

Charged-particle branching ratios of excited $^{19}{\rm F}$ states and implications for $^{15}{\rm N}$ and $^{18}{\rm O}$ enrichment in presolar grains.

P. Adsley^a

^aIPN Orsay

Presolar grains with local enrichments of 15 N and 18 O such as those found in the Orguiel meteorite [1] potentially result from the helium-burning shell in core-collapse supernovae providing a signature for identification of the origin of these grains.

In the helium-burning shell, 18 F is produced by the 14 N(α, γ) 18 F reaction, subsequently decaying into 18 O. During the shockwave following the collapse the 18 O(α, n) 21 Ne reaction can begin to operate. The 18 F(n, α) 15 N and 18 F(n, p) 18 O reactions can then be activated by the released neutrons. The strengths of these two competing reactions control the final production of 15 N and 18 O, and depend strongly on the behaviour of excited states in 19 F above the neutron threshold [2].

We report an indirect study of charged-particle decays resulting from above the neutron threshold in 19 F in order to better-constrain the 18 F(n, α) 15 N and 18 F(n, p) 18 O reaction rates.

References

- [1] Groopman, Bernatowicz, and Zinner, The Astrophysical Journal Letters **754**, L8 (2012)
- [2] Bojazi and Meyer, Physical Review C **89**, 025807 (2014)