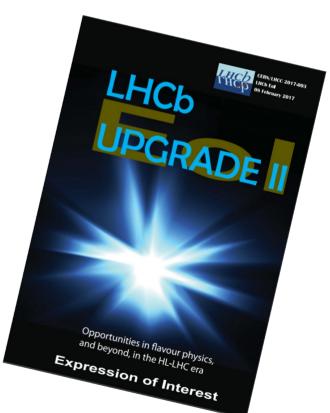
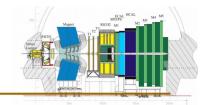
Physics opportunities with an upgraded LHCb detector in the HL-LHC era

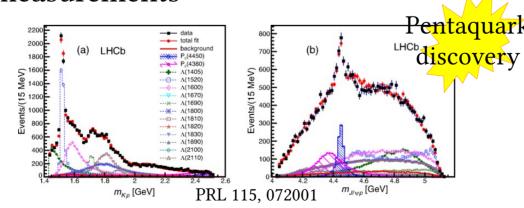

Sascha Stahl, CERN

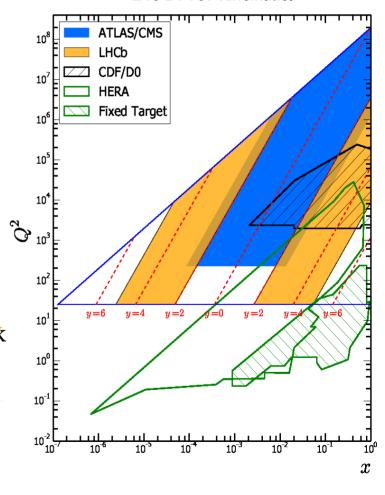
on behalf of the LHCb collaboration


Les Rencontres de Physique de la Vallée d'Aoste

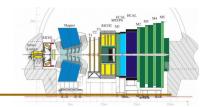
11/03/2017

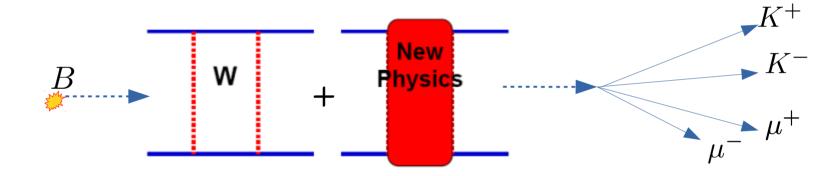
Some slides inspired by the very nice experimental and theoretical flavour physics talks from this week.



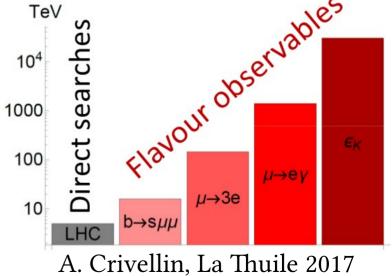

LHCb physics goals

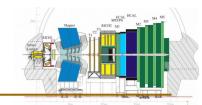
LHCb - General purpose detector in forward direction

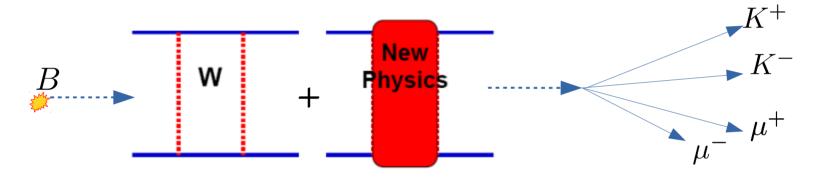

- Unique rapidity coverage
- Rich program of:
 - Electroweak physics
 - Production and spectroscopy
 - Heavy Ion and fixed target physics
 - Heavy Flavour physics
- Complementary and competitive measurements

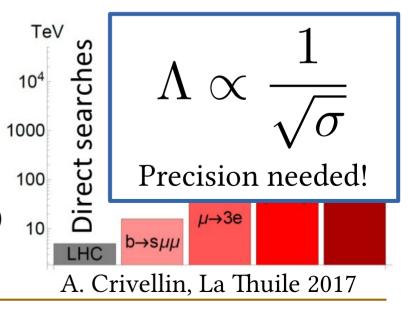


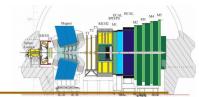
LHC 14 TeV Kinematics

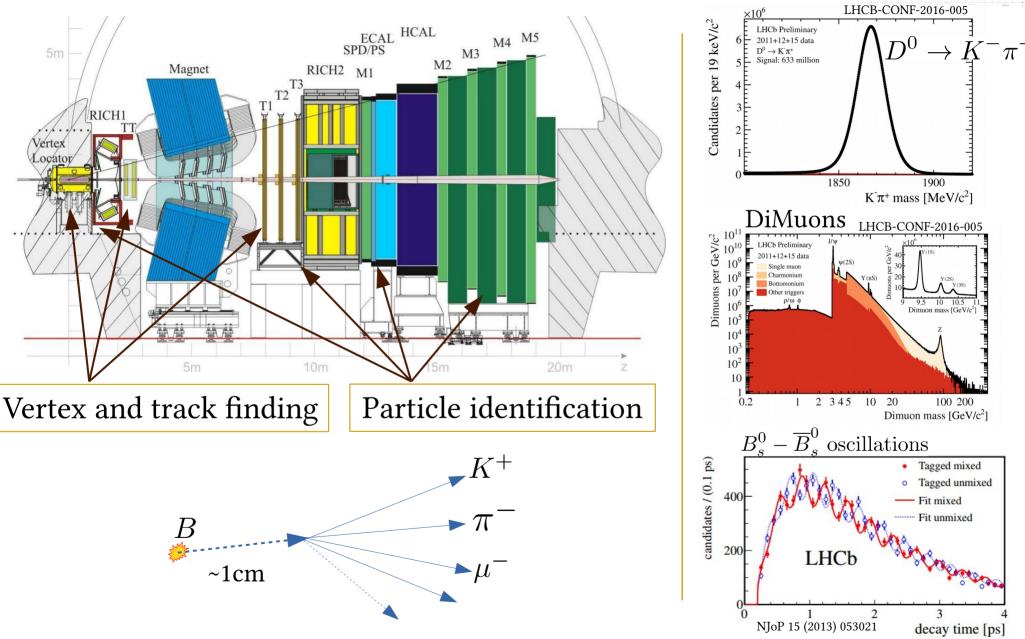

LHCb physics goals


Heavy Flavour Physics: Study decays of b and c hadrons to look for anomalous effects beyond the Standard Model

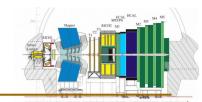

- Indirect observation of unknown particles via quantum corrections
- Complementary to production of on-shell particles at LHC, O(1 TeV)
- Probe higher mass scales, O(10 TeV)


LHCb physics goals

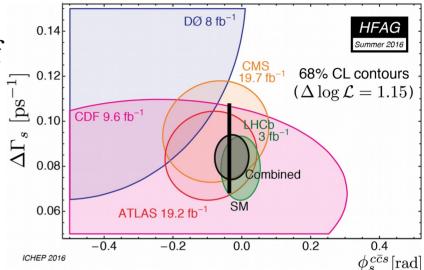

Heavy Flavour Physics:
Study decays of b and c hadrons to look for anomalous effects beyond the Standard Model

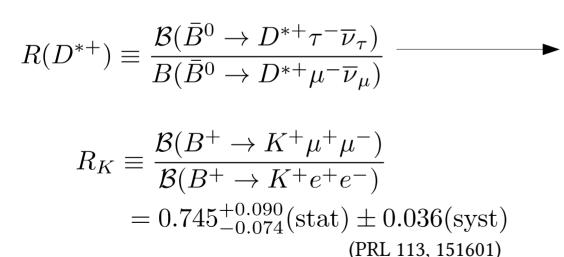


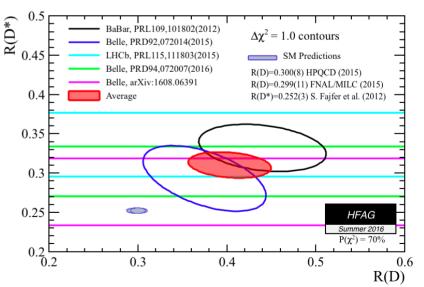
- Indirect observation of unknown particles via quantum corrections
- Complementary to production of on-shell particles at LHC, **O(1 TeV)**
- Probe higher mass scales, **O(10 TeV)**



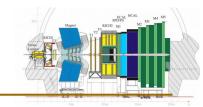
The LHCb experiment

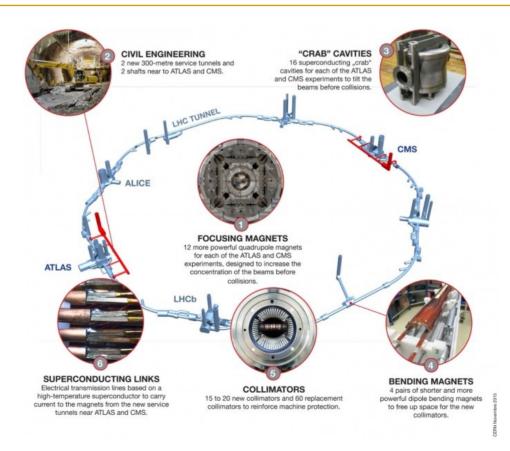

Lessons* from LHC Run 1



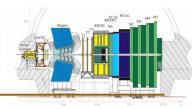

*very selective

- Some observables spot on with SM
 - E.g. high precision measurement of mixing phase in B_s oscillations

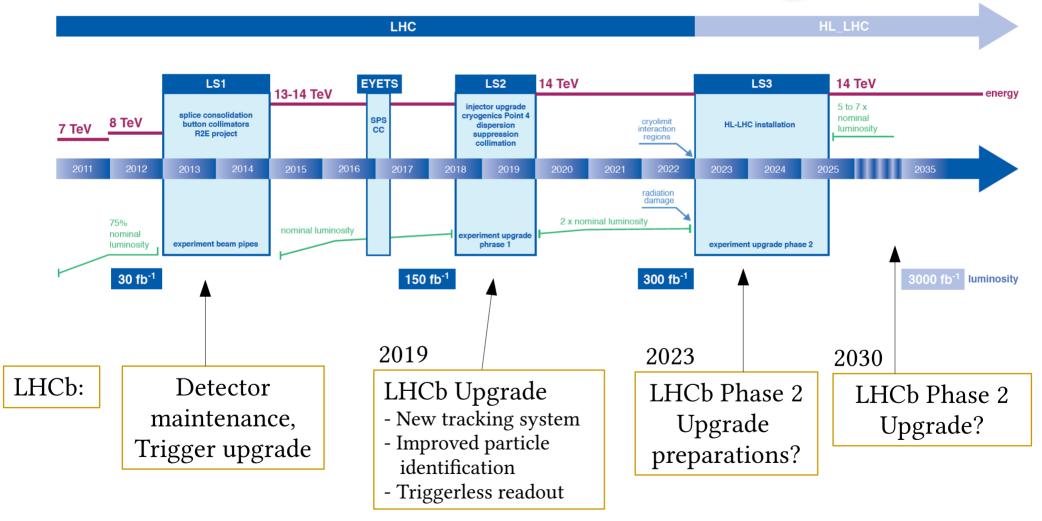

- Some first cracks in the SM?
 - Does lepton universality hold?



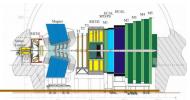
High Lumi LHC


"Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. This upgrade programme will also provide further exciting opportunities for the study of flavour physics and the quark-gluon plasma.

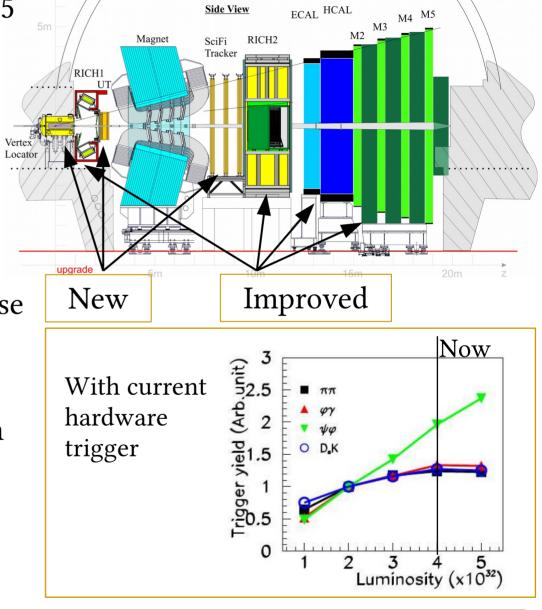
European Strategy for Particle Physics 2013

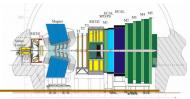

Highlights by me.

HL-LHC and LHCb timeline

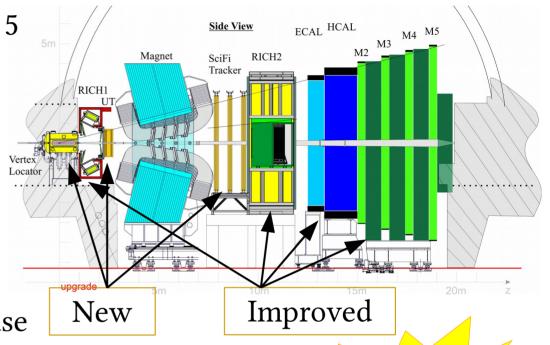


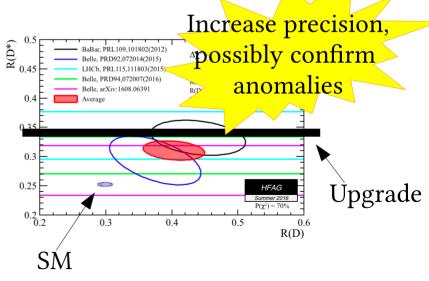
LHC / HL-LHC Plan

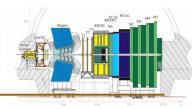



Interlude: LHCb Phase 1 Upgrade

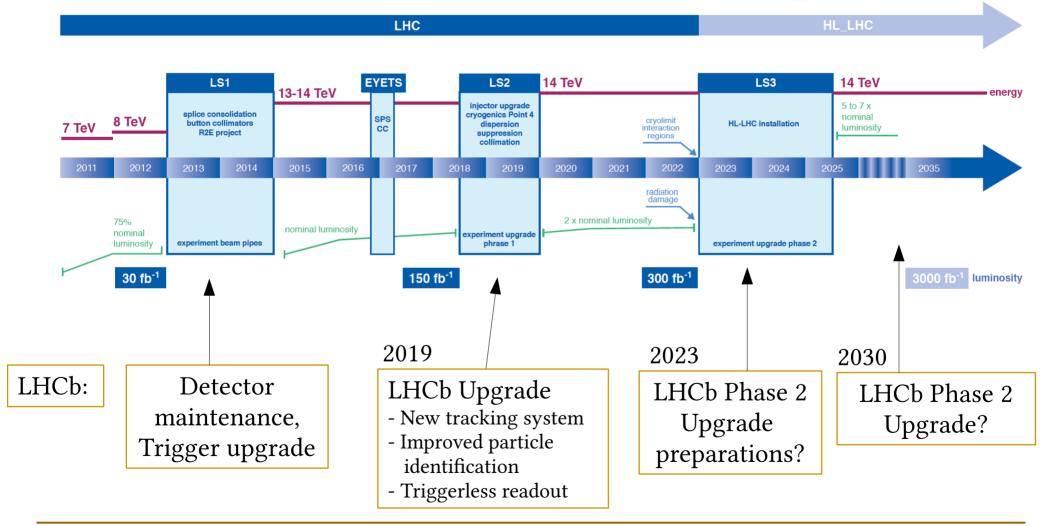
- Luminosity increases by factor 5
- New and improved detectors
- Trigger-less readout
 - Versatile and more efficient software trigger
 - Real-time calibration and alignment of detector
 - Real-time analysis to increase physics rate
- Project well on track
 - Real-time analysis approach demonstrated in Run 2
 - Installation in LS2 in 2019
 - Start taking data after LS2



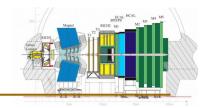

Interlude: LHCb Phase 1 Upgrade


Luminosity increases by factor 5

- New and improved detectors
- Trigger-less readout
 - Versatile and more efficient software trigger
 - Real-time calibration and alignment of detector
 - Real-time analysis to increase physics rate
- Project well on track
 - Real-time analysis approach demonstrated in Run 2
 - Installation in LS2 in 2019
 - Start taking data after LS2

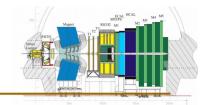


HL-LHC and LHCb timeline



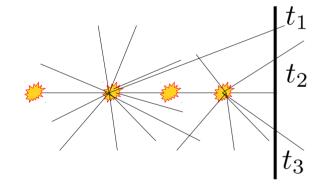
LHC / HL-LHC Plan

Luminosity goals

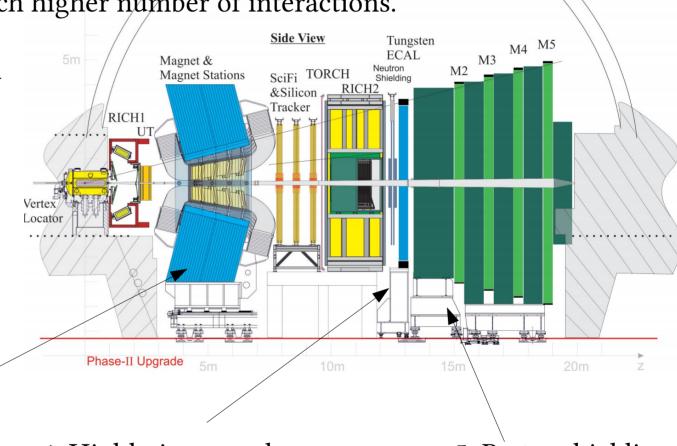

Current	Phase 1 Upgrade	Phase 2 Upgrade

	LHC	Period of	Maximum \mathcal{L}	Cumulative
	Run	data taking	$[{\rm cm}^{-2}{\rm s}^{-1}]$	$\int \mathcal{L} dt \ [\text{fb}^{-1}]$
Current detector	1 & 2	2010-2012, 2015-2018	4×10^{32}	8
Phase-I Upgrade	3 & 4	$2021-2023,\ 2026-2029$	2×10^{33}	50
Phase-II Upgrade	$5 \rightarrow$	$20312033,\ 2035\rightarrow$	2×10^{34}	300

(Limited by LHC considerations)

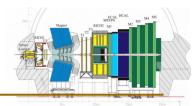

How do we adapt detector layout to profit from higher luminosity and extend the physics reach of LHCb?

Phase 2 upgrade in a nutshell



1. Improve granularity and radiation hardness of detectors to cope with much higher number of interactions.

2. Add timing information to detectors to associate signals to a collision.

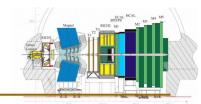

3. Improve low momentum tracking.

4. Highly improved electromagnetic calorimeter.

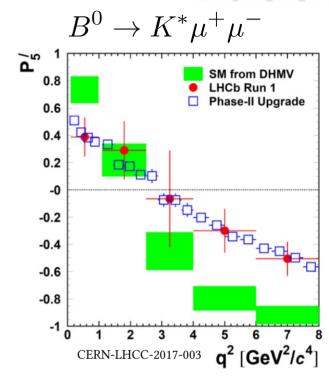
5. Better shielding for muons.

Physics opportunities of Phase 2

Continue testing all corners of the flavour sector.

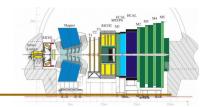

Many theoretically clean observables stay statistically limited.

Measure new observables with high precision.


Rare processes and lepton-universality tests
Precision tests of CKM paradigm
Lower pt signatures (charm and strange)
(Exotic hadrons and spectroscopy)
(Forward and high-pt physics)
(Ion and fixed target physics)

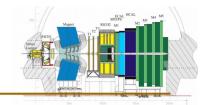
Not a full list discussed here, see CERN-LHCC-2017-003

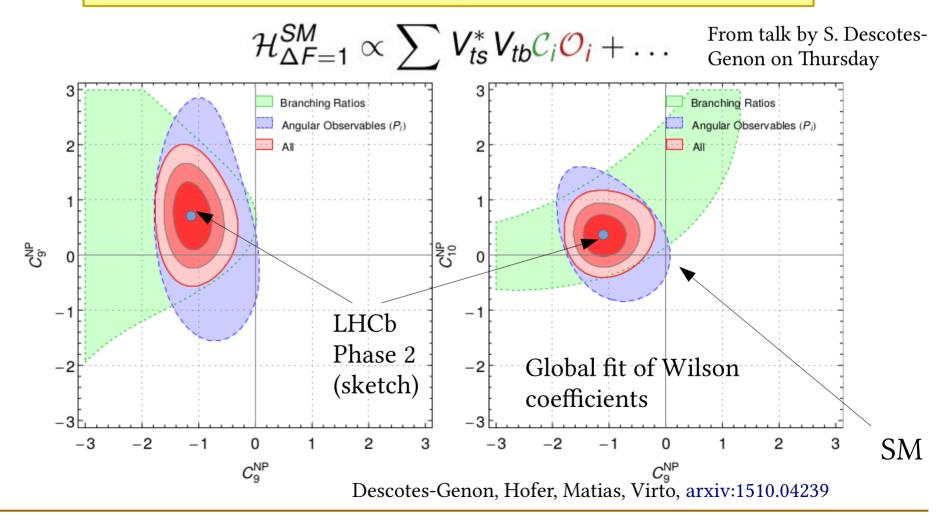
Rare processes and LFU


- Continue mapping observables in $b \to sl^+l^-$ and $b \to dl^+l^-$ transitions
 - Data driven methods to reduce theory uncertainties*
 - Test lepton universality by comparing electron and muon fina $B_s^0 \to \overline{K}^* \mu^+ \mu$
 - Reach competitive precision with suppressed modes like
 - Make time dependent measurements, e.g. in $B_s^0 \to \phi \mu^+ \mu^-, B^0 \to \rho^0 \mu^+ \mu^-$
 - Increased luminosity will enable measurements with baryons

*See K. De Bruyn on Thursday

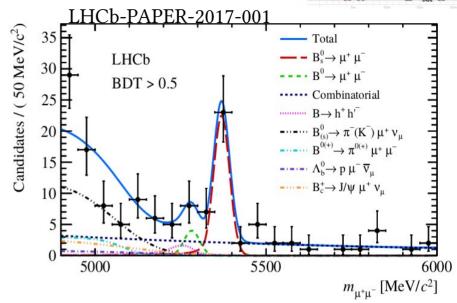
- Accompany with measurements of radiative decays $b \to s \gamma$
- Improved electron and photon reconstruction essential

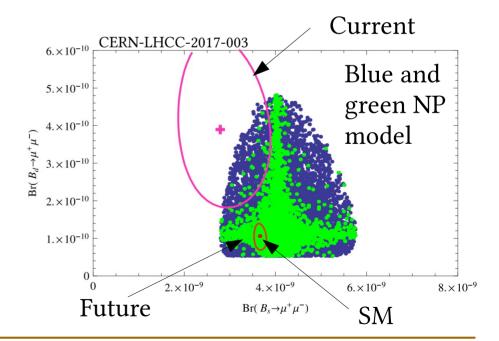

Rare processes and LFU

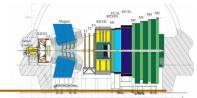

Opportunity to make comprehensive test by looking at very wide range of observables in different modes and different lepton final states

Observable	Run 1 result	$8\mathrm{fb}^{-1}$	$50 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$
Yield $B^0 \to K^{*0} \mu^+ \mu^-$	2398 ± 57 63	9175	70480	435393
Yield $B_s^0 \to \phi \mu^+ \mu^-$	432 ± 24 64	1653	12697	78436
Yield $B^+ \to K^+ \mu^+ \mu^-$	4746 ± 81 71	18159	139491	861709
Yield $B^+ \to \pi^+ \mu^+ \mu^-$	93 ± 12 72	355	2725	16831
Yield $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$	373 ± 25 73	1426	10957	67688
Yield $B^+ \to K^+ e^+ e^- \ (1 < q^2 < 6 \text{GeV}^2/c^4)$	254 ± 29 65	972	7465	46118
$d\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-, 1.0 < q^2 < 6 \text{GeV}^2/c^4)/dq^2[10^{-9} \text{GeV}^{-2}c^4]$	$0.91 \pm 0.21 \pm 0.03$ 72	0.11	0.04	0.02
$d\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-, 15 < q^2 < 22 \text{GeV}^2/c^4)/dq^2 [10^{-9} \text{GeV}^{-2}c^4]$	$0.47 \pm 0.12 \pm 0.01$ 72	0.06	0.02	0.01
$A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-, 1.1 < q^2 < 6 {\rm GeV^2/c^4})$	$-0.075 \pm 0.034 \pm 0.007$ 63	0.017	0.006	0.003
$A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-, 15 < q^2 < 19 {\rm GeV^2/c^4})$	$0.355 \pm 0.027 \pm 0.009$ 63	0.014	0.005	0.002
$S_5(B^0 \to K^{*0} \mu^+ \mu^-, 1.1 < q^2 < 6 \text{GeV}^2/c^4)$	$-0.023 \pm 0.050 \pm 0.005$ 63	0.026	0.009	0.004
$S_5(B^0 \to K^{*0} \mu^+ \mu^-, 15 < q^2 < 19 \text{GeV}^2/c^4)$	$-0.325 \pm 0.037 \pm 0.009$ 63	0.019	0.007	0.003
$S_5(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-, 1.1 < q^2 < 6 \text{GeV}^2/c^4)$		-	0.087	0.035
$S_5(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-, 15 < q^2 < 19 \text{GeV}^2/c^4)$		-	0.064	0.026
$\mathcal{R}_K(1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	$0.745 \pm 0.090 \pm 0.036$ 65	0.046	0.017	0.007

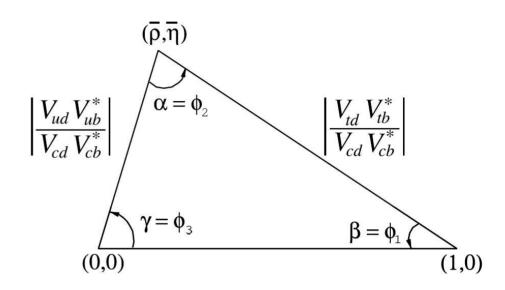
Rare processes and LFU



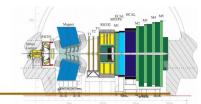

Opportunity to make comprehensive test by looking at very wide range of observables in different modes and different lepton final states


Very rare processes

- Measure very rare decays
- E.g. the golden $B^0_{(s)} \to \mu^+ \mu^-$
 - New observables like effective lifetime accessible
 - Can reach 10-20% precision on ratio of branching fractions
- Combine with GPD measurements
- Profits from high luminosity and further development of analysis



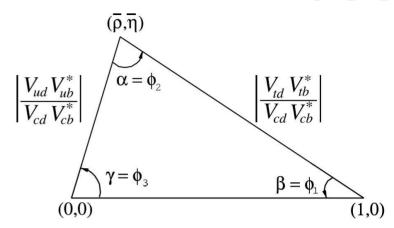
Precision tests of CKM paradigm

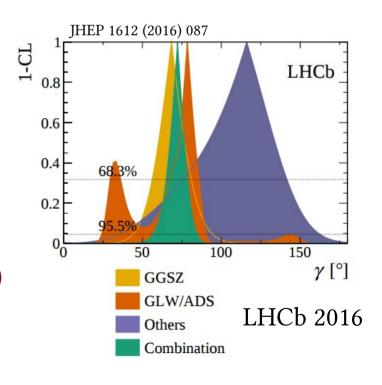


- No prediction of weak flavour couplings in Standard Model
- Unitary CKM matrix imposes relations between parameters (4 parameters)

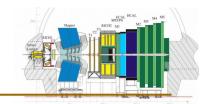
- Challenge standard model by:
 - Measuring each parameter in different decay modes for internal consistency checks
 - Measuring many flavour transitions to over-constrain triangle

Hadronic final states


• Extremely clean determination of angle γ from family of

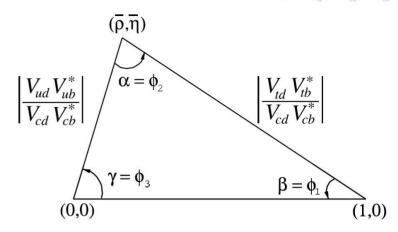

$$B^- \to Dh^-(h=K,\pi)$$

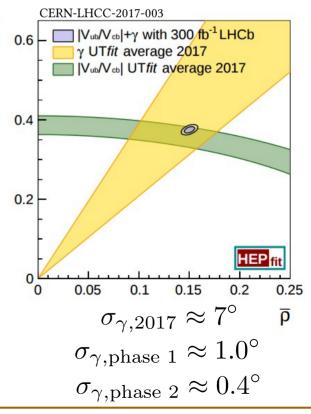
More D decay modes count


e.g.
$$D^0 \to \pi^+ \pi^- \pi^0, D^0 \to \pi^+ \pi^- \pi^+ \pi^-$$

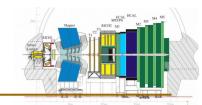
- Phase 2 Upgrade:
 - Better reconstruction of π^0 modes
 - Better low momentum tracking for high multiplicity modes
 - (Not included in sensitivity estimate)

Hadronic final states

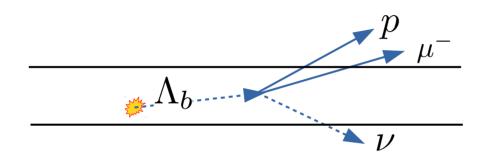

• Extremely clean determination of angle γ from family of

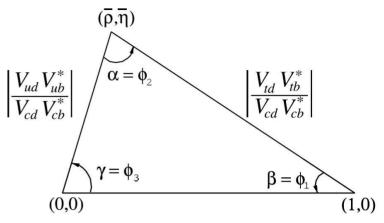

$$B^- \to Dh^-(h=K,\pi)$$

More D decay modes count

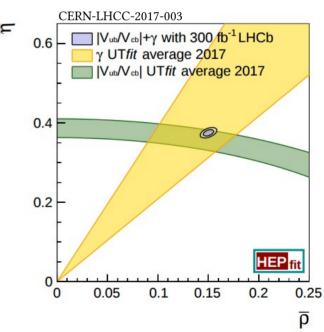

e.g.
$$D^0 \to \pi^+ \pi^- \pi^0, D^0 \to \pi^+ \pi^- \pi^+ \pi^-$$

- Phase 2 Upgrade:
 - Better reconstruction of π^0 modes
 - Better low momentum tracking for high multiplicity modes
 - (Not included in sensitivity estimate)

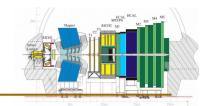


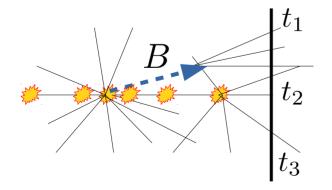


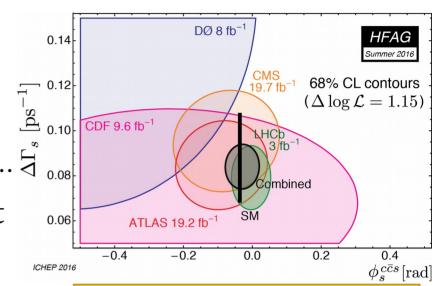
Semileptonic decays



• Measurement of Vub/Vcb via semileptonic decays of B_s , B_c and Λ_b

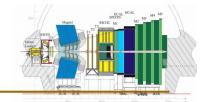



- Vertex resolution crucial
- Improve isolation of exclusive decays, e.g. $\Lambda_b \to p\mu\nu \text{ vs } \Lambda_b \to \Lambda_c(\to phh')\mu\nu$
- Shopping list for Phase2 Upgrade:
 - Decrease or remove material before first sensor
 - Improved reconstruction of neutrals

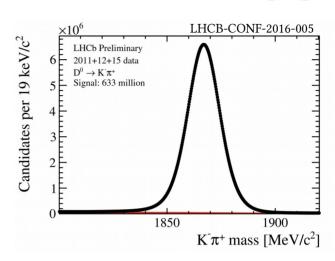


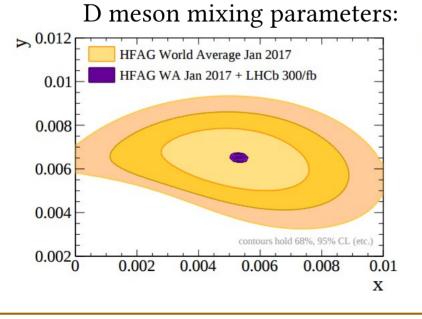
B mixing measurements

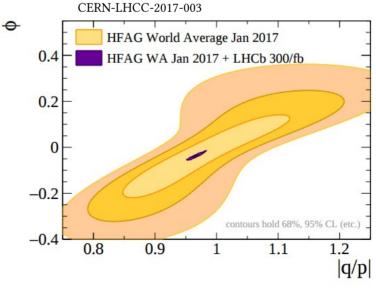
- Measure B_s mixing phase with highest precision
- Exploit different decay modes $B_s \to J/\Psi\Phi, B_s \to \Phi\Phi, B_s \to K^+K^-\pi^0... = 1$
- Compare with indirect measurement from tree processes
- Primary collision association challenging

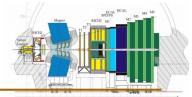

 $\sigma_{\phi_s, \text{phase 2}} \approx 3 \, \text{mrad}$

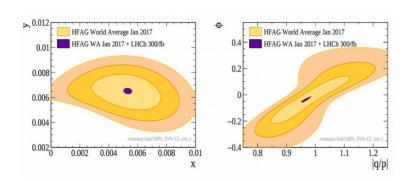
LHCb Phase 1 and Belle 2

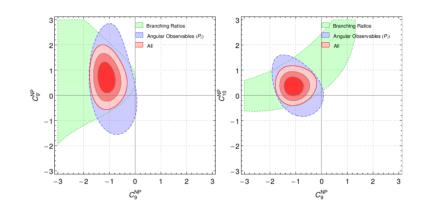

Couplings	NP loop	Scales (in TeV) probed by	
	order	B_d mixing	B_s mixing
$\overline{ C_{ij} = V_{ti}V_{tj}^* }$	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$C_{ij} =1$	tree level	2×10^3	5×10^2
(no hierarchy)	one loop	2×10^2	40

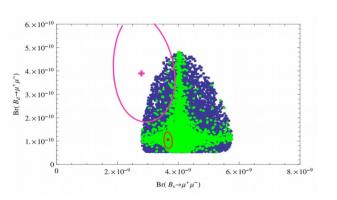

[Charles et al., 1309.2293]


Charm and strange physics

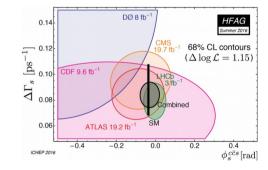

- Billions of charm and strange hadrons
 - Production rates of tens and hundreds of MHz
 - Incredible statistical precision
- Main challenge keep data size "reasonable" with full software trigger (save only the necessary information)

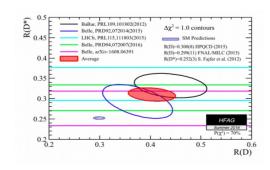


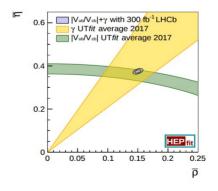

Exotica: Possible discoveries



• Exotica searches, e.g. Dark photons PRL 116, 251803 PRD92 (2015) no.11, 115017 CERN-LHCC-2017-003 10^{-5} BaBar 10^{-6} KLOE 300 fb⁻¹ 10^{-7} LHCb $\mu\mu$ prompt LHCb D* E141 10^{-8} LHCB-CONF-2016-005 $D^* \to D^0 A'^{10^{-9}}$ $A' \to e^+ e^-^{10^{-10}}$ LHCb μμ displaced $A' \to \mu^+ \mu^ 10^{-11}$ 2 3 4 5 20 Dimuon mass [GeV/c²] Charm, Nu-Cal, E137, LSND 0.5 0.005 0.01 0.02 0.05 0.1 0.2 20 50 $m_{A'}$ [GeV]


Physics opportunities of LHCb Phase 2 Upgrade





Phase 2 Upgrade will enable global test of Standard Model flavour sector and the potential to discriminate between New Physics scenarios.

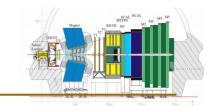
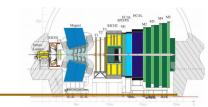

Next steps for the Phase 2 Upgrade

Table 5.1: Summary of the modifications under consideration for LS3, and those for Phase-II (LS4). Priorities will be assigned for the LS3 activities after further studies.

Detector	LS3	Phase-II
VELO	Deployment of prototype modules	New detector with fast timing
Tracking	Insert silicon IT, modify SciFi; install MS	Silicon UT and IT, SciFi OT
RICH	New photodetectors for selected regions; use of timing information	New optics; full replacement of photodetectors
TORCH	Installation for low- p hadron identification	Higher granularity photodetectors
CALO	Tungsten sampling modules installed in inner region	New modules in middle and outer regions
Muon	Replace HCAL with iron shielding; installation of high-rate chambers	Complete chamber installation
Trigger and data processing	Adiabatic software improvements; review of offline processing; installation of downstream track-finding processor	Expansion/replacement of links, readout boards and servers

- Start R&D of new detector components
- Identify possible upgrades or prototype installations in LS3 (2023), further studies required to decide priority
- Continue machine studies with LHC to set luminosity goals

Conclusion



UPGRADE I

CERN-LHCC-2017-003

The LHCb experiment is eager to continue challenging the world of particle physics to the highest precision.

Backups

Summary

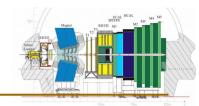
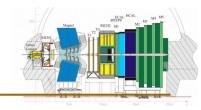
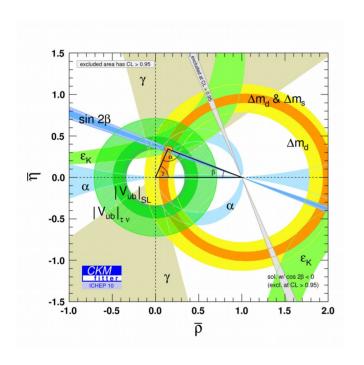
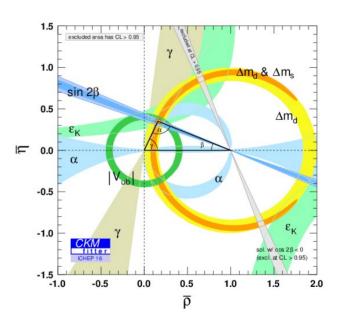



Table 2.1: Summary of prospects for Phase-II measurements of selected flavour observables.


Topics and observables	Experimental reach	Remarks
EW Penguins		
Global tests in many $b \rightarrow s\mu^+\mu^-$ modes	e.g. 440k $B^0 \to K^* \mu^+ \mu^- \& 70k \Lambda_b^0 \to \Lambda \mu^+ \mu^-$;	Phase-II ECAL required for
with full set of precision observables;	Phase-II $b \to d\mu^+\mu^- \approx \text{Run-1 } b \to s\mu^+\mu^-$	lepton universality tests.
lepton universality tests; $b \to dl^+l^-$ studies	sensitivity.	
Photon polarisation		
$A^{\Delta} \text{ in } B_s^0 \to \phi \gamma; B^0 \to K^* e^+ e^-;$	Uncertainty on $A^{\Delta} \approx 0.02$;	Strongly dependent on
baryonic modes	$\sim 10k \ \Lambda_b^0 \to \Lambda \gamma, \ \Xi_b \to \Xi \gamma, \ \Omega_b^- \to \Omega \gamma$	performance of ECAL.
$m{b} ightarrow cl^- ar{ u}_l$ lepton-universality tests		***************************************
Polarisation studies with $B \to D^{(*)} \tau^- \bar{\nu_\tau}$;	e.g. 8M $B \rightarrow D^*\tau^-\bar{\nu_{\tau}}, \tau^- \rightarrow \mu^-\bar{\nu_{\mu}}\nu_{\tau}$	Additional sensitivity expected
τ^-/μ^- ratios with B_s^0 , A_b^0 and B_c^+ modes	& $\sim 100k \ \tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$	from low-p tracking.
	& 100k / -/ h h h (h)b+	nom low-p tracking.
$\frac{B_s^0, B^0 \to \mu^+ \mu^-}{R \equiv \mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)};$	H - 0007	
	Uncertainty on $R \approx 20\%$	
$\tau_{B_s^0 \to \mu^+\mu^-}$; <i>CP</i> asymmetry	Uncertainty on $\tau_{B_s^0 \to \mu^+ \mu^-} \approx 0.03 \mathrm{ps}$	
LFV τ decays		
$\overline{\tau^- \to \mu^+ \mu^- \mu^-}, \tau^- \to h^+ \mu^- \mu^-,$	Sensitive to $\tau^- \to \mu^+ \mu^- \mu^-$ at 10^{-9}	Phase-II ECAL valuable
$\tau^- \to \phi \mu^-$		for background suppression.
CKM tests		
γ with $B^- \to DK^-$, $B_s^0 \to D_s^+K^-$ etc.	Uncertainty on $\gamma \approx 0.4^{\circ}$	Additional sensitivity expected
ϕ_s with $B_s^0 \rightarrow J/\psi K^+K^-, J/\psi \pi^+\pi^-$	Uncertainty on $\phi_s \approx 3 \text{mrad}$	in CP observables from Phase-II
$\phi_s^{s\bar{s}s}$ with $B_s^0 \to \phi\phi$	Uncertainty on $\phi_s^{s\bar{s}s} \approx 8 \text{mrad}$	ECAL and low- p tracking.
$\Delta\Gamma_d/\Gamma_d$	Uncertainty on $\Delta\Gamma_d/\Gamma_d \sim 10^{-3}$	Approach SM value.
Semileptonic asymmetries $a_{\rm sl}^{d,s}$	Uncertainties on $a_{\rm sl}^{d,s} \sim 10^{-4}$	Approach SM value for a_{sl}^d .
$ V_{ub} / V_{cb} $ with Λ_b^0 , B_s^0 and B_c^+ modes	e.g. $120k B_c^+ \to D^{0} \mu^- \bar{\nu_{\mu}}$	Significant gains achievable from
		thinning or removing RF-foil.
Charm		
\overline{CP} -violation studies with $D^0 \to h^+h^-$,	e.g. $4 \times 10^9 \ D^0 \rightarrow K^+K^-$;	Access CP violation at SM values.
$D^0 \to K_s^0 \pi^+ \pi^- \text{ and } D^0 \to K^{\mp} \pi^{\pm} \pi^+ \pi^-$	Uncertainty on $A_{\Gamma} \sim 10^{-5}$	
Strange		
Rare decay searches	Sensitive to $K_s^0 \rightarrow \mu^+\mu^-$ at 10^{-12}	Additional sensitivity possible with
		downstream trigger enhancements


CERN-LHCC-2017-003

The Unitarity triangle

• State of 2010 and 2016

