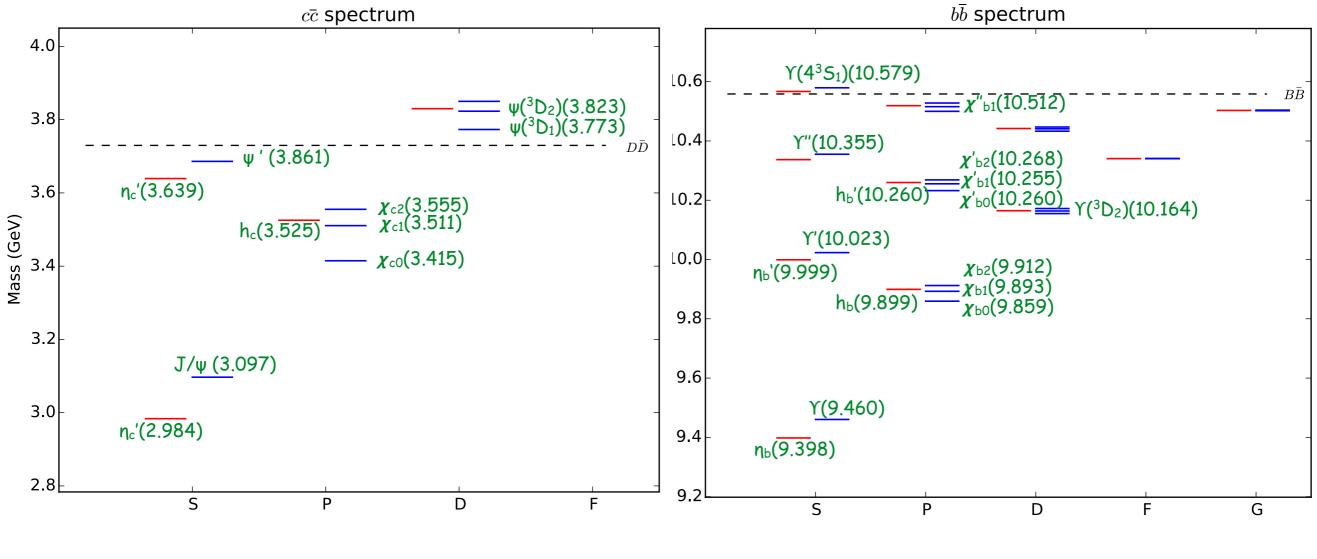
Opportunities in Quarkonia

Estia Eichten Fermilab

XIV International Workshop on Hadron Structure and Spectroscopy Cortona, Italy 2-5 April, 2017

Outline

- The Threshold Region:
 - $(c\overline{c})$ and $(b\overline{b})$ states
 - Strong Decays Near Threshold
- New states, XYZ, Tetraquarks
- Unexplored Territory
- Conclusions


QCD with Heavy Quarks

- QCD dynamics greatly simplifies for heavy quarks ($m_Q \gg \Lambda_{QCD}$)
- For systems with heavy quarks and light quarks:
 - HQET: systematic expansion in powers of $\Lambda_{\text{QCD}}/m_{\text{Q}}$
 - Heavy-light systems: (cq), (bq), (cqq), (bqq), (ccq), (cbq), (bbq) for q=u,d or s
 - HQS relations between excitation spectrum in $[(c\overline{q}), (b\overline{q}), (ccq), (bcq) and (bbq)]$ and between [(cqq) and (bqq)]
 - QED analog hydrogen atom (e⁻p)
- For non relativistic (QQ): bound states form with masses M near $2m_Q$:
 - NRQCD: systematic expansion in powers of v/c
 - Quarkonium systems: $(c\overline{c})$, $(b\overline{b})$, $(b\overline{c})$
 - heavy quark velocity: $p_Q/m_Q \approx v/c \ll 1$
 - binding energy: $2m_Q M \approx m_Q v^2/c^2$
 - QED analogs positronium (e^+e^-), (true) muonium ($\mu^-\mu^+$), muonium ($e^-\mu^+$)

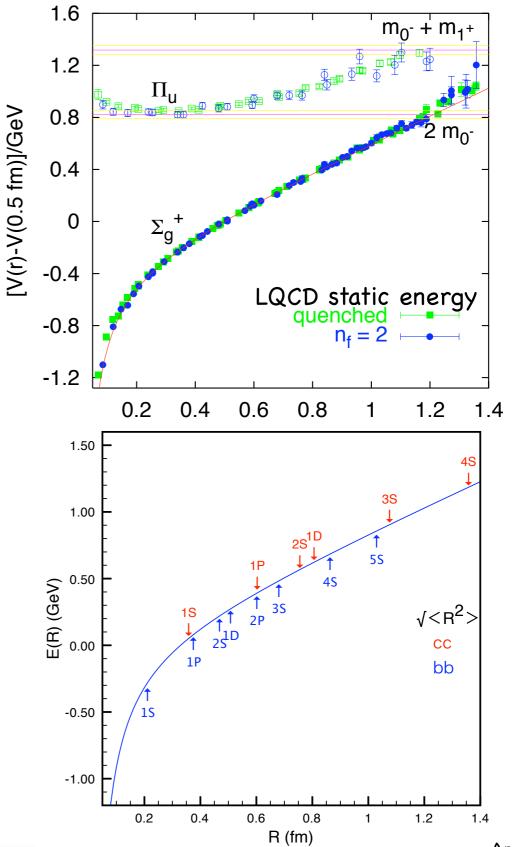
S=0 S=1

Narrow States Below Threshold

- expected spectrum below threshold:
 - Observed states (labeled)

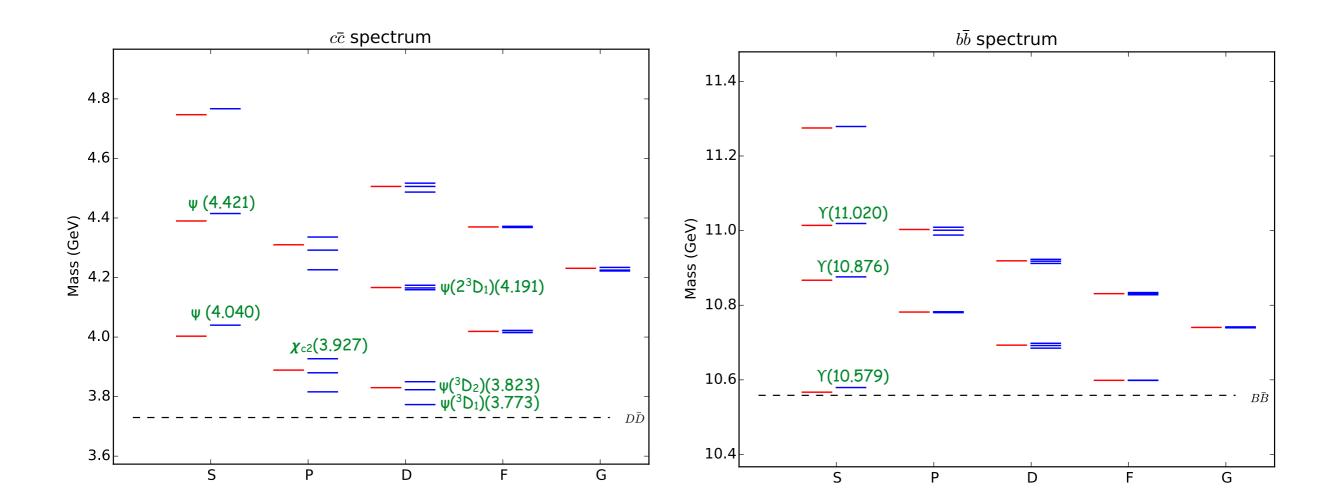
2 narrow states still unobserved

18 narrow states still unobserved

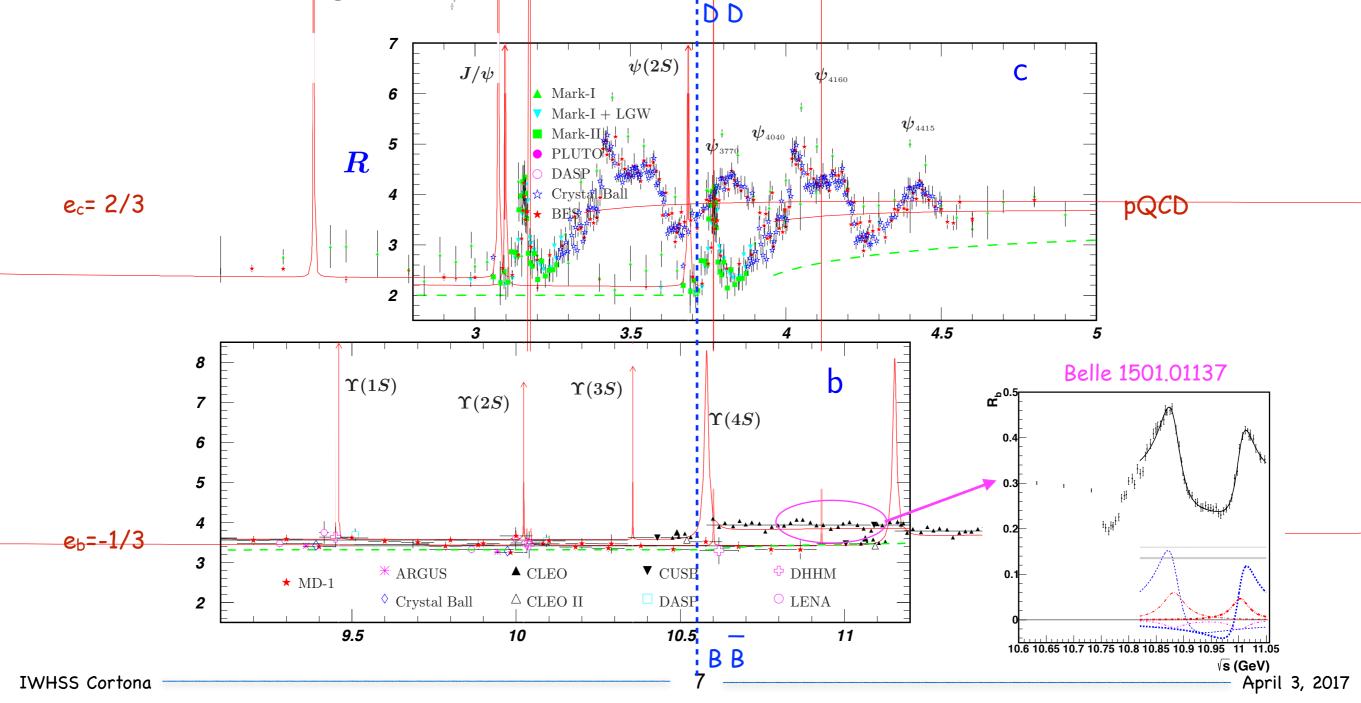

4

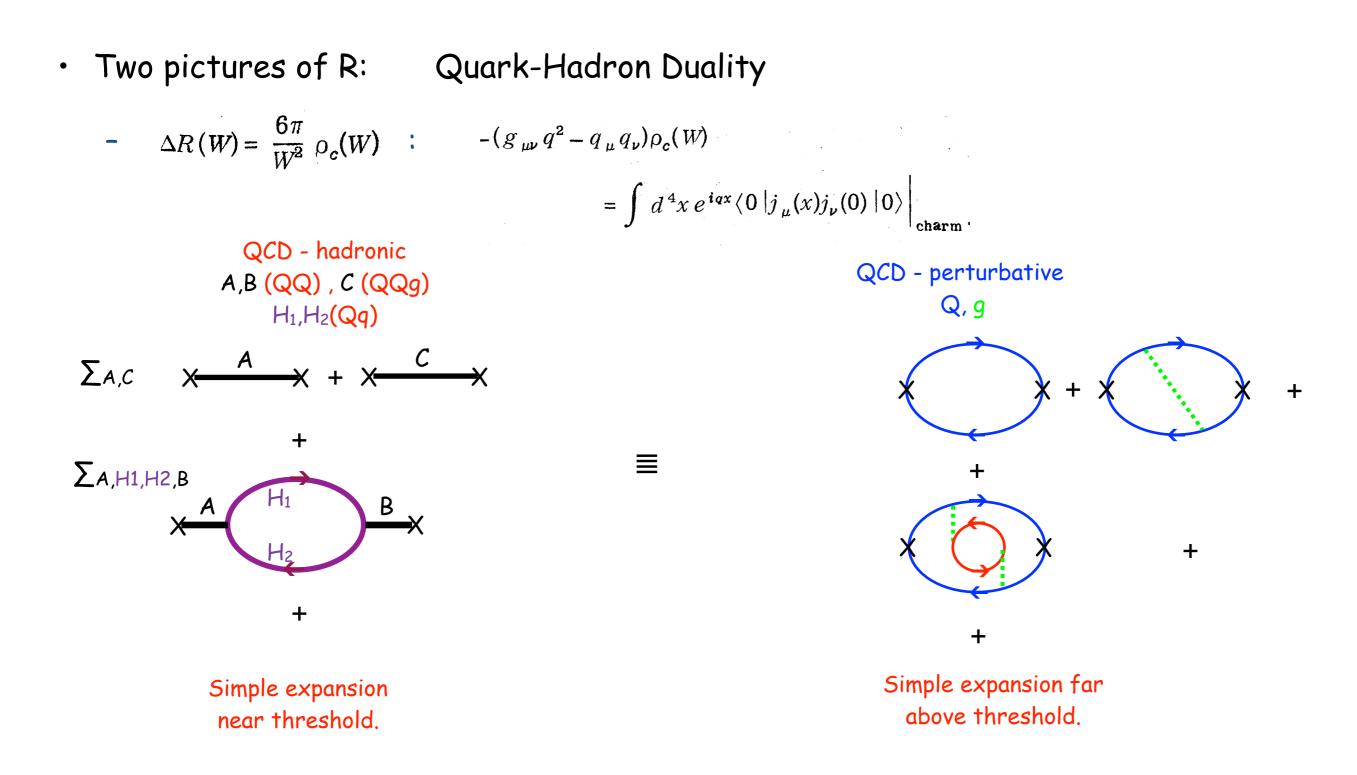
Why it works so well

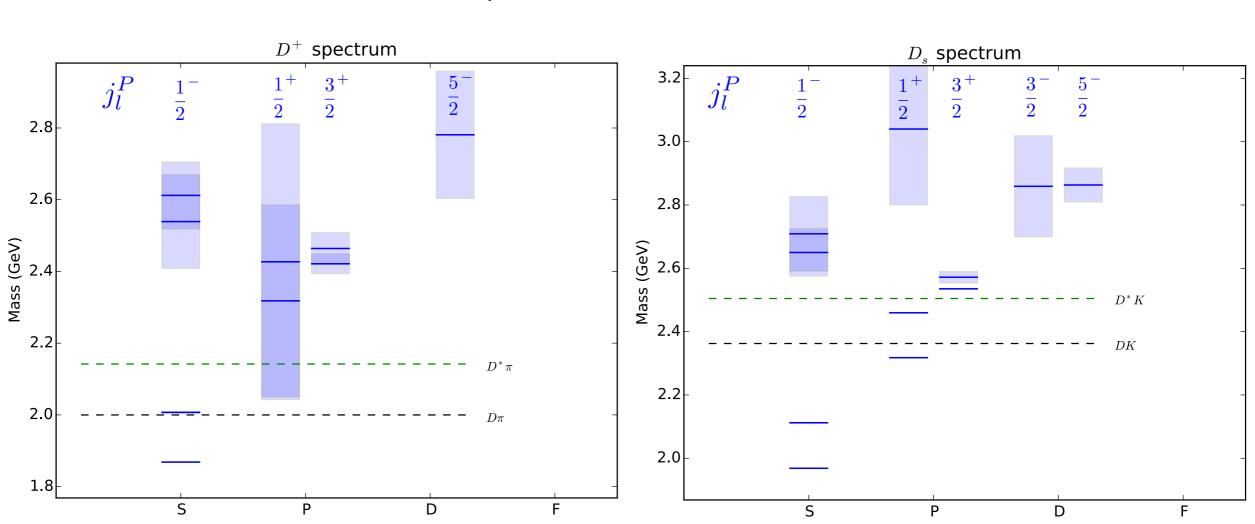
• Lattice calculation V(r), then SE


$$-\frac{1}{2\mu}\frac{d^2u(r)}{dr^2} + \left\{\frac{\langle \boldsymbol{L}_{Q\bar{Q}}^2 \rangle}{2\mu r^2} + V_{Q\bar{Q}}(r)\right\}u(r) = E u(r)$$

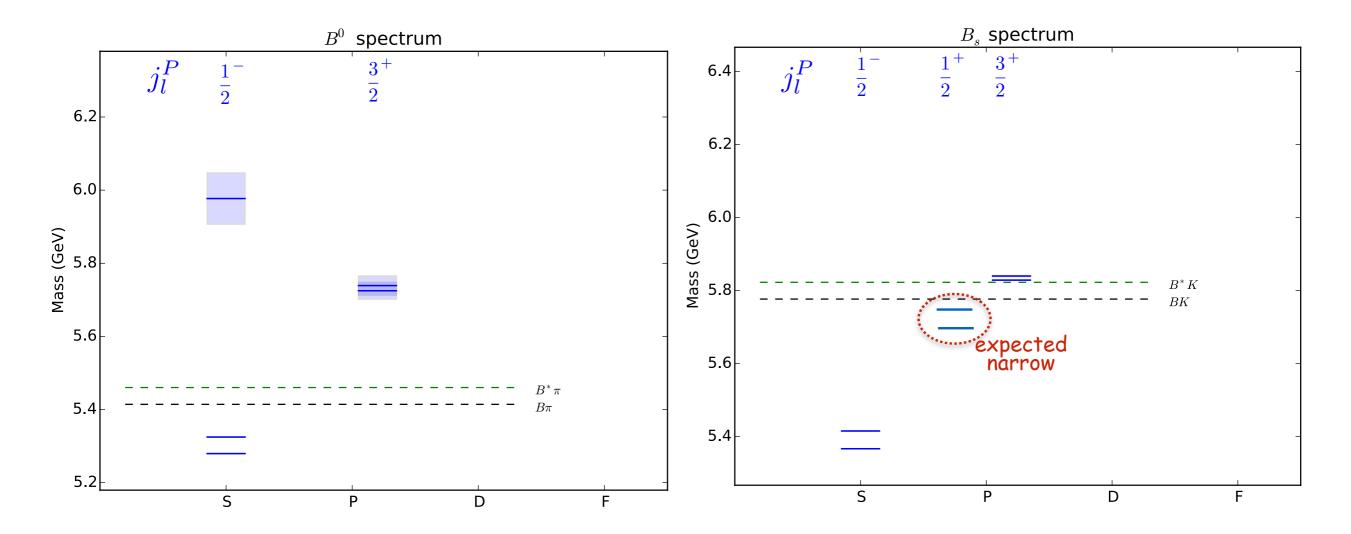
- What about the gluon and light quark degrees of freedom of QCD?
- Two thresholds:
 - Usual $(Q\bar{q})+(q\bar{Q})\,$ decay threshold
 - Excite the string hybrids
- Hybrid states will appear in the spectrum associated with the potential $\Pi_{u},\,...$
- In the static limit this occurs at separation:
 r ≈ 1.2 fm.
- Between 3S-4S in $(c\overline{c})$; near the 5S in $(b\overline{b})$.


IWHSS Cortona


• Observed quarkonium states above threshold


Crossing the Threshold

- 1. Strong decays resonances become wide and eventually hard to extract.
 - $R = \sigma(e+e- -> \sqrt[3]{*} -> hadrons)/\sigma(e+e- -> \sqrt[3]{*} -> \mu+\mu-) J^{PC} = 1^{--}$
 - Resonance region: (Js 2m_H) ≤ 1 GeV


-

Observed states in D meson systems:

- HQS determines the ratios of hadronic transitions very useful in distinguishing excited states
- Various proposals for the shifts of the $D_s^*(2317)$ and $D_s(2460)$:
 - Influence of the nearby decay channels.
 - Chiral multiplets ($0^-, 0^+$).
 - Threshold bound states of DK and D*K respectively.

- Observed states in the B meson systems

- HQS relates the excitation spectrum in the D system to the B system.
- Various models will be disentangled when the narrow $B_s(j^p = \frac{1}{2})$ states are observed.

Important to observe the $B_s(j^P = \frac{1}{2})$ states

Fermilab

• Lattice expectations:

J^P	0+	1+
Covariant (U)ChPT [24]	5726(28)	5778(26)
NLO UHMChPT [19]	5696(20)(30)	5742(20)(30)
LO UChPT [17, 18]	5725(39)	5778(7)
LO χ-SU(3) [16]	5643	5690
HQET + ChPT [20]	5706.6(1.2)	5765.6(1.2)
Bardeen, Eichten, Hill [15]	5718(35)	5765(35)
rel. quark model [5]	5804	5842
rel. quark model [22]	5833	5865
rel. quark model [23]	5830	5858
HPQCD [30]	5752(16)(5)(25)	5806(15)(5)(25)
this work	5713(11)(19)	5750(17)(19)

Table 5: Comparison of masses from this work to results from various model based calculations; all masses in MeV.

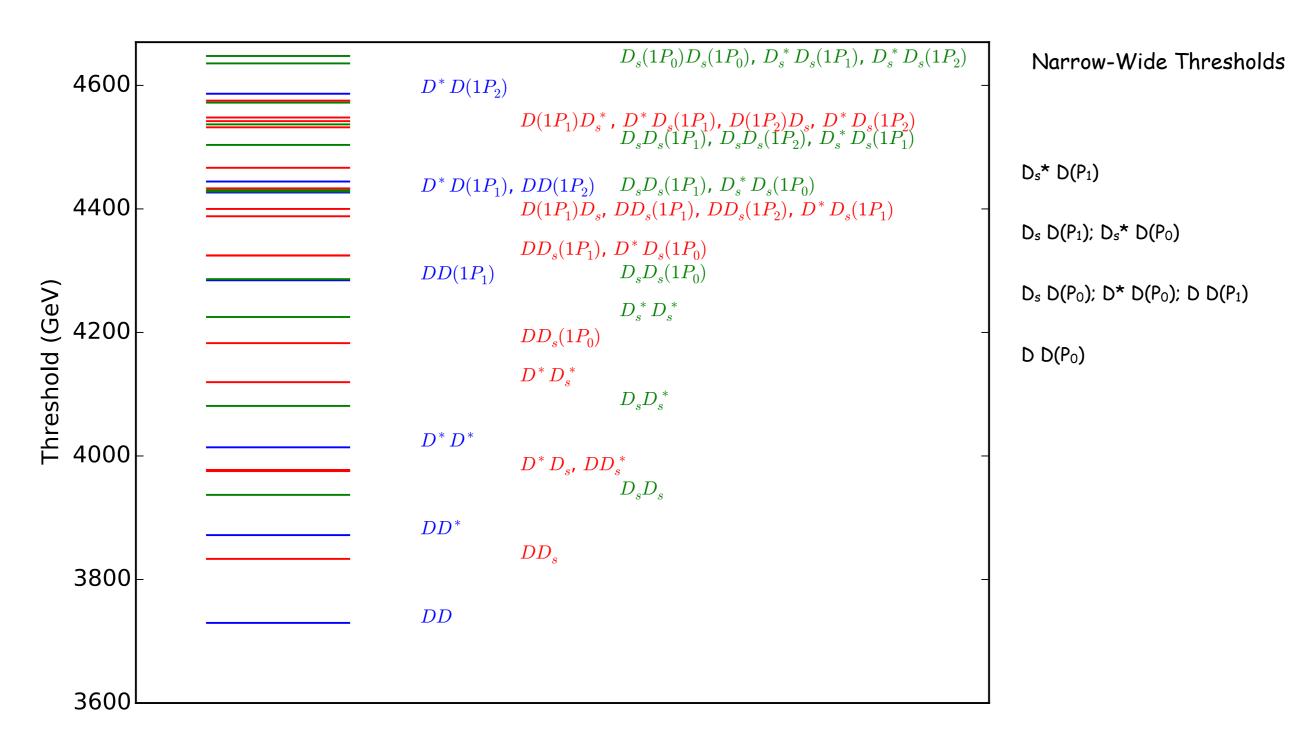
C. B. Lang, Daniel Mohler, Sasa Prelovsek, R. M. Woloshyn

[arXiv:1501.01646]

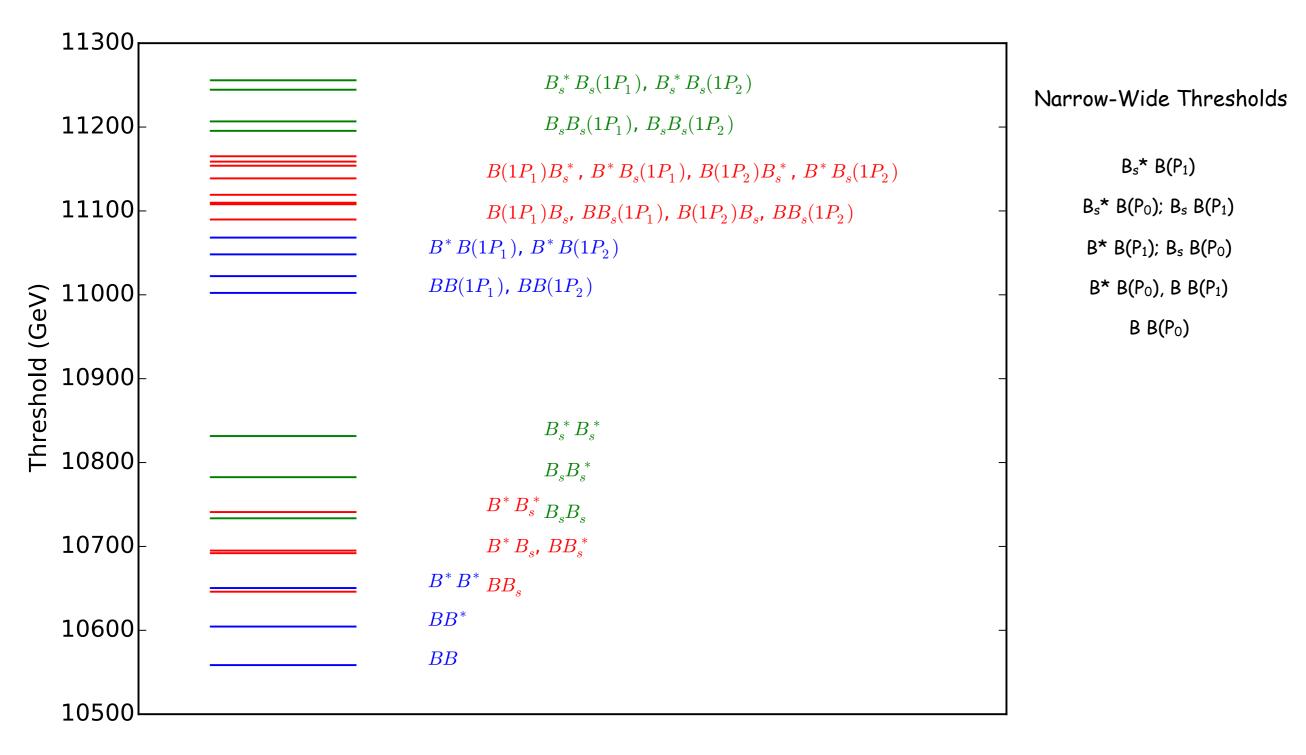
LQCD calculation includes the mixing of the two meson thresholds.

• Branching fractions:

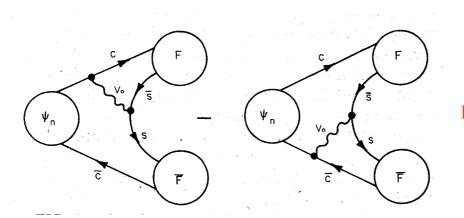
system	transition	Q(keV)	overlap	dependence	$\Gamma \ (keV)$
$(b\overline{s})$	$0^+ \rightarrow 1^- + \gamma$	293	2.536	$r_{\overline{b}s}$	58.3
	$0^+ \to 0^- + \pi^0$	297		$G_A \delta_{\eta \pi 0}$	21.5
	total				79.8
$(b\overline{s})$	$1^+ \to 0^+ + \gamma$	47	0.998	$r'_{\overline{b}s}$	0.061
	$1^+ \rightarrow 1^- + \gamma$	335	2.483	$r_{\overline{b}s}$	56.9
	$1^+ \rightarrow 0^- + \gamma$	381	2.423	$r_{\overline{b}s}$	39.1
	$1^+ \to 1^- + \pi^0$	298		$G_A \delta_{\eta \pi 0}$	21.5
	$1^+ \to 0^- + 2\pi$	125		$g_A \delta_{\sigma_1 \sigma_3}$	0.12
	total				117.7


W.Bardeen, E.E., C. Hill PR D68 054024 (2003)

[hep-ph/0305049]


• Requires identifying low momentum photons and π^0 s.

Low-lying thresholds


Low-lying (Narrow) Charm Meson Pair Thresholds

Low-lying (Narrow) Bottom Meson Pair Thresholds

- Coupled Channel Models
 - $\cdot \psi_n$ potential model wavefunction
 - Final mesons simple harmonic oscillator wave functions

E. Eichten, K. Gottfried, T. Kinoshita, K. Lane and T.M. Yan PR D17, 3090 (1978)

- $dV(x)/dx = 1/a^2 + \kappa/x^2 =>$ no free parameters setting $\kappa = 0$ => same form as the vacuum pair creation model (³P₀)

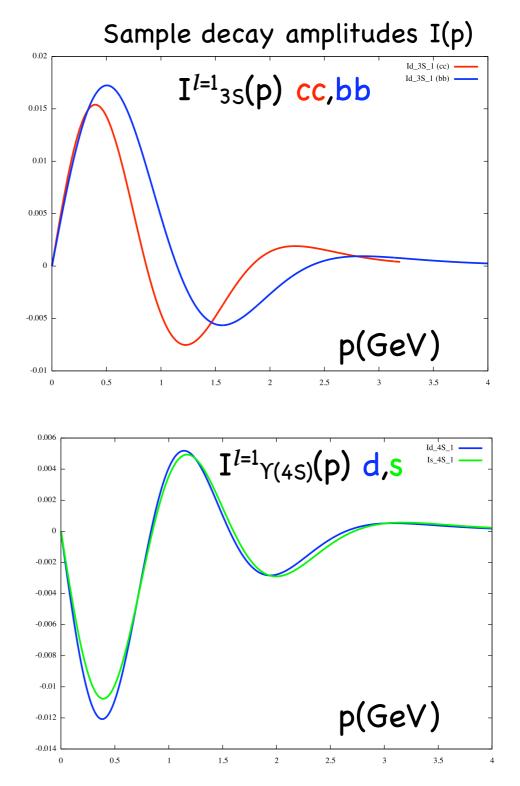
$$< n|\mathcal{G}(z)|m> = < n|\frac{1}{z - \mathcal{H}_0 - \Omega(z)}|m>$$
where $\Omega_{nL,mL'}^i(W) = \sum_l \int_0^\infty P^2 dP \frac{H_{nL,mL'}^i(P)}{W - E_1(P) - E_2(P) + i0}$

$$H_{nL,mL'}^i(P) = f^2 \sum_l C(JLL';l)I_{nL}^l(P)I_{mL'}^l(P)$$
Statistical factor Reduced decay amplitudes I(p)

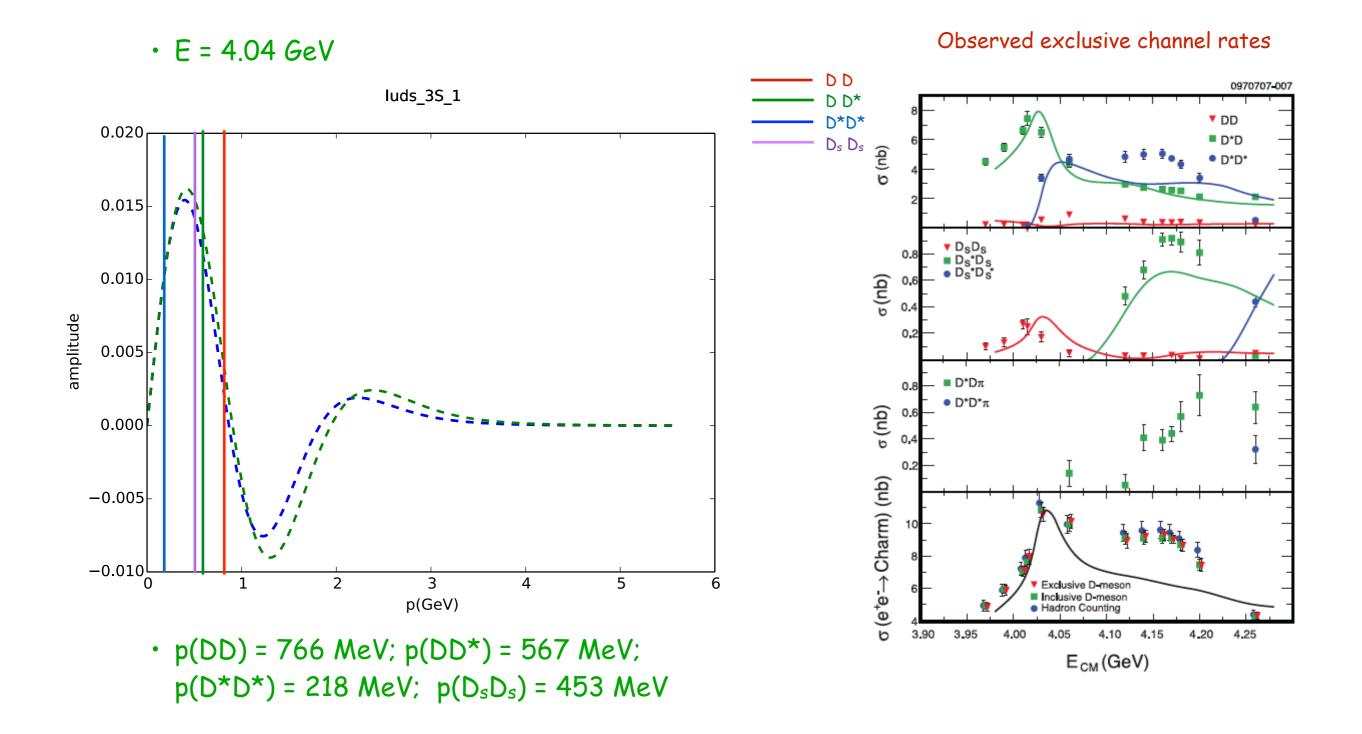
IWHSS Cortona

Reduced decay amplitudes I(p)

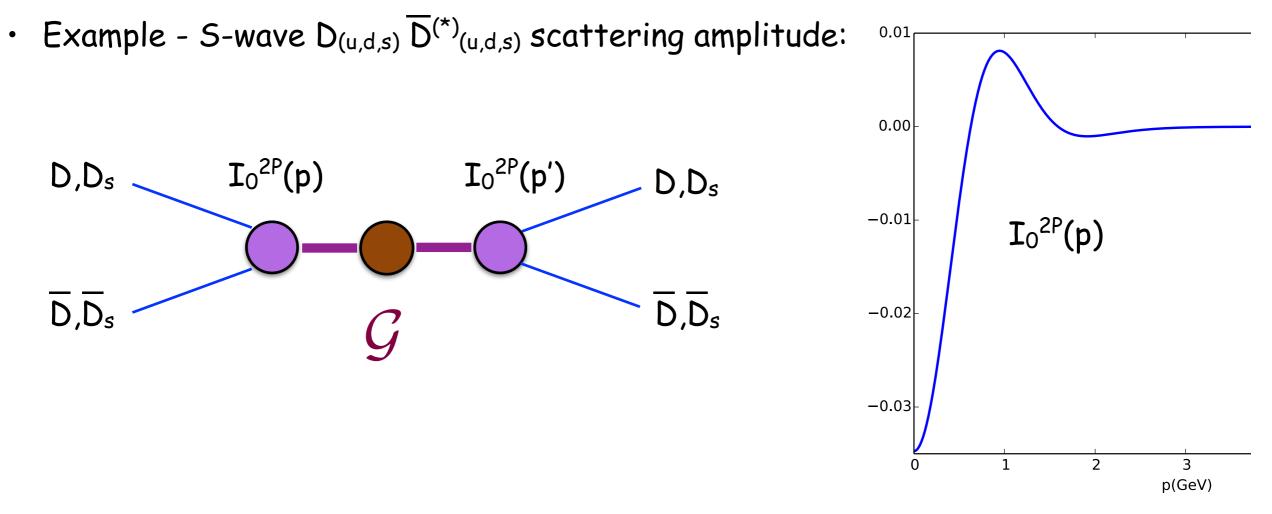
$$I_{nL}^{l}(P) = \int_{0}^{\infty} dt \, \Phi(t) R_{nL}(t\beta^{-1/2}) j_{l}(\mu_{c}\beta^{-1/2}Pt)$$


Key point: The only part of I(p) that depends on the pair production model is the function $\Phi(t)$:

For the CCCM (K=0): $(t = y\sqrt{\beta_S})$ $\Phi(t) = te^{-t^2} + (\pi/2)^{1/2}(t^2 - 1)e^{-t^2/2} \operatorname{erf}(t/\sqrt{2})$


Using HQET this function $\Phi(t)$ is the same for all final states in a j_1^P multiplet.

Apart from overall light quark mass factors $\Phi(t)$ is approximately SU(3) invariant. So independent of light quark flavor (u,d,s).


One universal function, $\Phi(t)$, determines R_Q in the threshold region.

- The mass differences of heavy-light mesons produces large effects in the decay amplitudes to exclusive channels.

• Predict leading behavior of the T and K matrices in the threshold region.

- For 2M(D) < W < 2M(D*) in the J^{PC} = 0⁺⁺ channel the cc(2³P⁰) state dominates. Elastic scattering below the Ds Ds threshold and two channels below 2M(D*).
- For M(D) + M(D*) < W < 2M(D*) in the J^{PC} = 1⁺⁺ channel the cc(2³P₁) state dominates.
 Study the need for additional molecular X(3872).

Hadronic Transitions Above Threshold

- There are two surprises in the decays of quarkonium states above threshold
 - 1. Hadronic transitions violate naive expectations. Spin flip transitions not suppressed (HQSS) and large SU(3) violation. For example, Y(4S):

Table 1: Selecte	$\Upsilon(4S)$ decays.
------------------	------------------------

Decay Mode	Branching Rate		
B^+B^-	$(51.4 \pm 0.6)\%$		
$B^0 ar{B}^0$	$(48.6 \pm 0.6)\%$		
total $B\bar{B}$	> 96%		
$\Upsilon(1S) \ \pi^+\pi^-$	$(8.1 \pm 0.6) \times 10^{-5}$	-> partial rate = 1.66 ± 0.23 keV	expected rates
$\Upsilon(2S) \ \pi^+\pi^-$	$(8.6 \pm 1.3) \times 10^{-5}$		
$h_b(1P) \ \pi^+\pi^-$	(not seen)		1
$\Upsilon(1S)$ η	$(1.96 \pm 0.28) \times 10^{-4}$	partial rate = 4.02 ± 0.89 keV	SU(3) violating
$h_b(1P)$ η	$(1.83 \pm 0.23) \times 10^{-3}$	—> partial rate = 37.5 ± 7.3 keV	HQS violating

- Large heavy quark spin symmetry (HQSS) breaking is induced by the B*- B mass splitting. [Same for D*-D and D_s *- D_s]
 - Coupled channel calculations show a large virtual B B component to the $\Upsilon(4S)$. This accounts for the observed violation of the spin-flip rules in hadronic transitions

- What about SU(3)?
 - SU(3) breaking is induced by the mass splitting of the (Q q) mesons with q=(u,d) and q=s.
 - These splittings are large (~100 MeV) so there is large SU(3) breaking in the threshold dynamics.
 - This greatly enhances the final states with $\eta + (Q\overline{Q})$.

Yu.A. Simonov and A. I. Veselov [arXiv:0810.0366]

• Similarly important in \boldsymbol{w} and $\boldsymbol{\varphi}$ production.

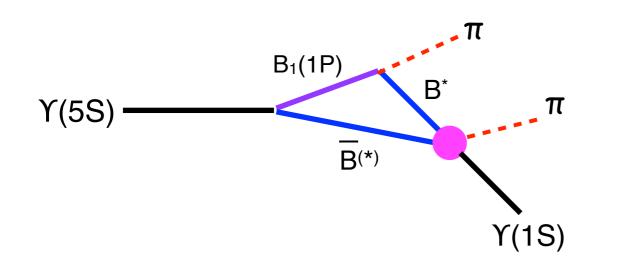
Mass Splittings: [[{D⁰, D⁰*}, {D⁺ D⁺*}], {D_s, D_s*}] Degeneracies: {}: 1/m_c->0, []:SU(3), []: isospin

The observed HQSS and SU(3) violation in hadronic decays of quarkonium states near threshold is induced by the symmetry breaking in the heavy-light meson masses 2. Second surprise is the large size of the hadronic transitions for some states above threshold.

- Y(10860)

Table 2: Selected $\Upsilon(5S)$ decays.

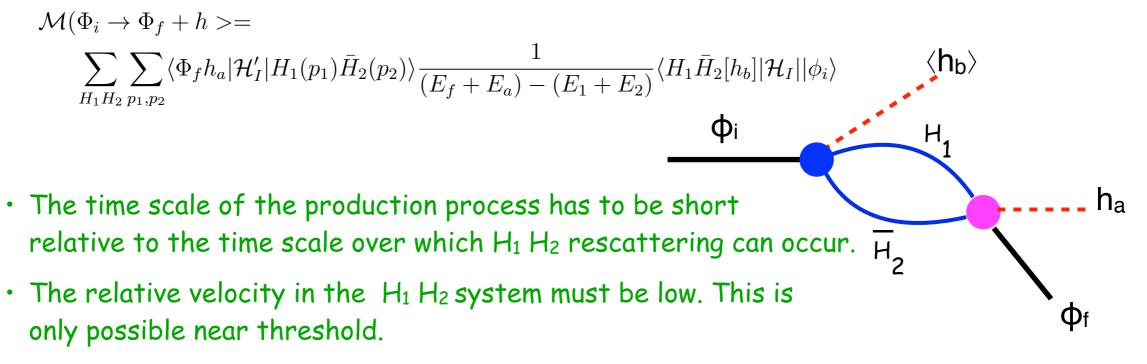
Decay Mode	Branching Rate		Decay Mode	Branching Rate	
$B\bar{B}$	$(5.5 \pm 1.0)\%$		$\Upsilon(1S) \ \pi^+\pi^-$	$(5.3 \pm 0.6) \times 10^{-3}$	-> partial rate = 0.29 ± 0.13 MeV
$B\bar{B}^* + c.c.$	$(13.7 \pm 1.6)\%$		$\Upsilon(2S) \ \pi^+\pi^-$	$(7.8 \pm 1.3) \times 10^{-3}$	
$B^*\bar{B}^*$	$(38.1 \pm 3.4)\%$		$\Upsilon(3S) \pi^+\pi^-$	$(4.8 \ ^{+1.9}_{-1.7}) \times 10^{-3}$	
			$\Upsilon(1S)K\bar{K}$	$(6.1 \pm 1.8) \times 10^{-4}$	
$B_s \bar{B}_s$	$(5\pm5)\times10^{-3}$		$h_b(1P)\pi^+\pi^-$	$(3.5 \ ^{+1.0}_{-1.3}) \times 10^{-3}$	partial rate = 86 ± 41 keV
$B_s\bar{B}_s^* + c.c.$	$(1.35\pm 0.32)\%$		h₀(2P)π⁺π⁻	$(6.0 \ ^{+2.1}_{-1.8}) \times 10^{-3}$	
$B_s^* \bar{B}_s^*$	$(17.6 \pm 2.7)\%$	χ_{b1}	$\pi^+\pi^-\pi^0$ (total)	$(1.85 \pm 0.33) \times 10^{-3}$	
$B\bar{B}\pi$	$(0.0 \pm 1.2)\%$	χ_{b2}	$\pi^+\pi^-\pi^0$ (total)	$(1.17 \pm 0.30) \times 10^{-3}$	
$B^*\bar{B}\pi + B\bar{B}^*\pi$	$(7.3 \pm 2.3)\%$		χ_{b1} ω	$(1.57 \pm 0.32) \times 10^{-3}$	
$B^*\bar{B}^*\pi$	$(1.0 \pm 1.4)\%$		χ_{b2} ω	$(0.60 \pm 0.27) \times 10^{-3}$	
$B\bar{B}\pi\pi$	< 8.9%		$\Upsilon(1S)\eta$	$(0.73 \pm 0.18) \times 10^{-3}$	-> partial rate = 0.15 ± 0.08 MeV
			$\Upsilon(2S)\eta$	$(2.1 \pm 0.8) \times 10^{-3}$	· ·
			$\Upsilon(1D)\eta$	$(2.8 \pm 0.8) \times 10^{-3}$	
total $B\bar{B}X$	$(76.2 \ ^{+2.7}_{-4.0})\%$				


- Very large 2π hadronic transitions [> 100 times $\Upsilon(4S)$ rates]
- Very large η (single light hadron) transitions. Related to nearby B_s*B_s* threshold?

Fermilab

- Requires new mechanism for hadronic transitions
 - Dominant two body decays of the $\Upsilon(5S)$
 - Decays involving P-state heavy-light mesons:
 - $n^{3}S_{1}(Q\overline{Q}) \rightarrow 1^{\frac{1}{2}+}P_{J}(Q\overline{q}) + 1^{\frac{1}{2}-}S_{J'}(q\overline{Q})$ then
 - $1^{\frac{1}{2}} P_{J}(Q\overline{q}) \rightarrow 1^{\frac{1}{2}} S_{J'}(Q\overline{q'}) + {}^{1}S_{0}(q\overline{q'})$ for S-wave J=J'

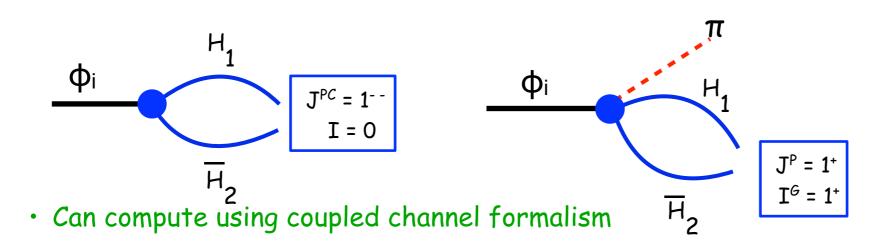
S-wave decays


$\overline{C(J,J')}$	J' = 0	J' = 1
J = 0	0	2/3
J = 1	2/3	4/3

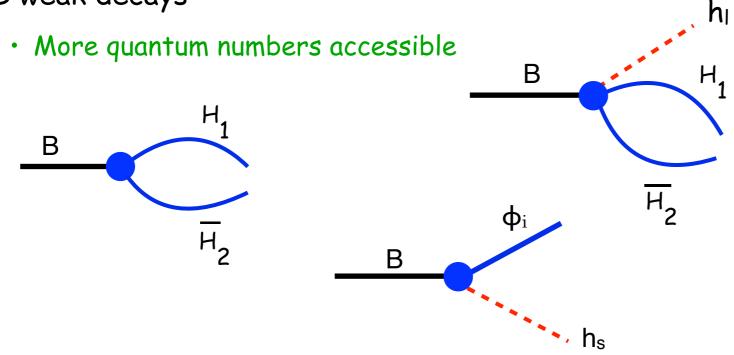
Remarks:

- (1) $\Upsilon(5S)$ strong decay is S-wave
- (2) The large width of the $B_1(1P)$ implies that the first π is likely emitted while the $B_1(1P)$ and $B^{(*)}$ are still nearby.
- (3) The B1(1P) decay is S-wave
- (4) Therefore the $B^{(*)} B^*$ system is in a relative S-wave and near threshold.
- (5) No similar BB system is possible.

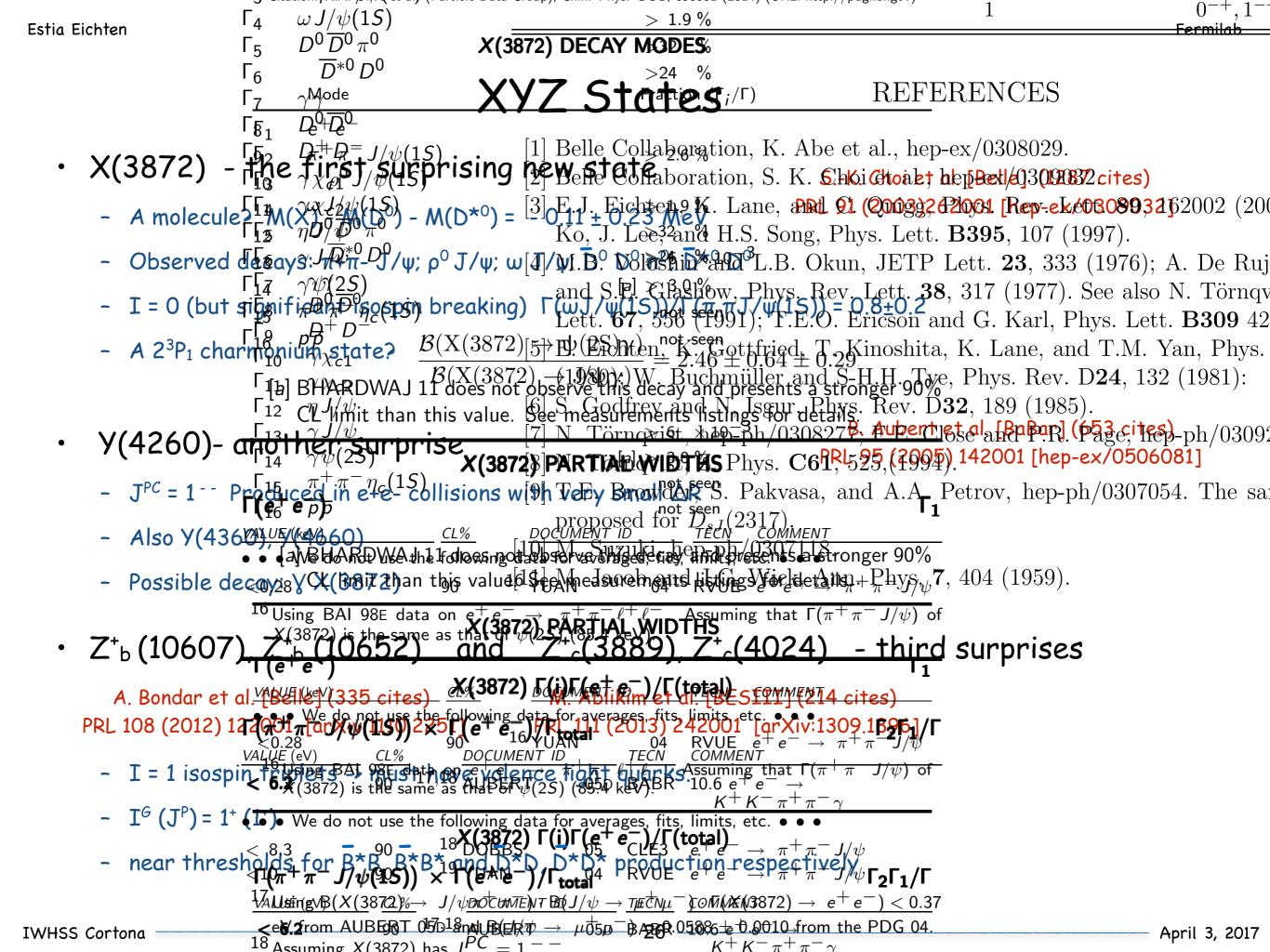
- A new factorization for hadronic transitions above threshold.
 - Production of a pair of heavy-light mesons ($H'_1 H_2$) near threshold. Where $H'_1 = H_1$ or H'_1 decays rapidly to $H_1 +$ light hadrons (h_b), yielding $H_1 H_2 < h_b >$
 - Followed by recombination of this $(H_1 H_2)$ state into a narrow quarkonium state (Φ_f) and light hadrons (h_a) .


- Here we need not speculate on whether the observed rescattering is caused by a threshold bound state, cusp, or other dynamical effect.

F.K. Gao, C. Hanhart, Q. Wang, Q. Zhao [arXiv:1411.5584]

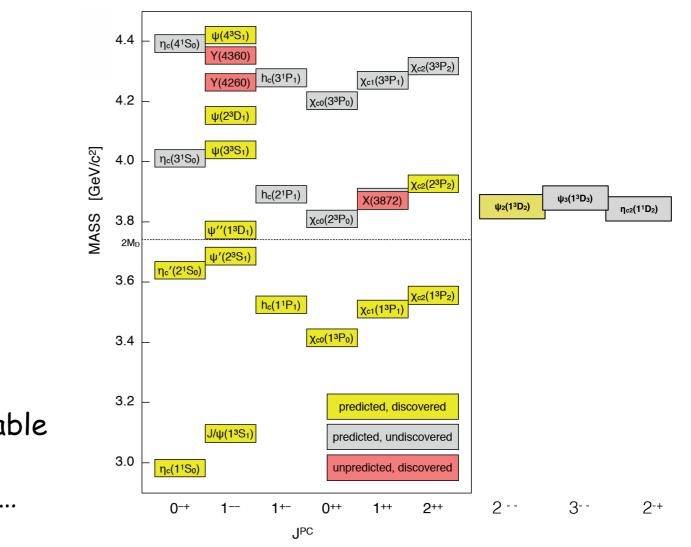

Four Quark States May Be Easily Produced at Two Heavy-Light Mesons S-wave Thresholds

- Production modes: (Where to look for new surprises)
 - e+e- processes
 - direct


sequential (dominant terms)

- B weak decays

Biggest Surprise: Resonances are seen at these thresholds

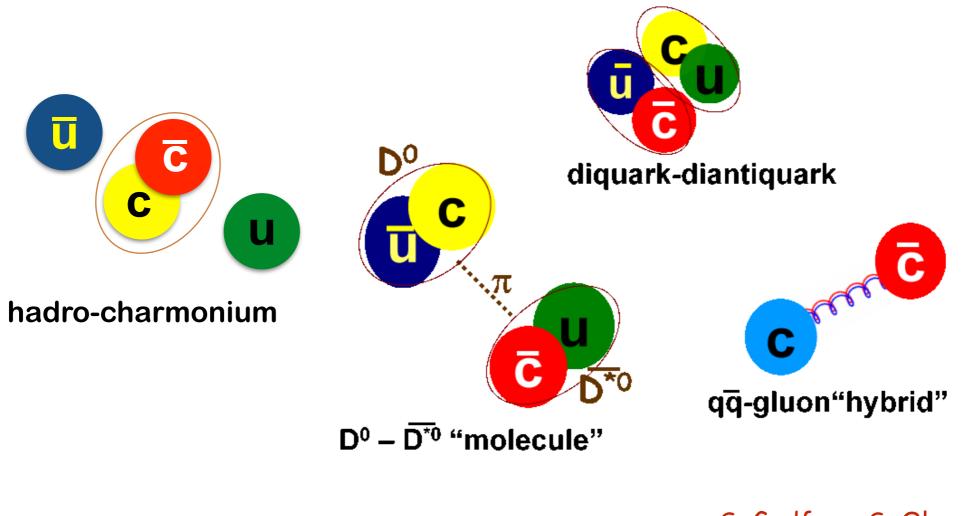

- Notation ٠
 - Y denotes states observed directly in the charm contribution to e^+e^- -> hadrons: \Rightarrow J^{PC} = 1⁻⁻ and I = 0

• Y_c(4260), Y_c(4360), Y_c(4650)

- Z denotes states with I = 1
 - Z⁺_c(3885), Z⁺_c(4025)
 Z⁺_b(10610), Z⁺_b(10650)
 - HQS
 - $Z_{c}^{+}(4430)$
- X denotes anything else
 - X_c(3872),

 \Rightarrow see PDG table

Pentaguarks: X(4450) (J^P = 5/2⁺), ...

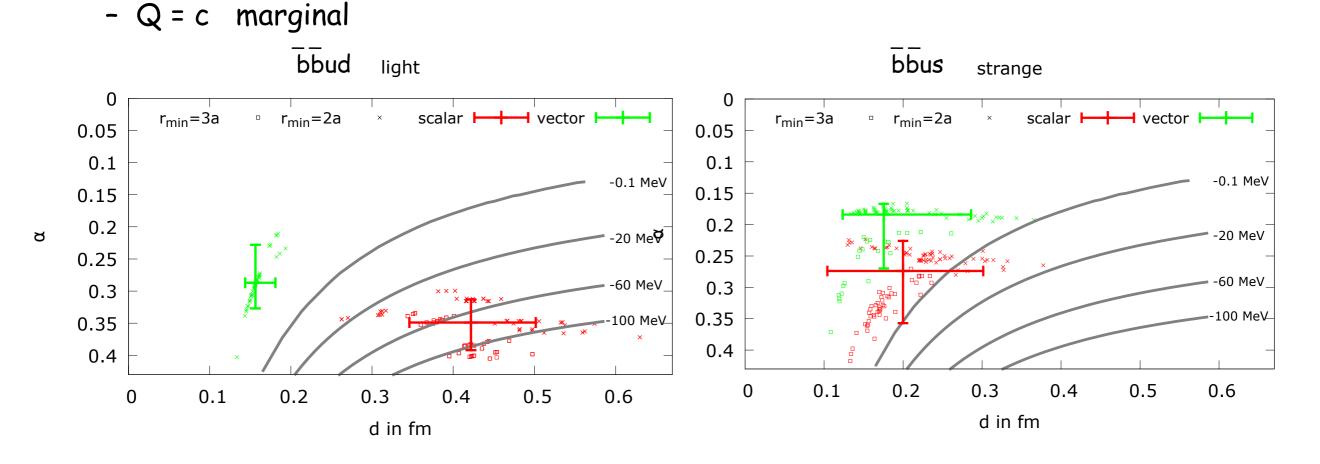


• Updated from PDG - other X states need more information

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year
$\chi_{c0}(3915)$	3917.4 ± 2.7	28^{+10}_{-9}	0 ⁺⁺ Cl		Belle (8.1), BABAR (19) e quantum numbers correct	2004
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$\begin{array}{l} e^+e^- \to J/\psi(D\bar{D}^*) \\ e^+e^- \to J/\psi(\ldots) \\ \text{Candidate for } \eta_c(3S), \end{array}$	$egin{array}{c} ext{Belle(6.0)} \\ ext{Belle (5.0)} \\ ext{but to far below } \psi(3S) \end{array}$	2007
Y(4008)	4008^{+121}_{-49}	226 ± 97	1		Belle (7.4) or than only the Y(4260).	2007
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle(5.0), BABAR (1.1)	2008
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B \to K(\phi J/\psi)$	CDF (3.1), Belle (1.9) LHCb (1.4), CMS (> 5) D0 (3.1)	2008
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$?^{?+}$	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle(5.5)	2007
$Z_2(4250)^+$	4248 ± 20	35 ± 16	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle(5.0), BABAR (2.0)	2008
Y(4274)	4293^{+121}_{-49}	226 ± 97	??+	$B^+ \to K^+(\phi J/\psi)$	CDF (3.1), LHCb (1.0) CMS (> 3), D0 (np)	2007
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0/2^{++}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$ Observable in LH	Belle(3.2) ICb, CMS, Atlas ?	2009
X(4630)	$4634^{+\ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle (8.2)	2007

What is the QCD dynamics of these new states?

• Threshold Effects, Hybrids, Tetraquark States:


S. Godfrey+S. Olsen arXiv:0801.3867

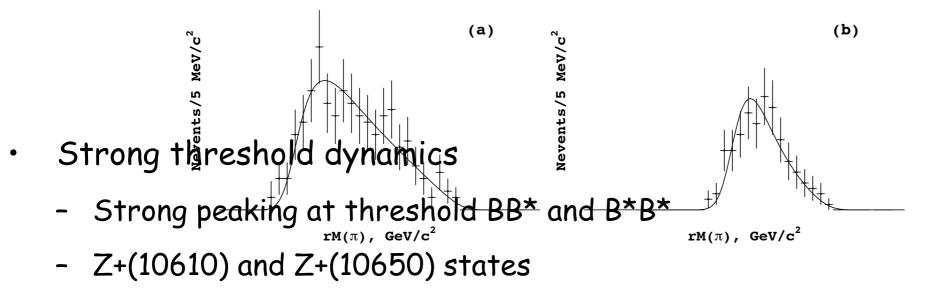
- Proof of Existence of Bound Tetraquarks in the Heavy Quark Limit
 - Consider a tetraquark system ($\overline{Q}\overline{Q}q_1q_2$) with two light quarks q_1 , q_2 and two heavy quarks Q with mass M.
 - For $(\overline{Q}\overline{Q})$ in color 3. For sufficiently heavy quarks:
 - $V_{\overline{Q}\overline{Q}} = 1/2 V_{Q\overline{Q}}$
 - Is attractive binding -(2/3) [$\alpha^2 M_Q/2$]
 - $50 m(\overline{Q}\overline{Q}q_1q_2) [m(\overline{Q}q_1) + m(\overline{Q}q_2)] = \Delta(q_1q_2) 2/3 a^2 M_Q/2 + O(1/M_Q) \ll 0$
 - The other possible decay channel is: (QQq1q2) -> (QQq3) + (q1q2q3)
 BUT in the heavy quark limit:
 m(QQq1q2) m(QQq3) = m(Qq1q2) m(Qq3) ~ m(Λb) m(B) = 341 MeV
 and m(q1q2q3) = m(P) = 938 MeV
 - 50 m($\overline{Q}\overline{Q}q_1q_2$) [(m($\overline{Q}\overline{Q}q_3$) + m($q_1q_2q_3$)] ~ 597 MeV
 - NO STRONG DECAYS ARE POSSIBLE
 - $(\overline{Q}\overline{Q}q_1q_2)$ must be bound for sufficiently heavy quarks Q

Lowest states:

-
$$[q_1 = (u,d) q_2 = (u,d) I=0]$$
: S=0, I=0, j=0, S_{QQ} = 0, L = 0
-> $J^P = 0^+$

- Lattice results and phenomenological estimates conclusions agree:
 - Q = b heavy enough for at least one narrow tetraquark state

Peters, P. Bicudo, K. Cichy, B. Wagenbach, M Wagner [arXiv:1508.00343]


$Z_{b^{\pm}}(10,610)$ and $Z_{b^{\pm}}(10,650)$

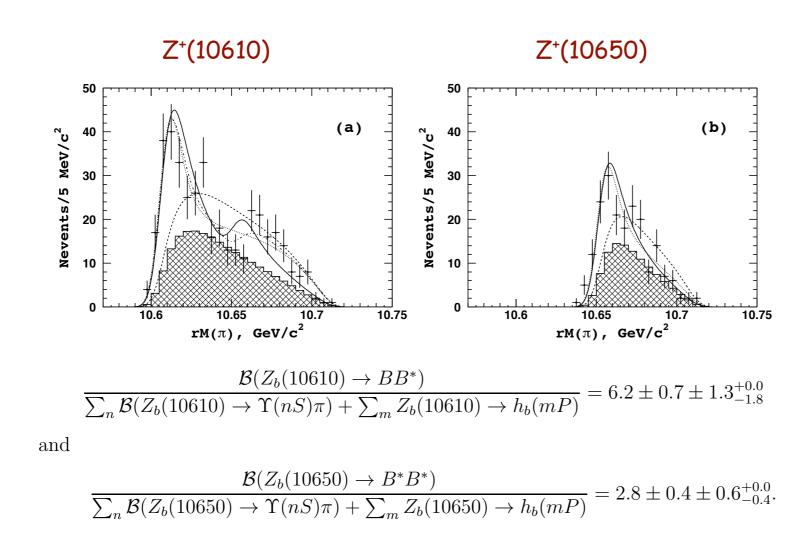
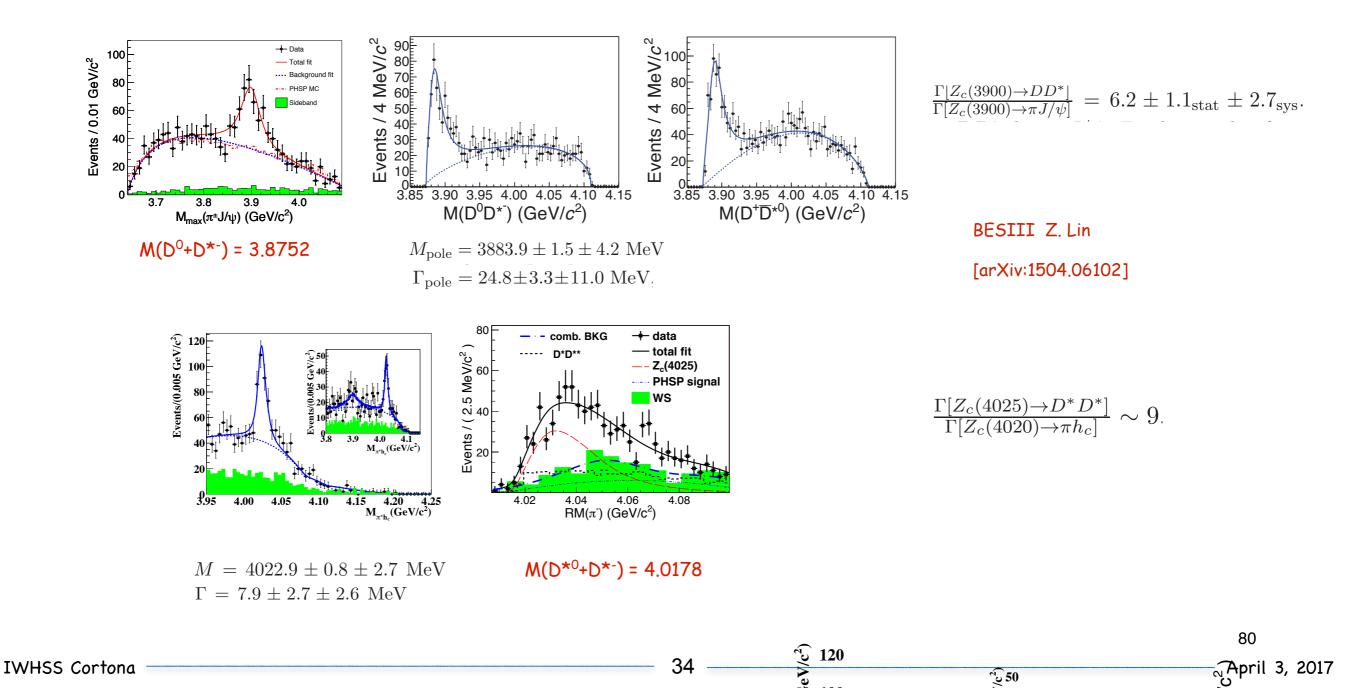
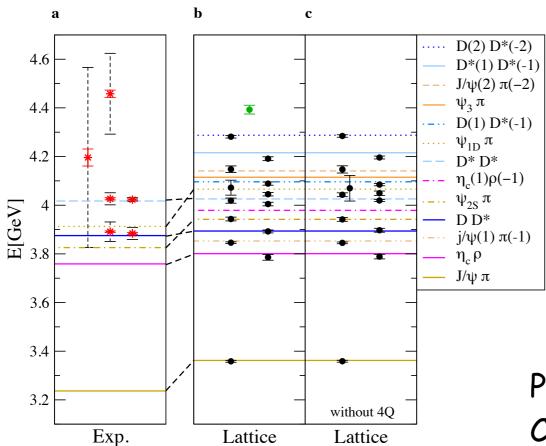

• BELLE observed two new charged states in the Y(5S) -> Y(nS) + $\pi^+\pi^-$ (n=1,2,3) and the Y(5S) -> $h_b(nP) + \pi^+\pi^-$ (n=1,2)

TABLE 1.	Masses, widths, and relative phases of peaks observed in $h_b\pi$ and $\Upsilon\pi$ channels, from fits described in text.
----------	--

	$h_b(1P)\pi^{\pm}\pi^{\mp}$	$h_b(2\mathbf{P})\pi^{\pm}\pi^{\mp}$	$\Upsilon(1S)\pi^{\pm}\pi^{\mp}$	$\Upsilon(2S)\pi^{\pm}\pi^{\mp}$	$\Upsilon(3S)\pi^{\pm}\pi^{\mp}$	Average
$M_1 ({\rm MeV}/c^2)$	$10605.1 \pm 2.2^{+3.0}_{-1.0}$	$10596 \pm 7^{+5}_{-2}$	$10609 \pm 3 \pm 2$	$10616 \pm 2^{+3}_{-4}$	$10608 \pm 2^{+5}_{-2}$	10608 ± 2.0
Γ_1 (MeV)	$11.4^{+4.5}_{-3.9}^{+2.1}_{-1.2}$	16 ⁺¹⁶⁺¹³	$22.9 \pm 7.3 \pm 2$	$21.1 \pm 4^{+2}_{-3}$	$12.2 \pm 1.7 \pm 4$	15.6 ± 2.5
$M_2 ({\rm MeV}/c^2)$	$10654.5 \pm 2.5^{+1.0}_{-1.0}$	$10651 \pm 4 \pm 2$	$10660 \pm 6 \pm 2$	$10653 \pm 2 \pm 2$	$1 - 652 \pm 2 \pm 2$	10653 ± 1.5
Γ_2 (MeV)	$20.9^{+5.4+2.1}_{-1.7-5.7}$	12^{+11+8}_{-9} $255^{+56+12}_{-72-183}$	$12 \pm 10 \pm 3$	$16.4 \pm 3.6^{+4}_{-6}$	$10.9 \pm 2.6^{+4}_{-2}$	14.4 ± 3.2
ợ (°)	$20.9^{+5.4+2.1}_{-1.7-5.7}$ 188^{+44+4}_{-58-9}	$255^{+56+12}_{-72-183}$	$53 \pm 61^{+5}_{-50}$	$-20\pm18^{+14}_{-9}$	$6\pm24^{+23}_{-59}$	-

- $Y(5S) \rightarrow Z_{b}^{+} + \pi$ and $Z_{b} \rightarrow h_{b}(nP) + \pi^{+}$.
- Explicitly violates the factorization assumption of the QCDME but consistent with the new mechanism for hadronic transitions above threshold
- The Z_b^{\pm} (10610) is a narrow state (Γ = 15.6 ± 2.5 MeV) at the BB* threshold (10605).
- The Z_b^{\pm} (10650) is a narrow state (Γ = 14.4 \pm 3.2 MeV) at the B*B* threshold (10650).



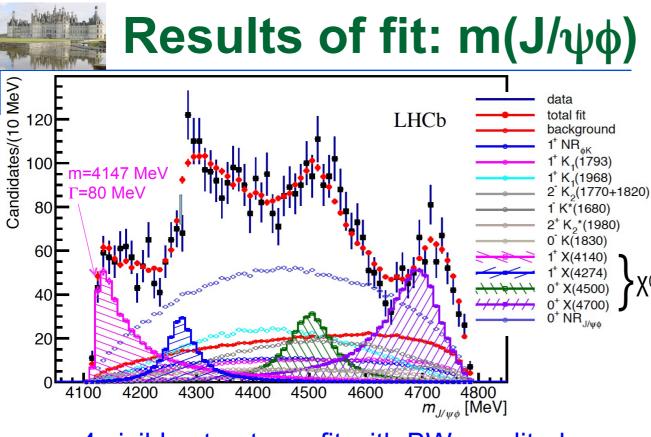

- HQS implies that the same mechanism applies for charmonium-like states

$Z_{c}^{+}(3885)$ and $Z_{c}^{+}(4020)$

- Charmonium-like states: $e^+e^- \rightarrow \pi^+ \pi^- J/\psi$ at $\int s = 4.26 \text{ GeV}$ [Y(4260)]
- $Z_c(3885)$, $Z_c(4020)$ both have $I^G(J^P) = 1^-(1^+)$.
- As expected by HQS between the bottomonium and charmonium systems

 No evidence for the isospin 1 (ccud) J^{PC} = 1⁺⁻ states from preliminary lattice studies:

Alexandrou et al. arXiv:1212.1418 Prelovsek et al. arXiv:1405.7623 * Guerrieri et al. arXiv:1411.2247 Padmanath et al. arXiv:1503.03257 Francis et al. arXiv:1607.05214


Prelovsek et al. arXiv:1405.7623 Caveats:

(1) m_{π} = 266 MeV

- (2) limited spacings and volumes
- (3) must include all states below and in region of possible new 4Q states

Light quarks -> strange quarks

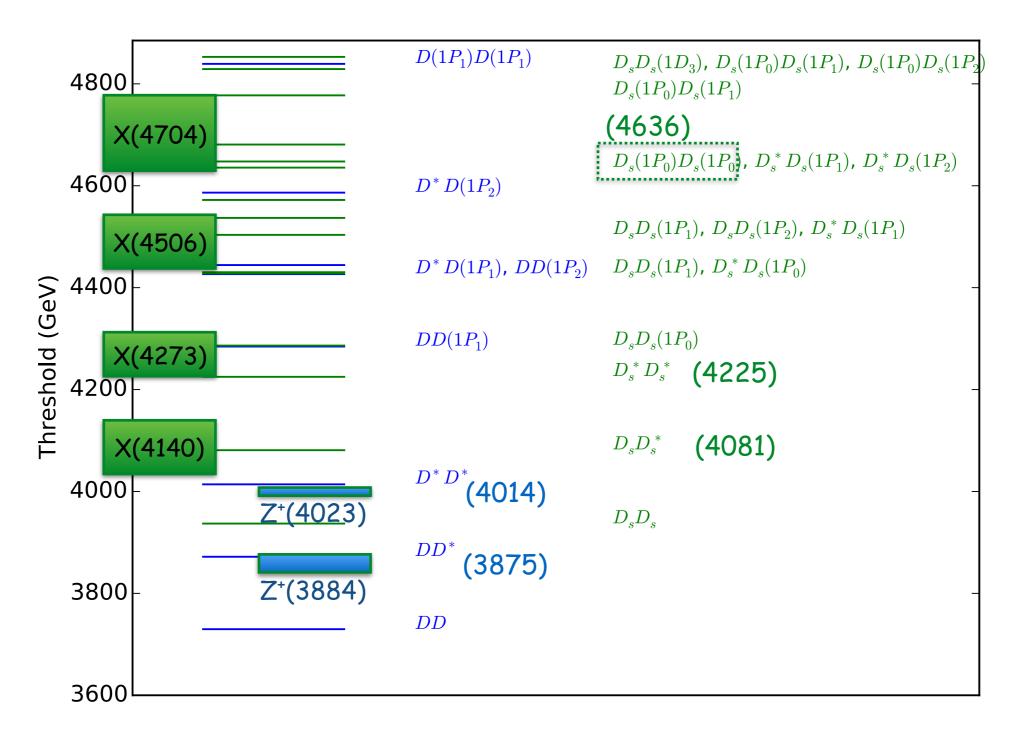
Meson 2016 (T. Skwarnicki)

4 visible structures fit with BW amplitudes

28 Recontres de Blois, June 2, 2016

Results of fit

• J^P also measured all with >4 σ significances


Particle	JP	Signif- icance	Mass (MeV)	Г (MeV)	Fit Fraction (%)	
X(4140)	1+	8.4 σ	$4146.5 \pm 4.5^{\rm +4.6}_{\rm -2.8}$	$83 \pm 21^{+21}_{-14}$	$13.0 \pm 3.2^{+4.8}_{-2.0}$	
X(4274)	1+	6.0 σ	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56 \pm 11^{+ 8}_{-11}$	$7.1 \pm 2.5^{+3.5}_{-2.4}$	
X(4500)	0+	6.1 σ	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	$6.6 \pm 2.4_{-2.3}^{+3.5}$	
X(4700)	0+	5.6 σ	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$	$12 \pm 5^{+9}_{-5}$	
NR	0+	6.4 σ			$46 \pm 11^{+11}_{-21}$	
28 Recontres de Biois, June 2, 2016						

36

LHCb - [arXiv:1606.07895]

- strangeness zero states charmonium (cssc) structures
- SU(3) symmetry suggests new Xs states near the thresholds:
 D Ds*, Ds D*, Ds*Ds*: observable in B decays?

B -> X K: M_× < 4785 MeV

No evidence in preliminary LQCD studies for (cssc) tetraquark states.
 IWHSS Cortona

Y(4260)

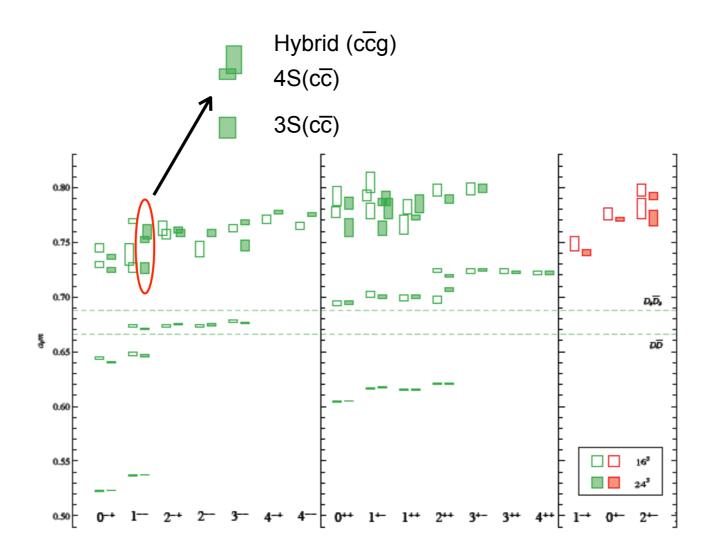
Y(4260) - not standard charmonium state. J^{PC} = 1⁻⁻ M= 4259 ± 9 Γ= 120 ± 12 MeV
 Decays observed:

$$J/\psi \pi^{+} \pi^{-}$$

$$J/\psi f_{0}(980) , f_{0}(980) - > \pi^{+} \pi^{-}$$

$$J/\psi X(3900)^{\pm} \pi^{\mp}, X(3900) - > J/\psi + \pi^{\pm}$$

$$J/\psi \pi^{0} \pi^{0}$$

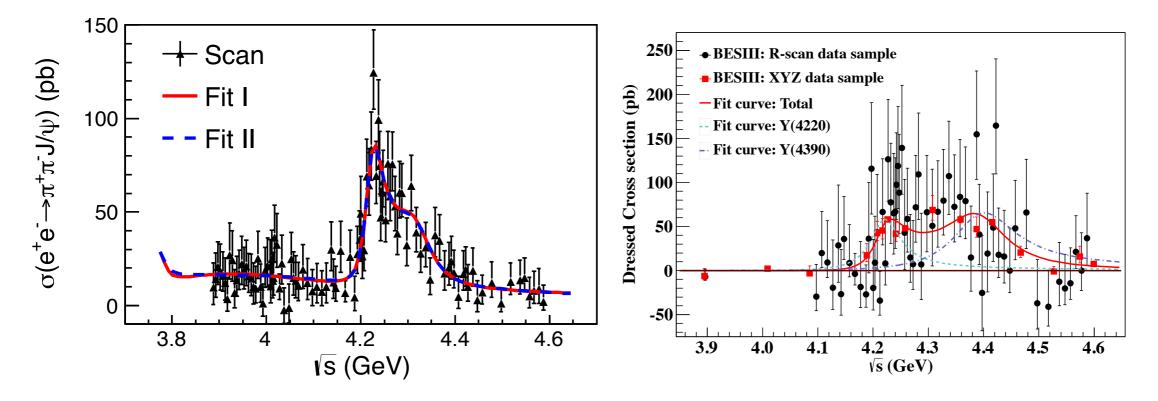

$$J/\psi K^{+} K^{-}$$

$$X(3872)\gamma$$

$$h_{c} \pi^{+} \pi^{-}$$

Many models: ZHU S L. Phys. Lett. B, 2005, 625: 212 Kou E and Pene O. Phys. Lett. B, 2005, 631: 164 Close F E and Page P R. Phys. Lett. B, 2005, 628: 215 DING G J, Zhu J J and YAN M L. Phys. Rev. D, 2008, 77: 014033 Ding G J. Phys. Rev. D, 2009, 79: 014001 WANG Q, Hanhart C and ZHAO Q. Phys. Rev. Lett., 2013, **111**: 132003 1. Charmonium hybrid Voloshin M B. Prog. Part. Nucl. Phys., 2008, 61: 455 D₁ D molecule 2. S. Dubynskiy and Voloshin M B. Phys. Lett. B, 2008, 666: 344 LI X and Voloshin M B. Phys. Rev. D, 2013, 588: 034012 3. Hadrocharmonium Maiani L, Riquer V, Piccinini F and Polosa A D. Phys. Rev. 4. Tetraquark (ccss) D, 2005, 72: 031502 Cusp/nonresonance 5. Beveren E van and Rupp G. arXiv:0904.4351 [hep-ph] Beveren E van and Rupp G. Phys. Rev. D, 2009, 79: 111501 . . . Beveren E van, Rupp G and Segovia J. Phys. Rev. Lett., 2010, **105** 102001 CHEN D Y, HE J and LIU X. Phys. Rev. D, 2011, 83 054021

- Lattice results support the identification of the Y(4260) as a hybrid meson. : 2+1 results (m_{π} =391)
 - L. Liu et al (HSC) [arXiv:1204.5425], G. Moir et al (HSC) [arXiv:1312.1361]



- No additional state below 4200 seen.

- New detailed results from BESIII
 - Rscan in the $\pi^+\pi^-\psi$ final state;
 - M. Ablikim et al. (BESIII) [arXiv:1611.01317]

Rscan in the $\pi^+\pi^-h_c$ final state

M. Ablikim et al. (BESIII) - [arXiv:1611.01317]

- Fit to two Breit-Wigner functions

Channel		Width	Mass	Width
$\pi^+\pi^-\psi$	$4222.0 \pm 3.1 \pm 1.4$	$44.1 \pm 4.3 \pm 2.0$	$4320.0 \pm 10.4 \pm 7.0$	$101.4^{+25.3}_{-19.7} \pm 10.2$
$\pi^+\pi^-h_c$	$4218.4 \pm 4.0 \pm 0.9$	$66.0\pm9.0\pm0.4$	$4391.6 \pm 6.3 \pm 1.0$	$139.5 \pm 16.1 \pm 0.6$
	State 1		State 2	

- Need a better theoretical understanding of decay amplitude structures.
- $D D_P(1^+)$ threshold 4280

- Can model the hybrid potentials Π_u , ... and solve the SE as models did for Σ_g^+ (e.g. Cornell potential):
- pNRQCD calculations
 - lowest lying 1⁻⁻ states

 NL_{J}

1p

2p

 $1(s/d)_{1}$

 $1p_{1}$

 $2(s/d)_1$

3p

 $2p_1$

 $3(s/d)_1$

 $4(s/d)_1$

4p

 $3p_1$

 $5(s/d)_1$

5p

 P^{+-}

 P^{+-}

 \mathbf{S}

 P^0

 P^{+-}

S

4692

4718

4863

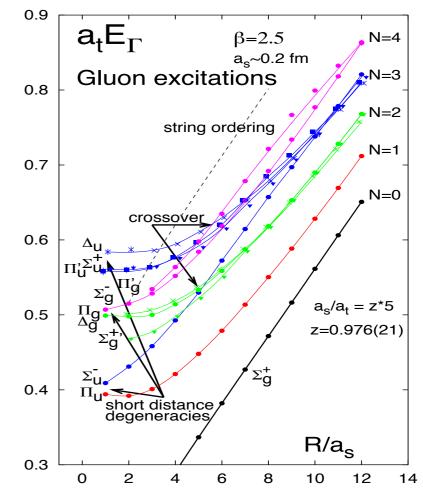
5043

4727

5055

 1^{--} 1^{--}

 1^{+-}


 1^{++}

1--

 1^{+-}

[arXiv:1702.03900] S = 0S = 1 \mathcal{J}^{PC} \mathcal{J}^{PC} $M_{c\bar{c}} \left| M_{c\bar{c}g} \right|$ $\Lambda_{\eta}^{\epsilon}$ w-f $(0,1,2)^{++}$ Σ_g^+ \mathbf{S} 1^{+-} 3494 1^{+-} Σ_g^+ $(0, 1, 2)^{++}$ \mathbf{S} 3968 P^{+-} 4011 $(0,1,2)^{-+} | \Pi_u \Sigma_u^ 1^{--}$ P^0 1^{++} $(0, 1, 2)^{+-}$ 4145 Π_u 1--- P^{+-} $(0, 1, 2)^{-+}$ $\Pi_u \Sigma_u^-$ 4355 1^{+-} $(0, 1, 2)^{++}$ Σ_{g}^{+} \mathbf{S} 4369 1^{++} P^0 $(0,1,2)^{+-}$ 4511 Π_u

R. Oncala & J. Soto

• HQS expectations require to see analog states in the bottomonium system

 $(0, 1, 2)^{-+}$

 $(0, 1, 2)^{-+}$

 $(0, 1, 2)^{++}$

 $(0, 1, 2)^{+-}$

 $(0,1,2)^{++}$

 $(0,1,2)^{-+} | \Pi_u \Sigma_u^-$

 $\Pi_u \Sigma_u^-$

 $\Pi_u \Sigma_u^-$

 Σ_{g}^{+}

 Π_u

 Σ_a^+

- 1. Using the static potential of the excited string $\,\Pi u\,$: Hybrid state should be ~ 10,870 MeV
- + 2. At threshold of $B_1 B$: 11,000

X(3872)

• X(3872) - $J^{PC} = 1^{++}$ M= 3871.69 ± 0.16 ± 0.19 Γ < 1.2 MeV from $J/\psi \pi \pi$ mode

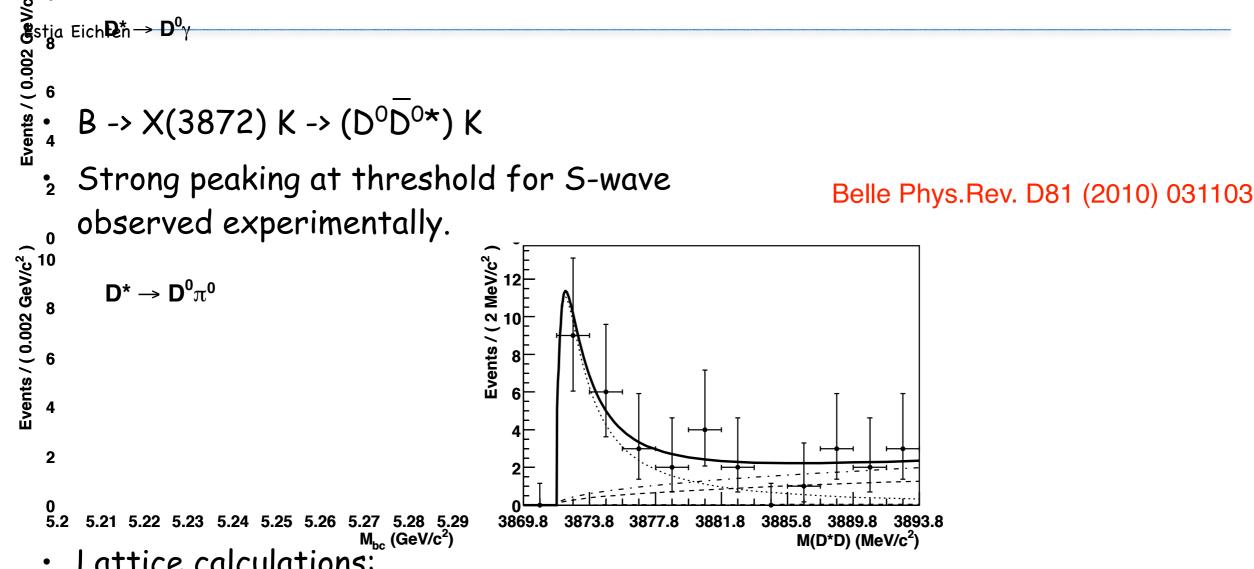
-	Decays	observed:
---	--------	-----------

 $\pi^{+} \pi^{-} J/\psi(1S)$ $ho^{0} J/\psi(1S)$ $\omega J/\psi(1S)$ $D^{0} \overline{D}^{0} \pi^{0}$ $\overline{D}^{*0} D^{0}$ $\gamma \psi(2S)$ > 2.6 % > 1.9 % >32 % >24 % [a] > 3.0 %

large Isospin violation

- LHCb [arXiv:1404.0275] $\frac{\mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29 \text{ suggests 2P state}$
- $M_X M_D M_{D^*} = -0.11 \pm 0.23 \text{ MeV}$

suggests molecule

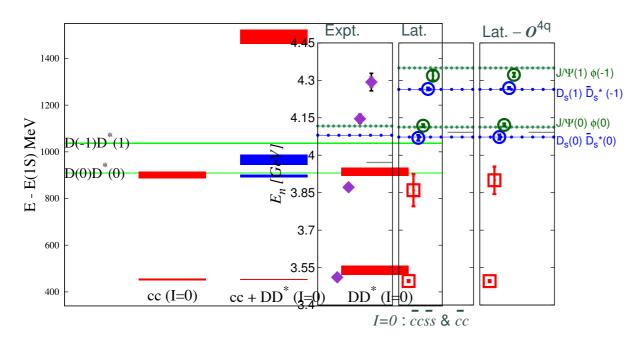

- Two primary models:

 X_{c1}'(2³P₁) state
 D⁰ D⁰* molecule

 M. Suzuki, hep-ph/0307118.
 DeRujula, Georgi, Glashow, PRL 38(1997)317

 Close and P. Page, Phys. Lett. B578 (2004) 119
 Voloshin, Phys. Letts. B579 (2004) 316.

 E. Braaten [arXiv1503.04791]
- Mixed state with sizable quarkonium component likely.
- For LQCD: Where is the $\chi_{c0}'(2^{3}P_{0})$ state?


- Lattice calculations:
 - A pole appears just below threshold in the $J^{PC} = 1^{++} I = 0$ channel.
 - But requires both the $(c\overline{c})$ and the DD* components.
 - Suggests there is a significant (cc) component of the X(3872)
 - No pole observed in the I = 1 channel. -

- B. A. Galloway, P. Knecht, J. Koponen, C. T. H. Davies, and G. P. Lepage, PoS LATTICE2014, 092 (2014), 1411.1318.
- S. Prelovsek and L. Leskovec, Phys.Rev.Lett. 111, 192001 (2013), 1307.5172.

Fermilab Lattice, MILC, S.-h. Lee, C. DeTar, H. Na, and D. Mohler, (2014). 1411.1389.

M. Padmanath, C. B. Lang, and S. Prelovsek, Phys. Rev. D92, 034501 (2015), 1503.03257.

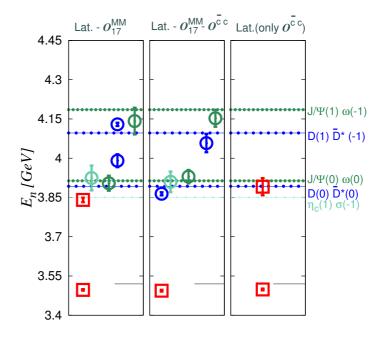
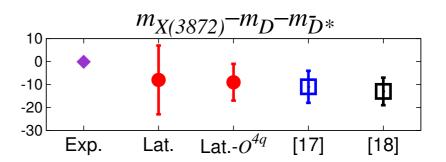
arXiv:1411.1389

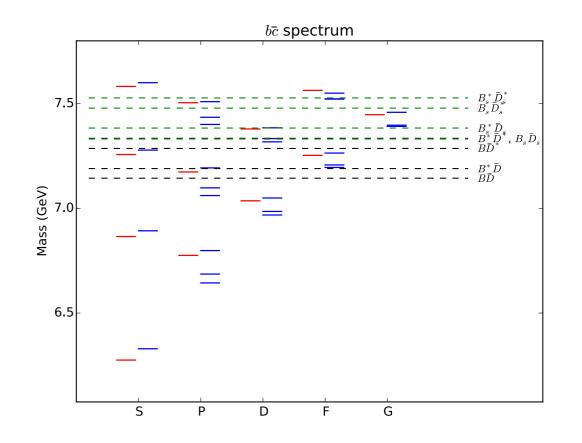
• X_b(10604)??

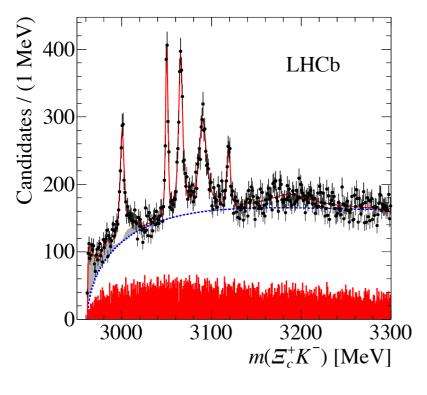
- No isospin breaking: X is I=0 =>
 G-parity forbids the decay X-> ππY(1S)
- Dominate decay X -> w Y(1S)?
- $M(\chi_{b1}(3P)) M(B) M(B^*) \approx -75 \text{ MeV}$
- So the (bb) state is decoupled.

Expect no analog of the X(3872) in the bottomonium system

arXiv:1503.03257

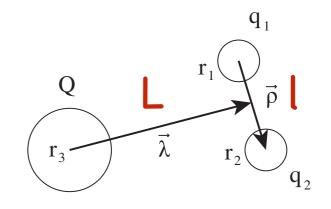

FIG. 5. The spectrum of states (Eq. (11)) with $J^{PC} = 1^{++}$ and quark content $\bar{c}c(\bar{u}u + \bar{d}d)$ & $\bar{c}c$. (i) Optimized basis (without O_{17}^{MM}), (ii) optimized basis without $\bar{c}c$ operators (and without O_{17}^{MM}) and (iii) basis with only $\bar{c}c$ operators. Note that candidate for X(3872) disappears when removing $\bar{c}c$ operators although diquark-antidiquark operators are present in the basis, while it is not clear to infer on the dominant nature of this state just from the third panel. The $O_{17}^{MM} = \chi_{c1}(0)\sigma(0)$ is excluded from the basis to achieve better signals and clear comparison.

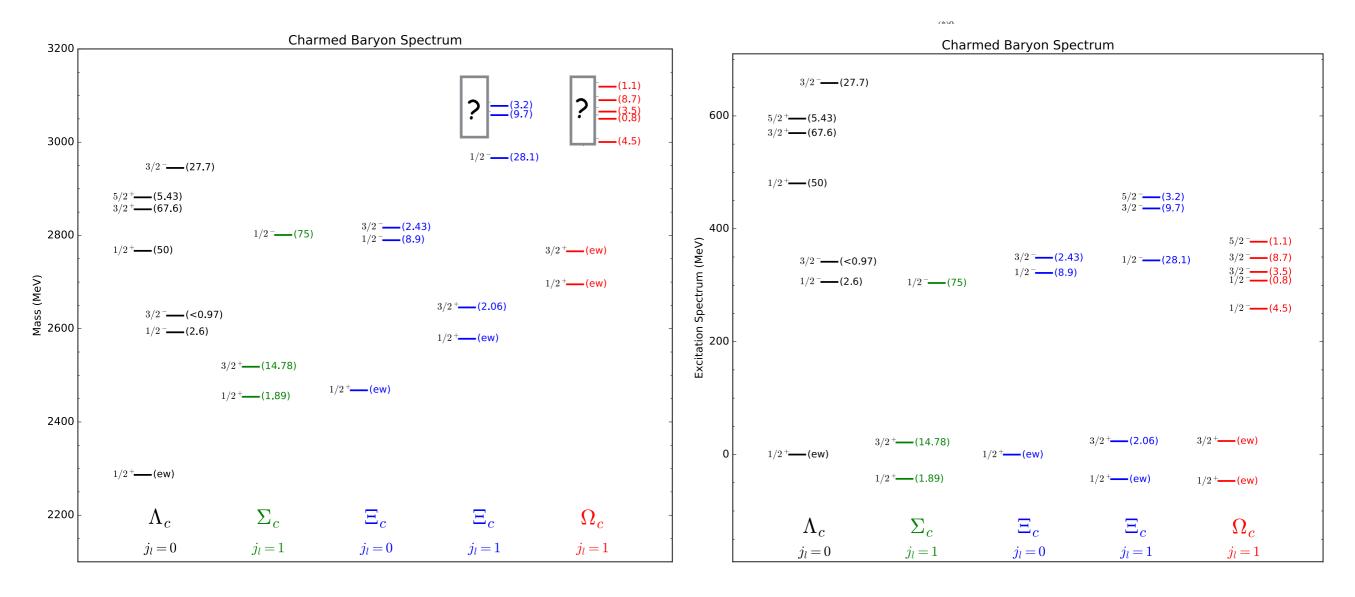

Unexplored Territory

Many surprises still ahead?

- Double heavy baryons (ccq), (cbq), (bbq). Both HQET and NRQCD play a role in the excitation spectra.
 - double expansion
 - NRQCD for the two heavy quarks and HQET expansion for the heavy core (QQ) light quark system.
 - In leading order in $1/m_{\rm Q}$: Excitation spectrum for the light quark is same as for heavy-light mesons (HQET)
- B_c a rich excitation spectrum of states.
 - Atlas observed: Bc(2S) -> Bc(1S) + $\pi\pi$. radially excited state.
 - Many states observable at the LHC and TevaZ factory.
 - B_c is the unique heavy-heavy meson that weak direct decays.
 - Opportunities to study CKM and BSM physics.

• Charmed Baryons - P waves Ω_c - LHCb




arXiv:1703.04639

Resonance	Mass (MeV)	$\Gamma (MeV)$	Yield	N_{σ}
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$	$970\pm 60\pm 20$	20.4
		$< 1.2\mathrm{MeV}, 95\%$ CL		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
		$<2.6{\rm MeV},95\%$ CL		
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$	

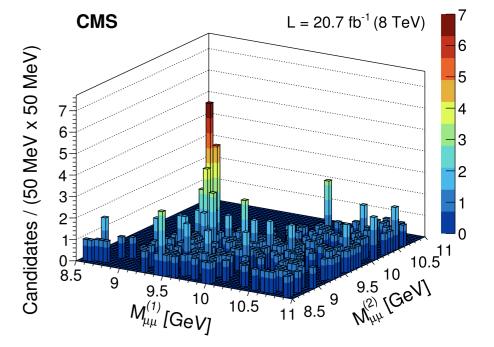
- Many models of baryon excitations and transitions diquarks, potential models, psuedoscalar transitions.
- Extraordinary opportunity to resolve some long standing issues.
- Already new theory papers: [1703.07774] (pot), [1703.07091] (sum rules), [1703.08845] (pentaquarks), [1703.09130] (using decays),...

- Charmed Baryons P wave excitation spectrum
 - $(q_1 q_2)$ spin=0, flavor symmetric, I=0, L=1
 - $(\Lambda_c, \Xi_c^{(a)})$
 - $(q_1 q_2)$ spin=1, flavor antisymmetric, I=0, L=1
 - (Σ_c, Ξ_c^(s),Ω_c)

EE, C. Hill, C. Quigg (HQET)

- CMS at $\int s = 8$ TeV observes double Y production in the μ + μ μ + μ final state:
 - σ (pp -> Υ Υ) = 68.8 ± 12.7 (stat) ± 7.4 (syst) pb
 for †y| < 2.0 and pT ^Υ < 50 GeV
 - Possible to search for heavy quark hadrons (cccc), (cbbc), (bbbb)
 - Quarkonium states increasingly bound as heavy quark mass increases. What about tetraquark states?

Are there any narrow deeply bound all heavy tetraquark states?

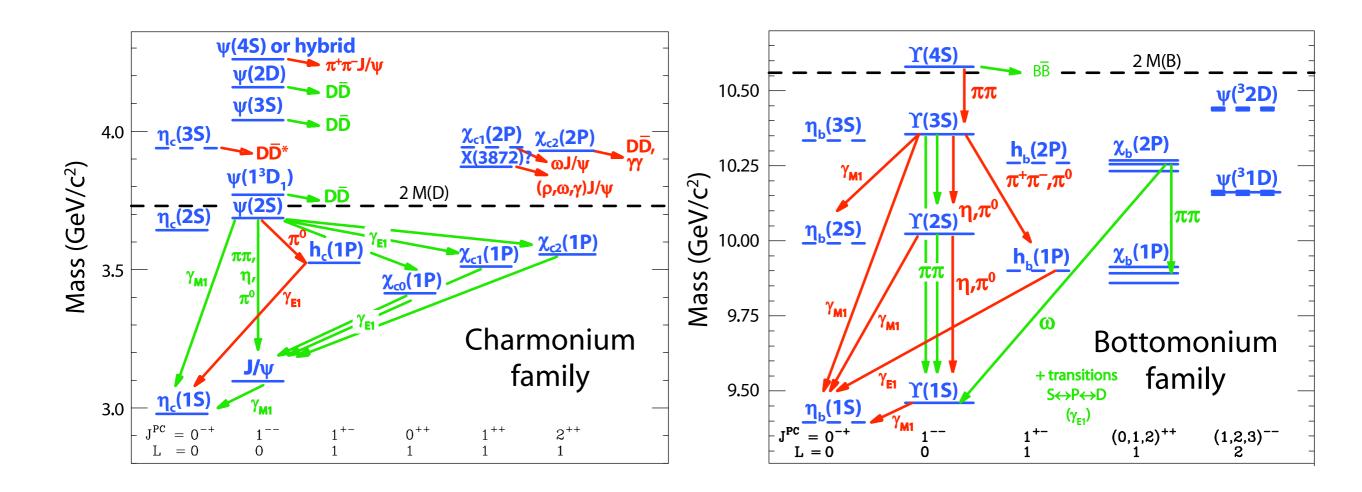

- Potential models suggest this may be possible.

A. V. Berezhnoy et. al. [PR D84,09023(2011)]; Berezhnoy, Lucninsky & Novoselov [PR D86,034004(2012)] W. Heupel, G. Eichmann & C. S. Fischer [PL B718, 545 (2012)]

J. Wu et. al.[arXiv:1605.01134]; W. Chen et al. [arXiv:1605.01647]

M. Karliner, S. Nussinov & J. Rosner [arXiv:1611.00348]; Y. Bai, S. Lu & J. Osborne [arXiv:1612.00012]

CMS [arXiv:1610.07095]


- Heavy quark states are ideal systems to study QCD strong dynamics.
- In the threshold region for decays to open heavy flavor states QCD dynamics is more complicated. There have been many surprises and a still incomplete picture of the dynamics:
 - Large violations of heavy quark spin symmetry and SU(3) expectations. Likely induced by the symmetry breaking of the heavy-light mesons masses coupled to the rapid energy variation of the decay amplitudes.
 - Large hadronic transition rates. New transition contributions with two open flavor intermediate states near threshold.
 - Does the resonance-like behavior seen for two heavy-light mesons at Swave threshold respect approximate HQSS and SU(3) symmetry?
 - New states with additional degrees of freedom: Threshold effects, hybrid states, tetraquarks, pentaquark provide a multitude of possibilities. More clues from BESIII, Belle2, LHCb, PANDA,... coupled with Lattice QCD calculations are needed.
- Many heavy quark systems remain essentially unexplored; more surprises may await.

Fermilab

BACKUP SLIDES

- Hadronic and EM transitions

- EM transitions Standard multipole expansion for photon emission
- Hadronic transitions QCDME multipole expansion in gluons followed by hadronization.
 into light hadrons.
- Some hadronic and EM transitions

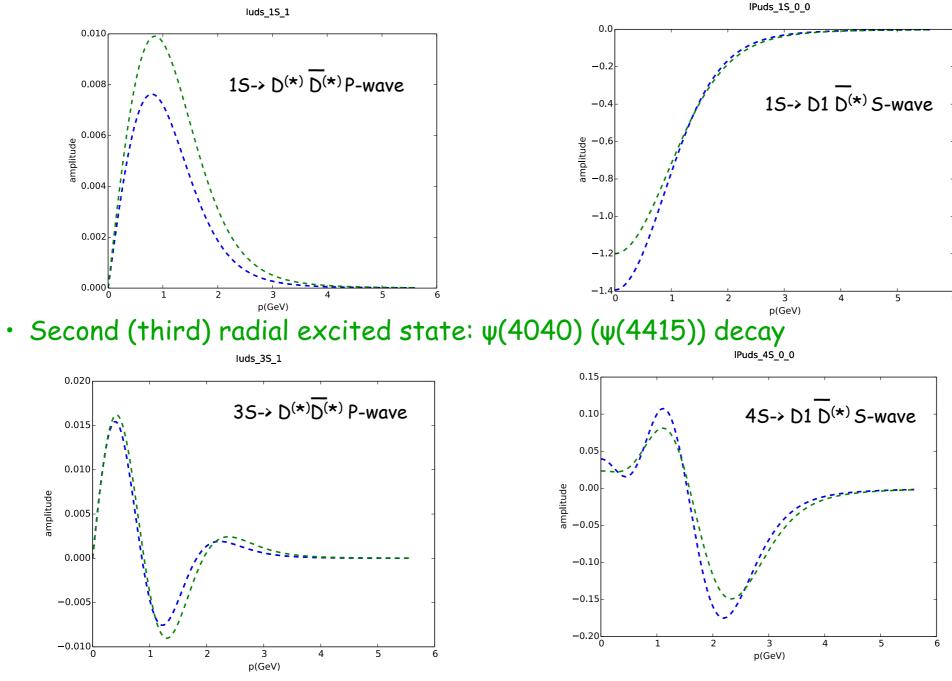
Stephen Godfrey, Hanna Mahlke, Jonathan L. Rosner and E.E. [Rev. Mod. Phys. 80, 1161 (2008)]

- Coupled channel problem •
 - \mathcal{H}_{0} , $Q\bar{Q}$ NRQCD (without light quarks) $\begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_I^{\dagger} \end{pmatrix} \begin{pmatrix} \psi_1 \end{pmatrix} = z$
 - $\mathcal{H}_I \quad Q\bar{Q} \rightarrow Q\bar{q} + q\bar{Q}$ light guark pair creation

$$\begin{pmatrix} \mathcal{H}_0 & \mathcal{H}_I^{\dagger} \\ \mathcal{H}_I & \mathcal{H}_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = z \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

- $Q\bar{q}+q\bar{Q}$ \mathcal{H}_2 heavy-light meson pair interactions
- Formally eliminate Ψ_2 defines $\Omega(z)$

$$\left(\mathcal{H}_0 + \mathcal{H}_I^{\dagger} \frac{1}{z - \mathcal{H}_2} \mathcal{H}_I\right) \psi_1 = z \psi_1$$


- Decay amplitude $\langle DD|H_I|\psi\rangle$ •
- Simplifying assumptions ٠
 - H_2 free meson pairs no final state interactions
 - H₀ charmonium states are a complete basis no hybrids

$$< n|\mathcal{G}(z)|m> = < n|\frac{1}{z - \mathcal{H}_0 - \Omega(z)}|m>$$

Assuming vector meson dominance. Can compute R_c •

$$R_Q \sim \frac{1}{s} \sum_{nm} \lim_{r \to 0} \psi_n^*(r) \operatorname{Im} \mathcal{G}_{nm}(W + i\epsilon) \psi_m(r)$$

- General features of decays to low-lying heavy-light mesons:
 - Unlike light meson systems, these decays are from highly excited QQ states:
 - Ground state decay amplitudes :

- Have complicated energy dependence.

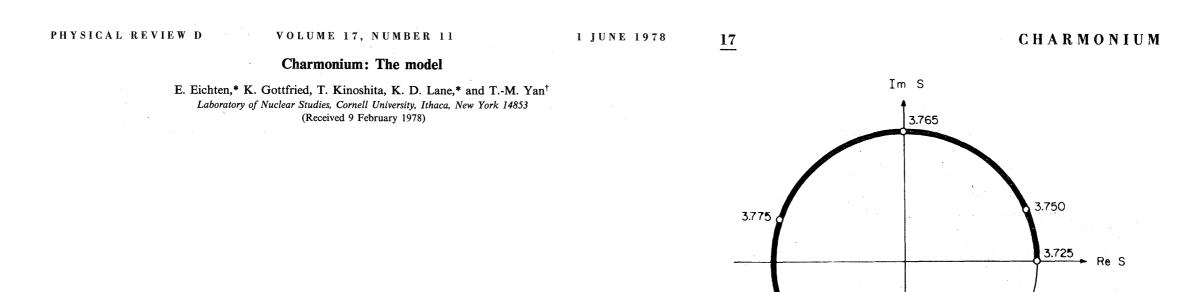


FIG. 9. Argand plot of the $D\overline{D}$ S matrix in the 1⁻⁻ state. The rather narrow elastic ${}^{3}D_{1}$ resonance ψ (3772) is clearly in evidence, as is an inelastic resonance at ~4.15 GeV due to the 3 ${}^{3}S \ c\overline{c}$ state. The parameters are the same as in Figs. 7 and 8.

3.875

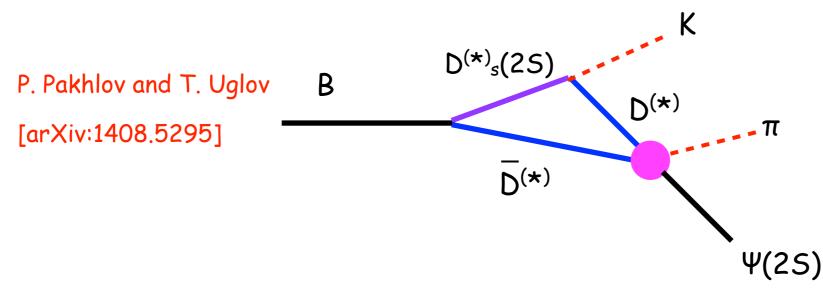
is found by substituting (3.58) into (3.23):

 $\Gamma_{nn'} = 8\pi^2 (p/W) D_n(W) D_{n'}(W)$.

3.800

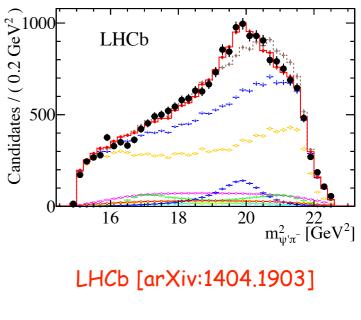
3.825

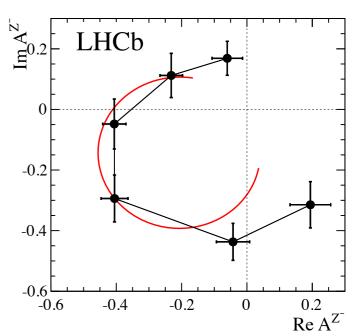
It now only remains to extract the partial-wave amplitude from (3.58). The final result for the phase shift is

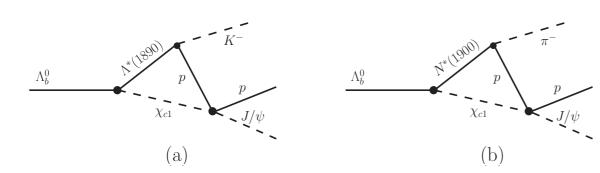

$$e^{2i6} = 1 - \mathrm{Tr}\,\Gamma 9$$
. (3.59)

This expression also applies to other partial waves. Figure 9 shows $e^{2i\delta}$ for $D\overline{D}$ scattering in the 1⁻⁻ partial wave from threshold to 4.3 GeV; the ${}^{3}D_{1}[\psi(3772)]$ and 3 ${}^{3}S$ resonances are clearly visible.

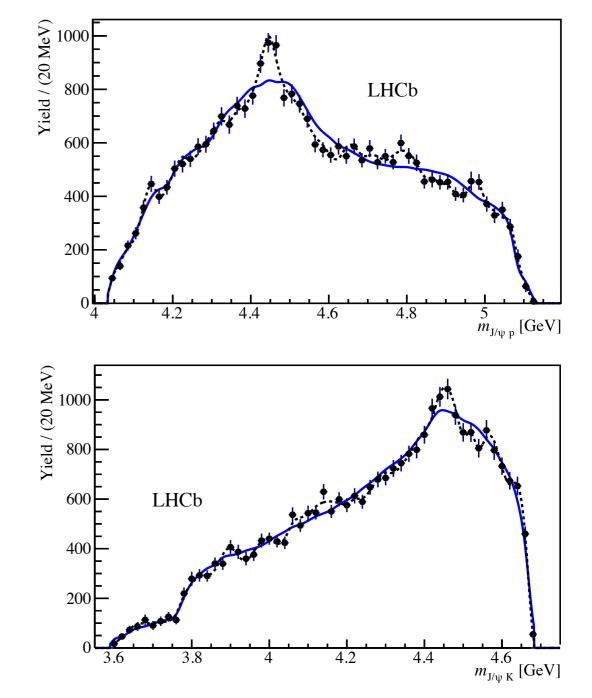
Fermilab


Systematics: Other States

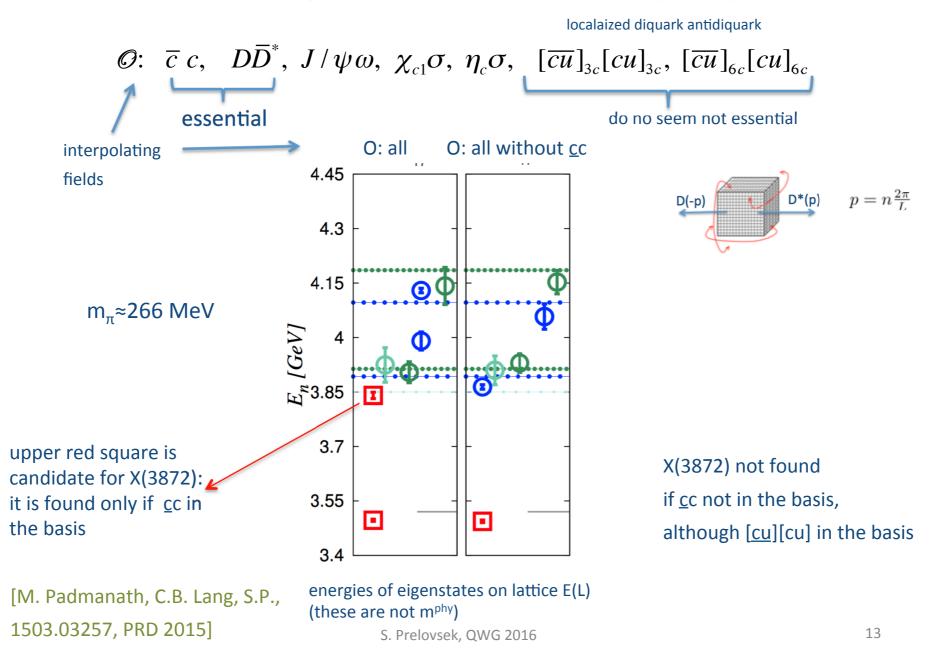

- $Z^{-}(4430)$: seen in $B^{0} \rightarrow K^{+} \pi^{-} \psi'$
 - $J^{P} = 1^{+}$; $M = (4,475\pm7\pm[15/25]) \text{ MeV}$; $\Gamma = (172\pm13\pm[37/34]) \text{ MeV}$
 - Resonance behavior observed.
 - Same mechanism in B-decays with $D_s(2S)$ states?
 - $D_s*(2S) = 2,709 \pm 4 \text{ MeV} \Gamma = 117 \pm 13 \text{ MeV}$
 - B -> $D_s(2^3S_1) D^*$, $D_s(2^1S_0) D^*$, or $D_s(2^3S_1) D$ then
 - $D_s(2^3S_1) \rightarrow K^+ D^{*-} \text{ or } K^+ D^-; D_s(2^1S_0) \rightarrow K^+ D^{*-}$
 - Possible rescattering explanation


• X(5568): decaying into $B_s \pi^+$

by observed by Dzero but not confirmed by LHCb



- Pentaquarks: $[\Lambda_b \rightarrow p J/\psi K \text{ weak decay}]$
 - $P_c(4450) J^P = 5/2^+$; M=(4,449.8±1.7±2.5) MeV; $\Gamma = (39\pm5\pm19)$ MeV
 - $P_c(4380) J^P = 3/2^-$; M=(4,380±8±29) MeV; $\Gamma = (205\pm18\pm86)$ MeV
 - complicated analysis required.
 - possible J/ψ K state investigated also
 - Note nearby thresholds
 - X_{c1} p threshold 4,448 MeV
 - Maybe a cusp effect?



F.-K. Guo, U.-G. Meißner, W. Wang and Z. Yang [arXiv:1507.04950] F.-K. Guo, U.-G. Meißner, J.Nieves and Z. Yang [arXiv:1605.05113]

LHCb: [arXiv:507.03414, 1604.05708]

Which Fock components are essential for X(3872) with I=0?

