t)ON (P, t)†ON (P, 0)O†
N (P, 0)i ⇠ Z3⇡e

�3m⇡t

Nucleon with momentum P two-point function: 

Variance of nucleon two-point function: 

Variance is independent of the momentum

Statistical accuracy drops exponentially with the increasing 
momentum limiting the maximum achievable momentum.

var [C2p(P, t)]
1/2

Cap(P, t)
⇠ Z

Z 3⇡
e�[E(P )�3/2m⇡ ]t



Continuum limit
M0

ren(z, p, µ) = lim
a!0

ZO(z, µ, a)M0(z, P, a)

Determine Z non-perturbatively in some scheme 

z t2zt1z 0
p p

z 0
One loop linear divergence  
needs to be re-summed

ZO(z, µ, a) ⇠ e+�m|z|/a�c|z|

Dotsenko Nucl.Phys. B169 (1980) 527 
Chen et al. Nucl.Phys. B915 (2017)  
Ishikawa et al. arXiv:1707.03107, arXiv:1609.02018 
Radyushkin arXiv:1710.08813

http://arxiv.org/abs/arXiv:1609.02018
http://arxiv.org/abs/arXiv:1710.08813


Alexandrou et al. Nucl.Phys. B923 (2017) 394 

ZO(z, µ) =
Zq

1
12Tr

h
M0(z, p) (M0,Born(z, p))�1

i���
p=µ

M0(z, p) = hp| ̄(0) �0 Ê(0, z;A) (z)|pi

RI’ MOM scheme

Use gauge fixed off-shell external quark states to compute:

Define

Zq  is the quark wave function renormalization in  RI’ MOM  



Consider the ratio

UV divergences will cancel in this ratio

Denominator is regular at z23 ! 0

Mp(0, 0) = 1 Isovector matrix element

M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)

Polynomial corrections to the Ioffe time PDF may be 
suppressed 

A. Radyushkin Phys.Lett. B767 (2017)

B. U. Musch, et al   Phys. Rev. D 83, 094507 (2011)

Mp(⌫, z
2
3)) = Q(⌫, z23) +O(z23)

M(⌫, z23) = Q(⌫, z23) +O(z23) with smaller corrections

Q(⌫, z23)
F.T.���! f(x, µ2)µ2 = (2e��E/z3)

2
MS

Radyushkin arXiv:1710.08813

M. Anselmino et al. 10.1007/JHEP04(2014)005 

http://arxiv.org/abs/arXiv:1710.08813
http://dx.doi.org/10.1007/JHEP04(2014)005


M. Anselmino et al. 10.1007/JHEP04(2014)005 

TMD factorization

F(x, k2?) the primordial TMD

Mp(⌫,�z2) ⌘
Z 1

�1
dxP(x,�z2)eix⌫

Taking z = (0, z�, z?) we can identify 

A. Radyushkin Phys.Lett. B767 (2017)

P(x, z2?) =

Z
d2k? F(x, k2?)

Assuming F(x, k2?) = f(x)g(k2?)

B. U. Musch, et al   Phys. Rev. D 83, 094507 (2011)

we obtain P(x, z2?) = f(x)g̃(z2?)

Implying that Mp(⌫,�z2) = Q(⌫,�z2)Mp(0,�z2)

Mp(0,�z2) = g̃(�z2)where 

http://dx.doi.org/10.1007/JHEP04(2014)005


M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)

The TMD factorization assumption implies that the ratio

is the Ioffe time distribution with small polynomial corrections

M(⌫, z23) = Q(⌫, z23) +O(z23)

Q(⌫, z23)
F.T.���! f(x, µ2)µ2 = (2e��E/z3)

2 MS

Radyushkin arXiv:1710.08813

This ratio has a well defined continuum limit

http://arxiv.org/abs/arXiv:1710.08813


d

d ln z23
Q(⌫, z23) = �↵s

2⇡
CF

Z 1

0
duB(u)Q(u⌫, z23)

4
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P = 10⇤

FIG. 1. Evolution of quasi-PDF Q(y, P ) in the factorized
Gaussian model for P/⇤ = 1, 10, 50.

one gets the following model for the quasi-PDF

QG(y, P ) =
P

⇤
p

⇡

Z 1

�1
dx f(x) e�(x�y)2P 2/⇤2

. (18)

Choosing for f(x) a simple PDF resembling the nucleon
valence densities f(x) = 4(1 � x)3✓(0  x  1), one gets
the curves shown in Fig. 1. For large P , it clearly tends
to the f(y) PDF form. In particular, using a momentum
P ⇠ 10⇤ one gets a quasi-PDF that is rather close to
the P ! 1 limiting shape. Still, since ⇤ ⇠ hk?i, assum-
ing the folklore value hk?i ⇠ 300 MeV one translates the
P ⇠ 10⇤ estimate into P ⇠ 3 GeV, which is uncomfort-
ably large. Thus, a natural question is how to improve
the convergence.

D. Pseudo-PDFs

The involved structure of a quasi-PDF Q(y, P ) can
be attributed to the fact that it is given by the Fourier
transform of the function M(⌫, ⌫2/P 2) with respect to ⌫,
where ⌫ appears both in the first and second argument of
the Ioffe-time distribution. Due to this complication, to
get close to the PDF limit, one should take P -values that
are sufficiently large to neglect the ⌫-dependence coming
from the second argument.

Another way [11] is to try to eliminate the
z2
3-dependence induced by M(⌫, z2

3). The main idea is
based on the observation that if one takes the ⌫-Fourier
transform of the modified function M(⌫, z2

3)/D(z2
3), the

z3 ! 0 limit will give the same PDF as the original Ioffe-
time distribution, provided that D(z2

3) is a function of
z2
3 only (but not of ⌫) equal to 1 for z2

3 = 0. Thus, one
should find a function D(z2

3) whose z2
3-dependence would

compensate, as much as possible, the z2
3-dependence of

M(⌫, z2
3). Then one may build a modified quasi-PDF by

taking the Fourier transform of M(⌫, ⌫2/P 2)/D(⌫2/P 2).
The resulting function will approach the same PDF limit,
but at much smaller P than the quasi-PDF built from
M(⌫, ⌫2/P 2).

The most lucky situation is when M(⌫, z2
3) factorizes,

i.e., M(⌫, z2
3) = M(⌫, 0)M(0, z2

3). Then taking D(z2
3) =

M(0, z2
3), i.e. considering the reduced function

M(⌫, z2
3) ⌘

M(⌫, z2
3)

M(0, z2
3)

(19)

one concludes that it is equal to M(⌫, 0), and the goal of
obtaining the z3 ! 0 limit becomes trivial.

As we mentioned already, the soft part of M(⌫, z2
3) fac-

torizes if the TMD F(x, k2
?

) factorizes. That this hap-
pens for the soft part of the TMD, is a standard (and
apparently well-verified) assumption of the TMD prac-
titioners. So, there are good chances that this part of
the z2

3-dependence of M(⌫, z2
3) will be canceled by the

rest-frame function M(0, z2
3) (at least, to a large extent).

On the lattice, there is another (and troublesome, see,
e.g., Ref. [15]) source of z3-dependence: the Z(z2

3) fac-
tor generated by the renormalization of the gauge link
Ê(0, z3; A). Fortunately, this problematic factor Z(z2

3)
does not depend on ⌫ and is the same for the numerator
and denominator of the ratio M(⌫, z2

3).
Thus, if one observes that the ratio M(⌫, z2

3) does not
have z3-dependence, one may conclude that M(⌫, z2

3) fac-
torizes. In fact, such a factorization has been already
observed several years ago in the pioneering study [16] of
the transverse momentum distributions in lattice QCD.

Still, there is an unavoidable source of factorization
breaking. When z3 is small, M(⌫, z2

3) has logarithmic
ln z2

3 singularities generating the perturbative evolution
of PDFs. As we discussed, z3 is analogous then to
the renormalization parameter µ of the scale-dependent
PDFs f(x, µ2) within the standard OPE approach. More
specifically, for small values of z3, the pseudo-PDF
P(x, z2

3) satisfies a leading-order evolution equation with
respect to 1/z3 that is identical with the evolution equa-
tion for f(x, µ2) with respect to µ. An evolution equation
[13] for the Ioffe-time distribution M(⌫, z2

3) can also be
written namely,

d

d ln z2
3

M(⌫, z2
3) = �

↵s

2⇡
CF

Z 1

0
du B(u)M(u⌫, z2

3),

(20)

where CF = 4/3, and the leading-order evolution kernel
B(u) for the non-singlet quark case is given [13] by

B(u) =


1 + u2

1 � u

�

+

, (21)

where [. . .]+ denotes the conventional “plus” prescription,
i.e.

Z 1

0
du


1 + u2

1 � u

�

+

M(u⌫)

=

Z 1

0
du

1 + u2

1 � u
[M(u⌫) � M(⌫)]. (22)

DGLAP kernel in position space
V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

Q(⌫, z0
2
3)=Q(⌫, z23) � 2

3

↵s

⇡
ln(z03

2
/z23)

Z 1

0
duB(u)Q(u⌫, z23)

at small z23

if power corrections are small

Radyushkin arXiv:1710.08813Checked at 1-loop in 

http://arxiv.org/abs/arXiv:1710.08813


Numerical Tests

J. Karpie, A. Radyushkin, S. Zafeiropoulos  

in collaboration with

arXiv:1706.05373 

http://arxiv.org/abs/arXiv:1706.05373


Numerical Tests
• Quenched approximation β=6.0 

• Need series of small z3 

• Need a range of momenta to scan ν

• Goals: 

•  Check scaling violations 

• Understand the systematics of the approach

323 ⇥ 64 m⇡ ⇠ 600MeV

Μελτέμι



M(⌫, z23) = lim
t!1

Me↵(z3P, z23 ; t)

Me↵(z3P, z23 ; t)|z3=0

⇥
Me↵(z3P, z23 ; t)

��
z3=0

Me↵(z3P, z23 ; t)|P=0

6

tion given by

CP (t) = hNP (t)NP (0)i (27)

where NP (t) is a helicity averaged, non-relativistic nu-
cleon interpolating field with momentum p. The quark
fields in Np(t) are gauge invariant gaussian smeared.
This choice of an interpolation field is known to couple
well to the nucleon ground state (see discussion in [19]).
The quark smearing width was optimized to give good
coupling to a range of momenta. The second correlator
is given by

CO
0(z)

P (t) = hNP (t)O0(z)NP (0)i (28)

where

O
0(z) =  (0)�0⌧3Ê(0, z; A) (z) , (29)

with ⌧3 being the flavor Pauli matrix. The proton mo-
mentum and the displacement of the quark fields were
both taken along the ẑ axis (~z = z3ẑ and ~p = P ẑ). We
then define the effective matrix element as

Me↵(z3P, z2
3 ; t) =

CO
0(z)

P (t + 1)

CP (t + 1)
�

CO
0(z)

P (t)

CP (t)
. (30)

Our matrix element can then be extracted at the large
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0(z) =  (0)�0⌧3Ê(0, z; A) (z) , (29)

with ⌧3 being the flavor Pauli matrix. The proton mo-
mentum and the displacement of the quark fields were
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I. INTRODUCTION

One of the issues we have to face in computations of PDFs in lattice QCD is the fact that
on the lattice we obtain position space matrix elements that require Fourier transformation
to obtain a quasi-PDF or the PDFs. Here as an example I present the case of Ioffe-time
PDFs from our recent paper [1, 2]. In this case we have the relation:

MR(⌫, z
2 = 1/µ2) ⌘

Z 1

0

dx cos(⌫x) qv(x, µ
2) . (1)

However, lattice QCD calculations provide a limited number of data points for MR(⌫, z2 =
1/µ2) and therefore the cosine transform cannot be inverted. We therefore attempt to do the
job using either fitting or more sophisticated inversion formulas such as the Backus-Gilbert
approach. In the subsequent discussion I will assume that all data are at the same scale and
thus I drop the z2 or µ2 dependence.

II. SIMPLEST INVERSION METHOD: DISCRETIZE THE INTEGRATION

In this approach we chose to sample the unknown function in a set of equally spaced points
in the interval of [0,1]. Let’s assume that we use N+1 points in a trapezoid integration rule.
In this case

�x =
1

N
, xk = k�x =

k

N
(2)

and

MR(⌫) =
1

2
cos(⌫x0) qv(x0) +

N�1X

k=1

�x cos(⌫xk) qv(xk) +
1

2
cos(⌫xN) qv(xN) . (3)

If I happen to have N+1 data points for MR(⌫), then I can solve exactly for the unknown
values of the function qv(xk). This is achieved with a simple linear system solution. Let’s
define the vector m with components

mk = MR(⌫k) (4)

where ⌫k are the values of the Ioffe time for which we have data. Also let q be the vector
with components the unknown values of qv(xk).

qk = qv(xk) (5)

Then the Eq. 3 can be written in matrix form as

m = C · q (6)

with C being the coefficient matrix with matrix elements

Ckl = �x cos(⌫kxl) =
1

N
cos(⌫kxl) for l 2 [1, N � 1]

Ckl =
1

2
�x cos(⌫kxl) =

1

2

1

N
cos(⌫kxl) for l = 0, N (7)

However, we have to be mindful that the coefficient matrix may be singular. How singular
it is depends on the data we have (values of ⌫). Therefore, we may have to resort to non-
standard inversion formulas. Here I use the Moore-Penrose pseudo inverse as implemented
in MATLAB.
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data points. Using ↵s/⇡ = 0.1, we calculate the “evolved”
data points corresponding to the function fM(⌫, z2

0). The
results are shown in Fig. 14. The evolved data points
are now very close to a universal curve.

In Fig. 15, we show the initial data points for the
imaginary part. The evolved data points constructed us-
ing the same ↵s/⇡ = 0.1 value are shown in Fig. 16.
Again, they are close to a universal curve. This analy-
sis indicates that the residual z2

3-dependence of M (⌫, z2
3)

at fixed ⌫ is compatible with the expected logarithmic
evolution at small z2

3 . Clearly this is an important fea-
ture of our calculation which needs to be further studied
as it will play an essential role in reliable extraction of
renormalized PDFs from this type of lattice calculations.

With a smaller lattice spacing, the use of perturbative
evolution may be justified in a wider region of ⌫. While
our data extend to rather large separations ⇠ 1 fm, we
find it instructive to use them as an example to illustrate
the trends generated by the perturbative evolution.
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To this end, we applied the leading logarithm for-
mula (43) with z0 = 2a and ↵s/⇡ = 0.1 to our data
points with z3  6a. Assuming that evolution stops for
z3 & 6a (as indicated by our data), the data points with
7a  z3  10a were evolved to z0 using Eq. (43) with
z3 = 6a, The data points evolved in this way are shown
in Fig. 17.

Fitting the evolved points by cosine Fourier transforms
M(⌫; a, b) of the normalized N(a, b)xa(1�x)b-type func-
tions, we found that they may be described if one takes
a = 0.36(6) and b = 3.95(22). Treating z0 = 2a as the
MS scale µ = 1 GeV, one can further evolve the curve to
the standard reference scale µ2 = 4 GeV2 of the global
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Fit to:

Perturbative evolution only for z/a<6 
above this scale evolution was assumed to be frozen

I. INTRODUCTION

One of the issues we have to face in computations of PDFs in lattice QCD is the fact that
on the lattice we obtain position space matrix elements that require Fourier transformation
to obtain a quasi-PDF or the PDFs. Here as an example I present the case of Ioffe-time
PDFs from our recent paper [1, 2]. In this case we have the relation:

MR(⌫, z
2 = 1/µ2) ⌘

Z 1

0

dx cos(⌫x) qv(x, µ
2) . (1)

However, lattice QCD calculations provide a limited number of data points for MR(⌫, z2 =
1/µ2) and therefore the cosine transform cannot be inverted. We therefore attempt to do the
job using either fitting or more sophisticated inversion formulas such as the Backus-Gilbert
approach. In the subsequent discussion I will assume that all data are at the same scale and
thus I drop the z2 or µ2 dependence.

II. SIMPLEST INVERSION METHOD: DISCRETIZE THE INTEGRATION

In this approach we chose to sample the unknown function in a set of equally spaced points
in the interval of [0,1]. Let’s assume that we use N+1 points in a trapezoid integration rule.
In this case

�x =
1

N
, xk = k�x =

k

N
(2)

and

MR(⌫) =
1

2
cos(⌫x0) qv(x0) +

N�1X

k=1

�x cos(⌫xk) qv(xk) +
1

2
cos(⌫xN) qv(xN) . (3)

If I happen to have N+1 data points for MR(⌫), then I can solve exactly for the unknown
values of the function qv(xk). This is achieved with a simple linear system solution. Let’s
define the vector m with components

mk = MR(⌫k) (4)

where ⌫k are the values of the Ioffe time for which we have data. Also let q be the vector
with components the unknown values of qv(xk).

qk = qv(xk) (5)

Then the Eq. 3 can be written in matrix form as

m = C · q (6)

with C being the coefficient matrix with matrix elements

Ckl = �x cos(⌫kxl) =
1

N
cos(⌫kxl) for l 2 [1, N � 1]

Ckl =
1

2
�x cos(⌫kxl) =

1

2

1

N
cos(⌫kxl) for l = 0, N (7)

However, we have to be mindful that the coefficient matrix may be singular. How singular
it is depends on the data we have (values of ⌫). Therefore, we may have to resort to non-
standard inversion formulas. Here I use the Moore-Penrose pseudo inverse as implemented
in MATLAB.
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Thanks to N. Sato for making this figure 



Summary
• Methods for obtaining parton distribution from Lattice QCD have now emerged 

• An approach based on pseudo-PDFs has been proposed 

• Renormalization is handled in a simple way 

• Light cone limit is obtained by computing real space matrix elements at short Euclidean 
distances 

• All hadron momenta are useful in obtaining PDFs 

• WM/JLab: first numerical tests are available in quenched approximation indicating the feasibility of 
the method 

• Results consistent with DGLAP evolution 

• Dynamical fermion simulations are on the way 

• Lattice spacing effect under study (quenched) 

• Probing the small x region (or large Ioffe time) remains a challenge 

• Large Ioffe time may be probed with high momentum which requires a small lattice spacing 
(JLab anisotropic gauge ensembles?) 

• Correctly applying evolution is essential for obtaining reliable results


