

UNIVERSITÄT MAINZ

Measurement of hadron form factors at **BES**II

June 26, 2018 | Christoph Florian Redmer for the BESIII Collaboration

> QCD@Work - International Workshop on QCD Theory and Experiment Matera, 2018

JG U Why measuring hadron form factors?

- Hadrons not point-like
 - Internal stucture

- Sum of valence quark masses not hadron mass
 - Internal dynamics

Form factors as parametrization of structure and internal dynamics of hadrons

BESIII Detector

NIM A614 (2010) 345

BESIII at BEPCII

Operated at BEPCII collider in Beijing

- 2.0 $\leq \sqrt{s}$ [GeV] \leq 4.6
- Design luminosity achieved $\mathcal{L} = 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$ at $\psi(3770)$

Large data sets for

- Charmonium spectroscopy
- Charm physics
- Light hadrons
- τ-mass and R-scan

June 26, 2018

Hadronic Cross Sections

- Exclusive Cross Sections
 - Direct scan

Inclusive Cross Sections

Direct scan

Initial State Radiation

Initial State Radiation

Reduces effective CMS energy

$$\sqrt{\mathsf{s}'} = \sqrt{\mathsf{s} - 2\sqrt{\mathsf{s}}\mathsf{E}_\gamma}$$

Radiator function relates to non-radiative process

 $\frac{\mathrm{d}\sigma_{\mathsf{had}+\gamma}}{\mathrm{d}\mathsf{m}_{\gamma}} = \frac{2\mathsf{m}_{\mathsf{had}}}{\mathsf{s}}\mathsf{W}(\mathsf{s},\mathsf{E}_{\gamma},\theta_{\gamma})_{\mathsf{had}}$

- Emission of ISR suppressed by $\frac{\alpha}{\pi}$
- Large integrated luminosity needed for precision studies
 - > 10 fb⁻¹ at BESIII with $3.77 \le \sqrt{s[GeV]} \le 4.6$

Measurement Strategy

- Detect hadronic system
- ISR photon detected
 - Acceptance from $\pi^+\pi^-$ threshold
 - Large background contamination at high $\sqrt{s'}$
- ISR photon undetected
 - High statistics
 - Acceptance for $\sqrt{s'} > 1$ GeV
 - Small background contamination

$JG \cup Anomalous Magnetic Moment of <math>\mu$

June 26, 2018

JG U Hadronic Vacuum Polarization

Related to hadronic cross sections by optical theorem

June 26, 2018

JG

 $e^+e^- \rightarrow \pi^+\pi^-$

- Tagged ISR technique
- $\mu \pi$ separation with Artificial Neural Network
- careful evaluation of systematics
 - Total uncertainty of 0.9% achieved
 - Dominated by
 - Luminosity (0.5%)
 - Radiator function (0.5%)

evaluation for 0.6 ≤ m_{ππ} ≤ 0.9
 70% of total 2π contribution
 50% of a^{hVP}_μ contribution

Comparison to previous measurements: Systematic shift in pion form factor

- below ρ/ω interference w.r.t. BaBar
- above ρ/ω interference w.r.t. KLOE

 $e^+e^- \rightarrow \pi^+\pi^-$

- Precision competitive to measurements by BaBar and KLOE
- Good agreement with all KLOE results
- **BESIII** result confirms $a_{\mu}^{\text{theo},\text{SM}} a_{\mu}^{\text{exp}} > 3\sigma$
- Reevaluations of a_{μ}^{hVP} including BESIII result improve accuracy by 20%

EPJ C77 (2017), 820

Baryon EM Form Factors

BESIII: Time-like EM form factors (EMFF)

- Hadronic vector currents → (2s+1) EMFF
- 2 EMFF for baryons
 - Pauli and Dirac FF $\Gamma^{\mu} = \gamma^{\mu} F_1(q^2) \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_B} F_2(q^2)$

Sachs parametrization:

 $G_E(q^2) = F_1(q^2) + \frac{q^2}{4M_P}F_2(q^2) \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$

• Differential cross section: $\frac{\mathrm{d}\sigma_{BB}^{\mathrm{Born}}}{\mathrm{d}\Omega} = \frac{\alpha^2 \beta^2 C}{4q^2} \left[(1 + \cos^2 \theta_{\mathrm{B}}^{\mathrm{CM}}) |G_M(q^2)|^2 + \frac{1}{\tau} |G_E(q^2)|^2 \sin^2 \theta_{\mathrm{B}}^{\mathrm{CM}} \right]$

Total cross section:

$$\sigma_{BB}^{\text{Born}} = \frac{4\pi\alpha^2\beta^2 C}{3q^2} \left[|G_M(q^2)|^2 + \frac{1}{2\tau} |G_E(q^2)|^2 \right]$$

Effective EMFF:

$$|G_{\rm eff}(q^2)| = \sqrt{\frac{\sigma_{BB}^{\rm Born}}{(1+\frac{1}{2\tau})\frac{4\pi\alpha^2\beta^2C}{3q^2}}}, \text{ assuming } |G_M(q^2)| = |G_E(q^2)|$$

June 26, 2018

Proton EMFF from Scan

- 'pilot scan' analyzed
 - I57 pb⁻¹ at 12 scan points 2232.4 ≤ √s[MeV] ≤ 3671.0
- Two tracks, PID by dE/dx and TOF
- Kinematic constraints to reduce background

- Cross section and effective EMFF
 - Good agreement with previous measurements
 - Overall improvement of uncertainties by ~ 30%

Proton EMFF from Scan

Extraction of EMFF ratio $R = |G_E|/|G_M|$ at scan points with largest statistics

- Agreement with BaBar measurement
- BESIII result statistics limited
 - New high statistics scan data under evaluation

C.F. Redmer - Hadron Form Factors at BESIII

2.2

2.4

 $M_{p\overline{p}}$ (GeV/c²)

2.6

2.8

3.0

0.0

2.0

JG

Proton EMFF from ISR

- 7.4 fb⁻¹ at $3.773 \le \sqrt{s}[\text{GeV}] \le 4.6$ analyzed
- Both ISR analysis schemes exploited!

Tagged [large angle(LA)]

- Two tracks, one cluster
- 4C kinematic fit
- = 5C veto fit with additional γ

Determination of EMFF ratio:

- Tagged: 6 bins in $1.877 \le \sqrt{s[GeV]} \le 3.0$
- Untagged: 3 bins in $2.0 \le \sqrt{s[GeV]} \le 3.0$
- Competitive accuracy
- Agreement with BaBar and BESIII scan

Untagged [small angle (SA)]

- Two tracks, PID by dE/dx and TOF
- Small polar angle of missing momentum
- Missing mass squared

Proton EMFF from ISR

Effective Form Factor

Measurement of cross section and effective EMFF

- Tagged: 31 bins in $1.877 \le \sqrt{s[GeV]} \le 3.0$
- Untagged: 30 bins in $2.0 \le \sqrt{s[GeV]} \le 3.8$
- Consistent with previous measurements
- Untagged ISR competitive in statistics with BaBar

JG U Stuctures in Effective Proton FF

Effective EMFF as a function of three-momentum of the relative motion of the protons

- Damped oscillation pattern in $F^{\text{osc}} = |G_{\text{eff}}| F^0$
 - F_0 : regular behavior of $|G_{eff}|$ over long range of $M_{p\bar{p}}$

- Observed in BaBar results of |G_{eff}|
- Confirmed by BESIII result

Hyperons

Hyperons

 $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$

- Four scan points: 4574.5, 4580.0, 4590.0, 4599.5 MeV
- 10 Cabbibo-favored decay modes (+c.c.)

Events / 0.2

6000

4000

2000

0

-1

-0.5

- Cross section as weighted average
- Plateau at threshold observed
- Tension with Belle result

4574.5 MeV

0

 $\cos\theta_{\Lambda}$

0.5

-0.5

400

300

200

100

0

-1

Events / 0.2

0

Weak decay of Λ self analyzing: Access to phase information!

Hyperons

- High statistics sample at 2.396 GeV
- $e^+e^- \to \Lambda \bar{\Lambda}$
 - Four charged tracks, PID by momentum
 - Mass windows to select A

- $\sigma^{Born} = 119.0 \pm 5.3_{\text{statule}} 7.3_{syst}$ $|G_{\text{eff}}| = 0.123 \pm 0.003_{\text{stat}} \pm 0.004_{syst}$
 - Compatible with previous measurements by BaBar and BESIII
- Relative phase from fit to decay distributions

Relative Phase of Λ EMFF

$$\mathcal{W}(\xi) = \mathcal{T}_{0}(\xi) + \eta \,\mathcal{T}_{5}(\xi) - \alpha_{\Lambda}^{2} \left(\mathcal{T}_{1}(\xi) + \sqrt{1 - \eta^{2}} \cos(\Delta \Phi) \,\mathcal{T}_{2}(\xi) + \eta \,\mathcal{T}_{6}(\xi) \right) + \alpha_{\Lambda} \sqrt{1 - \eta^{2}} \sin(\Delta \Phi) \left(\mathcal{T}_{3}(\xi) - \mathcal{T}_{4}(\xi) \right).$$

 $\mathcal{F}_{0}(\zeta) = \mathbf{1}$ $\mathcal{F}_{1}(\xi) = \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} + \cos^{2}\theta \cos\theta_{1} \cos\theta_{2}$ $\mathcal{F}_{2}(\xi) = \sin\theta \cos\theta (\sin\theta_{1} \cos\theta_{2} \cos\phi_{1} + \cos\theta_{1} \sin\theta_{2} \cos\phi_{2})$ $\mathcal{F}_{3}(\xi) = \sin\theta \cos\theta \sin\theta_{1} \sin\phi_{1}$ $\mathcal{F}_{4}(\xi) = \sin\theta \cos\theta \sin\theta_{2} \sin\phi_{2}$ $\mathcal{F}_{5}(\xi) = \cos^{2}\theta$ $\mathcal{F}_{6}(\xi) = \cos\theta_{1} \cos\theta_{2} - \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \sin\phi_{1} \sin\phi_{2}$

Fäldt, Kupsc Phys. Lett. B772 (2017) 16

JG

Summary

Form factors contain valuable information on hadron structure

BESIII perfect laboratory to study hadron FF's

- Scan, tagged, and untagged ISR
- Mesons
 - Important input to calculations of a_{μ}^{hVP}
 - Precision measurement of $e^+e^- \rightarrow \pi^+\pi^-$
 - Higher multiplicities $(\pi^+\pi^-\pi^0, \pi^+\pi^-\pi^0\pi^0, ...)$ in internal review

Baryons

- First measurements of p, Λ, Λ_c
 - Intriguing enhancements at threshold
 - $\blacksquare \mbox{Oscillating behavior of } p \mbox{ effective FF}$
- High statistics scan data available
 - \blacksquare First measurement of relative phase of EMFF in Λ
 - Measurements of nucleon (p and n!) form factors in internal review
- \blacksquare Prospects for Λ_c Potential energy upgrade of the accelerator

Phys. Lett. B753 (2016) 629

```
Phys. Rev. D91 (2015) 112004
Phys. Rev. D97 (2018) 032013
Phys. Rev. Lett. 120 (2018) 132001
```