
FDIRC SIMULATION
TOOLS: PREPARING
FOR THE PROTOTYPE
Doug Roberts

University of Maryland

Overview

•! This presentation is just meant as a summary and status
of the current FDIRC Geant4-based simulation and to
begin thinking about what can be used for the full
prototype and what still needs to be done

•!Simulation Status
•! How to get it

•! Options
•! Suitability for Prototype

•!Analysis Tools
•! Current Method

•! What should we be doing, and how to organize

Simulation Status
•!We have a Geant4-base standalone simulation of the

FDIRC
•! It is in the SuperB svn system:
•! Repository: FDIRC
•! Package: fDircG4

•! This package has been used to study resolution vs.
geometry and other options
•!Has also been used to create the gdml file for BRUNO
•! The model allows for creation and tracking of optical

(Cerenkov) photons through the active materials of the
detector
•!Also includes all of the support structure for the bar boxes.
•! Support around FBLOCK itself is not really correct or very detailed

FDIRC in Bruno (all support)

No Outer Skins

An Event

Options
•!Can be run either as full detector (all 12 sectors) or single

sector
•! Single sector is what prototype will be

•!Magnetic field on or off
•!Single particle, di-muon-like distribution, sample of events,

single photon
•! Like the di-muon, we could generate muons from a sample

distribution for the CRT

•!All geometry constants are contained in a single file
•! For prototype, we can use a single sector, keep bar box

structure but turn off other support, turn off magnetic field
•!Bottom Line: I think this will be very easy to adapt to the

CRT prototype

Simulation Output

•!Simulation is (mostly) decoupled from specific
photodetector choice or layout
•! One caveat: simulation can use QE of tube to speed up simulation.
•! Not just QE, but QE * charge collection efficiency

•! If we have mixed assortment of detectors on prototype, we will
have to be more clever

•!Output is basically a ROOT file with lots of information,
most of which we won’t need

•!What we do need:
•! Generated event info (track p, direction, position, time, and same

info as track enters quartz bar…)

•! Generated optical photon info (wavelength, time, direction…)

•! Detected photon info (wavelength, time, position on focal plane…)

Analysis Tools

•!Currently, all of my analysis has been done within ROOT
•! Not sure if this is the future plan?

•!All of the ROOT scripts are in the fDircG4 package
(“macros” directory), but there is little if any documentation
at the moment

•!Multi-step process
•! Simulate Events

•! Generate single-photon dictionary
•! Process single-photon dictionary
•! Automatically done the first time you run the resolution calculation

macro if the photon dictionary root file doesn’t exist yet

•! Correlate simulated events with dictionary

•! Analysis

Analysis Process
•! Simulate Events
•! Basic output is time and position of photon hits at the focal plane of the

FBLOCK.
•! Position is in local coordinates of the focal plane
•! Be careful of a funny sign flip! (Do we have a coordinate sign convention,

number convention…?)

•! Also keep original track information

•! Single Photon Simulation
•! Fixed wavelength (410 nm)
•! Isotropic angular distribution
•! Randomized over x, y, z in bar
•! Randomized over 12 bars in a bar box
•! Same output as other events
•! Typically using a sample of 20,000,000 generated photons
•! Need new sample each time we change the geometry

Process Single Photon Dictionary
•! Single Photon Dictionary is used to create a “map” from PMT pixel

number to photon angles at the exit of the last quartz bar. Map also
includes expected time propagation.

•! Multi-valued map. Depends on:
•! Bar hit (use track information)
•! Path photon takes

•! Lots of different paths in FBLOCK can map from a bar to a given pixel

•! Processing involves clustering dictionary:
•! Within a given pixel, try to reduce the number of dictionary entries by

performing a nearest-neighbor clustering algorithm
•! Works in (!x, !y, t) space with some nominal resolution in these variables.
•! Recursive algorithm with a cutoff based on “"2” in (!x, !y, t) space.
•! Persist clustered dictionary
•! Uses a “PixelMapper” function to go from focal plane coordinates to PMT pixel

number
•! Includes packing efficiency, dead space around edge of tube
•! Would have to make a version for prototype

Photon Dictionary, Edge Pixel, Bar 6

!X (radians)

! Y
 (

ra
di

an
s)

Pre-Clustering. Note near symmetry in |!x| and |!y|

Calculate Possible !C Values
•! For each photon hit, we calculate possible !C values with

respect to the track
•! Several sources of ambiguity to try to go back to photon’s

original direction:
•! Left-Right
•! Up-Down
•! Forward-Backward
•! Path in FBLOCK
•! Actually, path after leaving last quartz bar. Includes bounces in wedges.

•! Therefore, each photon can have many different !C “solutions”
•! Time resolves forward-backward in most cases
•! Many solutions are non-physical and are discarded
•! But still left with multiple solutions

•! Even with multiple solutions, idea is that correct one will be
common to all photons from the track

Running in ROOT

•! From ROOT in “macros” directory:
•! run “LoadMacros.C” (root[0] .x LoadMacros.C)

•! Execute “run” method of DoRes.C
•! This needs some work to be generalized. Ideas welcome!

•! This will load the relevant SinglePhoton dictionary or create it if it
doesn’t exist.

•! Determines possible !C solutions for each photon
•! Output will be a new ROOT file that contains all solutions for each

photon in TTree “ResCalcTree”

•!Macro “AngleRes.C” has some examples of making plots
from this TTree

•! I make no guarantees that this will just run OOTB!

What Next?

•! This code was primarily written for my use, and therefore
not very user-friendly, or clean, or documented.

•! I have no attachment to this code, and would be happy to
see it all scrapped. If I had to do it all over again, I would
probably do some things differently based on what I’ve
learned.

•!Would be nice to have some organized plan to build some
code and structure that would be useful and easy to use
for the collaboration.

•! I’d be more than happy to work on this with others.

