The Search For The Higgs Boson In The Complete Run II Dataset With CDF

Homer Wolfe The Ohio State University On Behalf of the CDF Collaboration

> Les Rencontres de Physique de la Vallée d'Aoste 2 March 2012 La Thuile, Italy

Overview

• Goal: <u>Direct</u> Evidence for the SM Higgs Boson

- Motivation
- •2011 Search Status
- The Tevatron, CDF
- SM Higgs Production & Decay at the Tevatron
- Recent Advancements in Search Techniques
- Prospects for Full Dataset Results
- The Future

Theoretical Motivation

- Gauge invariance suggests massless W and Z bosons
 - W, Z observed to be massive
- In SM, W&Z observable mass via electroweak symmetry breaking
- Ground breaking work on EWSB:
 - **F. Englert, R. Brout**, PRL 13 (9): 321–323.
 - **P.W. Higgs**, PRL 13 (16): 508–509.
 - G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, PRL 13 (20): 585–587.
- Proposed mechanism of EWSB predicts an additional observable scalar particle.

Experimental Status

- Resulting boson mass is unpredicted by theory
 - Mass determines production and decay rates (next slide)
- Indirect constraints (MW, Mtop) prefer a "light" SM Higgs Boson
 - New CDF 2012 W mass!
 (B. Jayatilaka, La Thuile)
- Direct Searches:
 Exclusions of MH:
 - **LEP** < 114 GeV
 - arXiv:0602042v1
 - Tevatron [156,177] GeV
 - arXiv:1107.5518
 - LHC [~127, 600] GeV
 - arXiv:1202.1408 (ATLAS)
 - arXiv:1202.1488 (CMS)

Tevatron: Powerful in H→bb

The Tevatron, Batavia IL, USA

- Superconducting storage ring
 - 1 beampipe, 1 km radius
- •Run II: Mar 2001-Sept 2011
- Provided pp collisions at 1.96 TeV to CDF/DØ
 - 36x36 bunches
 - ~E10-E11 particles per bunch
 - ~21µs per revolution
 - ~1.5 MJ beam energy
- Thanks to FNAL Beams Division!

6

- Peak inst.: >4.2E32 cm⁻²/s
- ~70/pb delivered/week
- ~12/fb delivered/exp.

CDFII: a Multipurpose Collider Detector

- ~5K tons (~2.5K central only)
- ~10 m each direction
- ~100 Hz readout
- ~720 K silicon tracker readout channels
- Muon chambers: |η|<1.5
- Silicon tracking |η|<2-2.5[°]
- Drift cell tracker
 1.4 Tesla B field, |η|<1.1
- Pb/Cu/scint calor. |η|<3.2
 JES uncertainty 2-3%

SM Higgs Production at The Tevatron

Some of the Many Final States in Associated Production

1 SM Higgs, Many Decays

• For the 2012 CDF Winter results:

- SM predicts ~167 Higgs (125 GeV) events *reconstructed and selected*
- SM background of ~200K
- Partitioned over many final states
 - Low (<150 GeV) mass
 - WH, ZH, METbb, ttH, $\gamma\gamma$,VBF \rightarrow bbjj
 - High (>150 GeV) mass
 - WWW, WWZ, WW, ZZ, τ-decays, full/semi-leptonic...

• 16 CDF analyses:

- 93 orthogonal sub-channels.
- Small signal on diverse background
 - Maximizing signal acceptance is key

Quantitative Statements About Small Signals

- Reconstruct, select events
 - Simulate background processes

vents/ 0.02 • Optimize signal significance

- Avoid cutting any signal events!
- Discriminant distribution:
 - Dijet mass
 - Neural network, BDT, Matrix element probability
- Background rich regions can be used to constrain backgrounds underneath signal, and constrain systematic uncertainties

Quantitative Statements About Small Signals

- Bayesian Method:
 - Compare 2 models:
 - BG-only
 - BG+signal hypotheses
 - Compute Poisson Likelihood
 - Compatibility of data with each hypothesis
 - Compute posterior probability density:
 - Cross section scaling: R=σ/σ(SM)
 Flat Prior: R=[0,Large #]
 - Nuisance parameters:
 - Detector response, background cross sections, PDFs, etc.
 - Integrate likelihood over nuisance parameters:
 - Produces posterior probability as function of R alone

Quantitative Statements About Small Signals

- Perform this analysis for each assumed Higgs Mass:
 - For data (Observed upper limit)
 - Construct ensemble of *background-only* pseudoexperiments (Expected sensitivity)
 - Each has same statistical uncertainty as data
 - Shaded bands show background-like statistical and systematic excursions

CDF: Relentless Pursuit

- CDF analyses improve far beyond adding data.
 - Improvements made are beyond those projected in 2007!
 - [(2007 Exp)/1.5, (2007 Exp)/2.25] CDF Run II Preliminary, Fr_H=115 GeV
- Adding data alone to the 2007 analyses would have required >30/fb to reach SM MH=115 cross section sensitivity!

CDF Combined Higgs Search: 2011

- Better than 2xSM over non-excluded range
 - Broad excess 100-150 GeV
 - Not significant (~ $0.5-\sigma$)
 - Mjj resolution ~+/-15 GeV
 - Most sensitive searches at 125 GeV, ~equal:
 - WH→lvbb
 - ZH→llbb
 - WH+ZH→METbb
 - H→WW→lvlv
- Sensitivities add roughly as inverse quadrature

New Major Improvements

- Summer 2011 results used 7.5-8/fb
 - Luminosity quoted depends on each final state
 - Full CDF dataset results (9.4-10/fb) presented here
- Improved b-jet identification:
 - More acceptance: ~10-15% better sensitivity in WH, ZH
 - less background
- Inclusive online selection
- More efficient offline selection
 - See H→WW presentation (R. St. Denis)
- Improved background discrimination

Identifying Jets from Hadronic Higgs Decays

- 2011: CDF WH (ZH,VH) used 3 (2) different btaggers in orthogonal series
- 2012: New CDF Neural Network b-tagger
 - Uses most sensitive variables from previous CDF taggers
 - Uses semileptonic b-decay muons, Jet tower mass, secondary vertex mass...
 - Can tag jets with only one charged particle track
 - Continuous variable output allows for analysis group to choose cuts:
 - optimize expected sensitivity
 - For identical false-positive rates of previous taggers, b-jet efficiency:
 - Tight: 38.6→53.6%
 - False Positive: 1.4%
 - Loose: 47.1→59.3%
 - False Positive: 2.8%

Calibration of 2012 b-Jet Tagger In Multiple Control Samples

Calibration samples

- Kinematic selection of W+4,5 jets events (di-top)
- QCD dijets with low relative-pt electrons
 - Not an input to tagger
 - Semileptonic decay electrons
 - Enriched in b,c
 - Photon conversion electrons (New method)
 - Primarily u,d,s,c,g
 - Examine both e-jet and opposing side jets
- These samples produce correction factors and uncertainty estimates for simulated events
- Resulting b-jet tag-rate corrections: ~5%±4%

Deployment of 2012 NN b-jet ID

After calibration of LF and b-jet responses

- Examine data/MC yields in samples of W+jets
 - W+1jet: largely u,d,s,c,g
 - W+4,5 Jet: Di-Top
 - real b-jets
 - W+2,3: Mixture
- Good agreement overall
 - ~40% K-factor uncertainties for W+jets

Improved Discrimination

20

- Both WH and ZH now performing Multi-stage discriminants:
- Gets background out from under signal
- Prevents the need for cuts
 - 4% gain in WH 3-jet bin (removing di-top)
 - ~7% gain in ZH by separating di-top and ZZ

WZ+ZZ: Validating Methods

- CDF detects SM-compatible semi-leptonic WZ and ZZ over a tagged background of dijets.
 - llbb, lvbb, vvbb
 - Identical final state as a "90 GeV Higgs"
 - See upcoming talks at Moriond EWK and QCD by J. Vizan Garcia and J. Sekaric
- SM expected yields for WH,ZH,VH: (Summed over all subchannels)
 - ~215 WZ+ZZ ~591 H→bb (MH=90) ~84 H→bb (MH=125)

- Measured Cross Section to be released next week!
- Additionally, The newly generated 90 GeV Higgs signal MC will test our dijet modeling lower in Mjj than ever before.

2011->2012 Limit Comparisons

- WW, METbb:
 - Biggest improvement is data update
 - ~11-12% sensitivity improvement everywhere
 - Overall behavior of limits should not dramatically change

2011->2012 WH Limit Comparisons

- Added data + improved tagging + new triggers + update of 3-jet bin:
 - 22.7→40.2 Expected
 Signal Events!!!
 - Roughly 30% stronger expected limits

ZH: Massive Improvements

- ZH Analysis: Total sensitivity improvement after systematics: 58% (a) MH=120
 - New Data: ~11%
 - Improved lepton Acceptance: ~8%
 - New b-tagger: ~12%
 - Other Improvements ~5-10 each%
 - Exclusive Z+2,3-jet categories
 - Previously had inclusive 2-jet category
 - Expert ZH, ZZ separator
 - Higher threshold on jets
 - Dijet mass resolution: 12%→9.6%
 - Improved MET calculation, less sensitive to underlying event

2011→2012 ZH Limit Comparisons

- Total Yield:
 - 5.3(1388)→7.2(1211) expected S(B) events.
 - Per-event Tagging Efficency was 60%, now is 69%
 - Better rejection of BG
 - Double integrated signal significance!
 - EPS 2011 Limit
 Median is at
 2012 +1-σ!

2011->2012 Full Limit Comparisons

- Major gains in expected sensitivity from data and tagging
 - ~30% from 115-125
 - ~15% at high mass
 - CDF expects to be sensitive to at most √2*SM @ MH=130
 - Expects to exclude [152-175] GeV

Coming Soon

• Next Week:

- Release observed limits next Weds at Moriond!
- Tevatron Combination talk at Moriond EWK by Wade Fisher! 2xCDF Prelimin
- Potential for ~1xSM exclusion sensitivity
- Near Future
 - Consolidate improvements across all channels
 - >5% improvement in 125 GeV sensitivity still possible

- Publish PRL/PRD/NIM for analyses/methods

Conclusions

- The CDF Collaboration has produced Higgs searches with expected sensitivities a factor of 2 better than 2007 beyond luminosity additions!
- CDF is sensitive to
 <√2xSM Everywhere
 - 2XCDF would have
 >25% chance of
 3-sigma!
- Tevatron Leads in H→bb
- The Tevatron full dataset combined Higgs search will be exciting!

Conclusions

- For additional details see
 - Tevatron: http://tevnphwg.fnal.gov/results/SM_Higgs_Winter_12/
 - CDF: http://www-cdf.fnal.gov/physics/new/hdg/Results.html
 - D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.html
- Thanks to everyone at CDF who contributed to this update!
- Bigger thanks to everyone who designed, built, or operated CDF!
- FNAL Computing Division: Thanks for all the computing power and software!
- FNAL Beams Division: Thanks for all the collisions!
- Photographs of Fermilab and its wildlife were taken by Reidar Hahn, FNAL VMS

Thank you for your attention

Questions?

CDF JES

PDFs

FIG. 1: Kinematic coverage of the DIS and collider $pp-p\bar{p}$ experiments. For pp and $p-\bar{p}$ colliders, the Bjorken x_1 and x_2 of the interacting quarks are related to the mass M of the Drell-Yan pair and its rapidity y as $x_{1,2} = M/\sqrt{S} \exp(\pm y)$ where S is the center of mass energy squared for the experiment.

Comparing The Higgs Search To Single-Top Discovery

- Same machinery was run for the Single Top obs/discovery 2008-9
- Currently going through same steps with WZ/ZZ→ leptons+HF to validate low-Mass Higgs Search

Comparison To EWK Diboson

