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Introduction

Advances in experimental studies of cold atom systems motivates
the study of thermally isolated systems which are driven or

quenched by an external force
This can be modeled with a time-dependent Hamiltonian

H = H0 + λH(t)

It remains challenging to study such problems in the regime of
strong coupling.

AdS/CFT provides a framework where strongly coupled field
theory can be studied using a weakly coupled gravity dual.

On the other side, periodically driven systems may teach us about
the bulk gravity dual



Setting

I’ll consider the case where the boundary theory is perturbed in a
way which is periodic in time:

H = H0 + λ δH cos ωt

and I’ll start with a thermal state

The unperturbed Hamiltonian belongs to a CFT, and the
perturbation

δH =

∫

dd−1xO∆

where O∆ is a relevant scalar operator with dimension ∆



Setting

I’ll consider d = 4 CFT with relevant deformation with 1 < ∆ < 4
(above unitarity bound).

Gravity dual: AdS5 with non-trivial boundary condition for the
scalar



The bulk dual

The dual is gravitational theory with a negative cosmological
constant:

S =
1

16πGN

∫

d5x
√−g

(

R + 12 − 1

2
(∂φ)2 − 1

2
m2φ2

)

.

(mass units defined from AdS curvature set to 1).

1/GN is proportional to the (Weyl)2 term in the trace anomaly.
The operator with dimension ∆ is dual to a scalar field with mass:

m2 = ∆(∆ − d)

In the case of the N = 4 in theory in d = 4 one can consider the
case of ∆ = 2 (mass for scalar fields) or ∆ = 3 (mass for

fermions), and GN = π/(2N2
c ).



The driving force

The unperturbed metric is the AdS black brane:

ds2 =
−(1 − ρ4)dτ2 − 2dρ dτ + d ~X 2

ρ2
.

The scalar field nearby the boundary can be expanded as:

φ̃1 =

∞
∑

j=0

ρ∆
−

+ja∆
−

+j + ρ∆++ja∆++j .

Taking O∆+ as a source (ωT = ω/(πT )):

a∆
−

= cos ωT τ , a∆+ = Re(χ(ωT )e−iωT τ ) .

For m2 < 2, one can take also O∆
−

as a source:

a∆+ = cos ωT τ , a∆
−

= Re(χ(ωT )e−iωT τ ) .

Ingoing boundary condition at horizon: χ(ωT ) is the retarded
one-point function.



Work done on the system

The imaginary part of χ(ωT ) gives the amount of work done on
the system in a cycle.

 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2  2.5  3

Im
 χ

ωT

∆=1.45
∆=1.29
∆=1.11
∆=1.05

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6

Im
 χ

ωT

∆=2.32
∆=2.45
∆=2.5

∆=2.55
∆=2.71
∆=2.89

At large ω the work done per cycle scales as ω2∆−d .
For ∆ < 2 the work per cycle has a peak at ω0. ω0 ∝ (∆ − 1)1/2

for ∆ nearby the unitarity bound



Work in the case of a quench

A quench corresponds to an abrupt change in the coupling from λ0

to λf

λ(t) = λ0
1 + tanh t/t0
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Work in the case of a quench

The time scale t0 acts as UV cutoff for the Fourier modes of the
quench:

F(λ(t)) =
i
√

π

2
√

2

t0

sinh(πt0ω/2)

For ∆ > 2 the energy diverges as:

∫ 1/t0 Im GR(ω)

ω
dω ∝

∫ 1/t0 ω(2∆ − 4)

ω
dω ∝ 1

t2∆−4
0

Buchel, Myers, Van Niekerk, Lehner, arXiv:1307.4740, 1302.2924,
1206.6785



Horizons and entropy

Gauge theory entropy can be reconstructed from the
Bekenstein-Hawking entropy of a horizon

Area of horizon (projected on the boundary along in-falling null
geodesic) should be identified with entropy density in the dual field

theory

This is unambiguous and well-established in the time-independent
case; in the out-of-equilibrium case the situation is more sutble

Event or apparent horizons give different notions of entropy



Horizons and entropy

Metric backreaction was computed at leading order; the resulting
growth is:
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In this case, apparent and event horizon are rather similar; the
event horizon area is larger than the apparent horizon one



Horizons and entropy

Equilibration is rather efficient: the entropy growth in a cycle is the
same as the one given by the equation of state of the undeformed

CFT, for the corresponding increase in internal energy.

Difference of phase between source and entropy:
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Source and entropy production are in phase just in the adiabatic
limit ωT → 0



Geodesics and two-point functions

Space-like geodesics are related to two point equal-time
(Wightman) functions of operators with large dimensions ∆p ≫ 1:

〈O∆p
(t, ~x)O∆p

(t, ~x ′)〉ren ∝ e−∆pL0,R ,
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They probe a time in the past which is proportional to the length
of the distance L = |~x − ~x ′|



Geodesics and two-point functions

The delay in the thermalization of correlation functions at the
leading order in the perturbation is linear in the distance L (in the
regime L ≫ T−1 ) and it is independent of the operator dimension

∆ of the perturbation:

τd,g ≈ −L/(2
√

2) .

Thermalization time becomes longer with the scale L in some
universal way.



Entanglement entropy and extremal surfaces

Entanglement entropy of a region of space B can be computed
considering the extremal surface which ends on the boundary ∂B

(Ryu-Takayanagi)
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The delay in thermalization of entanglement entropy of a spherical
region is again linear in the size of the region L, in the regime

L ≫ T−1:

τd,e ≈ −
√
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Energy fluctuations in thermally isolated driven systems

In a thermal bath, Gibbs measure give energy fluctuations:

σ2
E ,eq = T 2Cv .

Assume that one starts with a thermal bath, and then one
performs non-adiabatic work from the outside.

The work done per cycle A = 〈W 〉 its variance A = 〈W 2〉 − 〈W 〉2
are related by fluctuation-dissipation relations:

βB = 2A .

arXiv:1102.1735, Bunin, D’Alessio, Kafri and Polkovnikov



Two regimes in energy fluctuations

Depending on the details of the cyclic process, the resulting energy
distribution is different from the Gibbs ensemble.

Entropy: S(E ) = Eγ

Work per cycle as function of the energy: W = E s

Depending on η = 2(s − 1) + γ:

• For η < 0, the variance σ2/σ2
E ,eq of the energy approaches to

a constant after a long number of cycles

• For η > 0, the variance σ2/σ2
E ,eq ∝ E η



Driven CFT and energy fluctuations

Entropy: S(E ) = Eγ with γ = (d − 1)/d

Work per cycle as function of the energy: W = E s , with
s = 2∆−d−1

d
, in the almost adiabatic limit ω ≪ T

η =
4∆ − 3d − 3

d

There is a transition in the energy fluctuations for ∆ > 3(d + 1)/4

∆ > 15/4 = 3.75 in four dimensions; ∆ > 3 in three dimensions



Energy fluctuations and the bulk

All the observables that we computed (entropy density, two-point
functions and entanglement entropy) behaved smoothly nearby

∆ = 15/4

Question: How to detect the transition in energy fluctuations
which should happen in correspondence of such value of ∆ ?

Conjecture: It should be related to Hawking radiation leaking out
of the boundary due to coupling to the external source



Conclusion

We computed the work performed by a periodic relevant
perturbation of dimension ∆ on a four dimensional theory with

AdS5 dual, as a function ωT = ω/(πT )

We inspected the leading order backreaction on the metric and a
few observables: entropy density, two-point functions and

entanglement entropy. All this observables behave in a smooth way
as a function of the dimension of the periodic perturbation ∆

General results in statistical mechanics suggest a transition in the
behaviour of energy fluctuations for ∆ > 3.75; it would be

interesting to detect this in the bulk dual


