Bose Particles in a Box: Convergent Expansion of the Ground State in the Mean Field Limiting Regime

Alessandro Pizzo

Dipartimento di Matematica, Università di Roma "Tor Vergata"

Frascati - INFN / 06-09-2016

References

- A. P. http://arxiv.org/abs/1511.07022
- A. P. http://arxiv.org/abs/1511.07025
- A. P. http://arxiv.org/abs/1511.07026

▶ N Bose (nonrelat.) particles in a finite box of volume $|\Lambda| = L^d$

- ▶ N Bose (nonrelat.) particles in a finite box of volume $|\Lambda| = L^d$
- Hamiltonian

$$H = -\sum_{i} \Delta_{i} + \frac{1}{\rho} \sum_{i < j} \phi(x_{i} - x_{j})$$

where i, j run from 1 to $N = \rho |\Lambda|$

- ▶ N Bose (nonrelat.) particles in a finite box of volume $|\Lambda| = L^d$
- Hamiltonian

$$H = -\sum_{i} \Delta_{i} + \frac{1}{\rho} \sum_{i < j} \phi(x_{i} - x_{j})$$

where i, j run from 1 to $N = \rho |\Lambda|$

▶ Mean field limiting regime: $|\Lambda|$ fixed and N sufficiently large independently of $|\Lambda|$

- ▶ N Bose (nonrelat.) particles in a finite box of volume $|\Lambda| = L^d$
- Hamiltonian

$$H = -\sum_{i} \Delta_{i} + \frac{1}{\rho} \sum_{i < j} \phi(x_{i} - x_{j})$$

where i, j run from 1 to $N = \rho |\Lambda|$

- ▶ Mean field limiting regime: $|\Lambda|$ fixed and N sufficiently large independently of $|\Lambda|$
- ▶ Thermodynamic limit: ρ fixed and $|\Lambda| \to \infty$

- ▶ N Bose (nonrelat.) particles in a finite box of volume $|\Lambda| = L^d$
- ► Hamiltonian

$$H = -\sum_{i} \Delta_{i} + \frac{1}{\rho} \sum_{i < j} \phi(x_{i} - x_{j})$$

where i, j run from 1 to $N = \rho |\Lambda|$

- ▶ Mean field limiting regime: $|\Lambda|$ fixed and N sufficiently large independently of $|\Lambda|$
- ▶ Thermodynamic limit: ρ fixed and $|\Lambda| \to \infty$
- Other regimes: Gross-Pitaveskii, Thomas-Fermi

► Results on the ground state energy (L-S, E-Y-S, G-S)

- ► Results on the ground state energy (L-S, E-Y-S, G-S)
- Proof of Bogoliubov conjecture: mean field limit (S, L-N-S-S), diagonal limit (D-N)

- ► Results on the ground state energy (L-S, E-Y-S, G-S)
- ▶ Proof of Bogoliubov conjecture: mean field limit (S, L-N-S-S), diagonal limit (D-N)
- Proof of Bose-Einstein condensation (L-S-Y, L-N-R)
- Renormalization group approach: (B) in space dimension d=3, order by order control of the Schwinger functions in the limit $|\Lambda| \to \infty$ and with ultraviolet cut-off Recent progress for d=2 using Ward identities (C-D-P-S., C-G)

- ► Results on the ground state energy (L-S, E-Y-S, G-S)
- Proof of Bogoliubov conjecture: mean field limit (S, L-N-S-S), diagonal limit (D-N)
- Proof of Bose-Einstein condensation (L-S-Y, L-N-R)
- Renormalization group approach: (B) in space dimension d=3, order by order control of the Schwinger functions in the limit $|\Lambda| \to \infty$ and with ultraviolet cut-off Recent progress for d=2 using Ward identities (C-D-P-S., C-G)
- Results towards rigorous functional integral: (B-F-K-T)

1. Definition of the model: Hamiltonian in second quantization

- 1. Definition of the model: Hamiltonian in second quantization
- 2. Particle preserving Bogoliubov Hamiltonian and three-modes systems

- 1. Definition of the model: Hamiltonian in second quantization
- 2. Particle preserving Bogoliubov Hamiltonian and three-modes systems
- 3. A novel application of Feshbach map:

 Multi-scale analysis in the occupation numbers of particle states

- 1. Definition of the model: Hamiltonian in second quantization
- 2. Particle preserving Bogoliubov Hamiltonian and three-modes systems
- A novel application of Feshbach map:
 Multi-scale analysis in the occupation numbers of particle states
- 4. Convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian

- 1. Definition of the model: Hamiltonian in second quantization
- 2. Particle preserving Bogoliubov Hamiltonian and three-modes systems
- A novel application of Feshbach map:
 Multi-scale analysis in the occupation numbers of particle states
- 4. Convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian
- 5. Outlook

Model

(Δ with periodic boundary conditions)

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

Model

(Δ with periodic boundary conditions)

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

 $ightharpoonup a^*(x), a(x)$ operator-valued distributions on

$$\mathcal{F}:=\Gamma\left(L^2\left(\Lambda,\mathbb{C};dx\right)\right)\qquad |\Lambda|=L^d$$
 CCR:
$$\left[a^\#(x),a^\#(y)\right]=0,\qquad \left[a(x),a^*(y)\right]=\delta(x-y)1_{\mathcal{F}},$$

Model

(Δ with periodic boundary conditions)

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

 $a^*(x), a(x)$ operator-valued distributions on

$$\mathcal{F}:=\Gamma\left(L^{2}\left(\Lambda,\mathbb{C};dx\right)\right) \qquad |\Lambda|=L^{d}$$

CCR:
$$[a^{\#}(x), a^{\#}(y)] = 0, \quad [a(x), a^{*}(y)] = \delta(x - y)1_{\mathcal{F}},$$

•

$$a(x) = \sum_{\mathbf{i} \in \mathbb{Z}^d} \frac{a_{\mathbf{j}} e^{ik_{\mathbf{j}} \cdot x}}{|\Lambda|^{\frac{1}{2}}}, \quad a^*(x) = \sum_{\mathbf{i} \in \mathbb{Z}^d} \frac{a_{\mathbf{j}}^* e^{-ik_{\mathbf{j}} \cdot x}}{|\Lambda|^{\frac{1}{2}}}$$

where
$$k_{\bf j} := \frac{2\pi}{L}{\bf j}$$
, ${\bf j} = (j_1, j_2, \dots, j_d)$, $j_1, j_2, \dots, j_d \in \mathbb{Z}$

CCR:
$$[a_{\mathbf{j}}^{\#}, a_{\mathbf{j}'}^{\#}] = 0, \qquad [a_{\mathbf{j}}, a_{\mathbf{j}'}^{*}] = \delta_{\mathbf{j}}, \mathbf{j}_{\mathbf{j}}'.$$

▶ The pair potential $\phi(x - y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w) = \phi(w + \mathbf{j}L)$ for $\mathbf{j} \in \mathbb{Z}^d$

▶ The pair potential $\phi(x - y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w) = \phi(w + \mathbf{j}L)$ for $\mathbf{j} \in \mathbb{Z}^d$

lacktriangledown $\phi(w)$ is an even function, in consequence $\phi_{f j}=\phi_{-{f j}}$

▶ The pair potential $\phi(x - y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w) = \phi(w + \mathbf{j}L)$ for $\mathbf{j} \in \mathbb{Z}^d$

lacktriangledown $\phi(w)$ is an even function, in consequence $\phi_{f j}=\phi_{-{f j}}$

• $\phi(w)$ is of positive type, i.e., $\phi_{\mathbf{j}} \geq 0$

► The pair potential $\phi(x - y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w) = \phi(w + \mathbf{j}L)$ for $\mathbf{j} \in \mathbb{Z}^d$

 $lackbox{}\phi(w)$ is an even function, in consequence $\phi_{f j}=\phi_{-{f j}}$

• $\phi(w)$ is of positive type, i.e., $\phi_{\mathbf{j}} \geq 0$

UV cut-off

► The pair potential $\phi(x - y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w) = \phi(w + \mathbf{j}L)$ for $\mathbf{j} \in \mathbb{Z}^d$

• $\phi(w)$ is an even function, in consequence $\phi_{\mathbf{j}} = \phi_{-\mathbf{j}}$

• $\phi(w)$ is of positive type, i.e., $\phi_{\mathbf{j}} \geq 0$

- UV cut-off
- Strong interaction potential regime: The ratio $\epsilon_{\mathbf{j}} := \frac{k_{\mathbf{j}}^2}{\phi_{\mathbf{j}}}$ is sufficiently small

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

Þ

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

- $H = H^B + V + C_N$
 - $ightharpoonup V \equiv$ cubic and quartic terms in the nonzero modes

Þ

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

- $H = H^B + V + C_N$
 - $ightharpoonup V \equiv$ cubic and quartic terms in the nonzero modes

$$\blacktriangleright H^B := \frac{1}{2} \sum_{j \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} H_j^B$$

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

- $H = H^B + V + C_N$
 - $ightharpoonup V \equiv$ cubic and quartic terms in the nonzero modes

$$\blacktriangleright H^B := \frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} H^B_{\mathbf{j}}$$

$$H_{\mathbf{j}}^{B} := \left(k_{\mathbf{j}}^{2} + \frac{\phi_{\mathbf{j}}}{\rho|\Lambda|} a_{\mathbf{0}}^{*} a_{\mathbf{0}}\right) \left(a_{\mathbf{j}}^{*} a_{\mathbf{j}} + a_{-\mathbf{j}}^{*} a_{-\mathbf{j}}\right)$$
$$+ \frac{\phi_{\mathbf{j}}}{\rho|\Lambda|} \left\{a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{\mathbf{j}} a_{-\mathbf{j}} + a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{\mathbf{0}} a_{\mathbf{0}}\right\}$$

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

is restricted to $\mathcal{F}^N \equiv \mathsf{subspace}$ of \mathcal{F} with N particles (N even)

$$\rightarrow$$
 $H = H^B + V + C_N$

 $ightharpoonup V \equiv$ cubic and quartic terms in the nonzero modes

$$\blacktriangleright H^B := \frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} H^B_{\mathbf{j}}$$

$$H_{\mathbf{j}}^{B} := \left(k_{\mathbf{j}}^{2} + \frac{\phi_{\mathbf{j}}}{N} a_{\mathbf{0}}^{*} a_{\mathbf{0}}\right) \left(a_{\mathbf{j}}^{*} a_{\mathbf{j}} + a_{-\mathbf{j}}^{*} a_{-\mathbf{j}}\right) + \frac{\phi_{\mathbf{j}}}{N} \left\{a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{\mathbf{j}} a_{-\mathbf{j}} + a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{\mathbf{0}} a_{\mathbf{0}}\right\}$$

$$H := \int (\nabla a^*)(\nabla a)(x)dx +$$

$$+ \frac{1}{2\rho} \int \int a^*(x)a^*(y)\phi(x-y)a(y)a(x)dxdy$$

is restricted to $\mathcal{F}^N \equiv \mathsf{subspace}$ of \mathcal{F} with N particles (N even)

- $H = H^B + V + C_N$
 - $ightharpoonup V \equiv$ cubic and quartic terms in the nonzero modes
- $lacksquare H^B := rac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} H^B_{\mathbf{j}}$
- Three-modes Bogoliubov Hamiltonian

$$H_{\mathbf{j}}^{B} := \left(k_{\mathbf{j}}^{2} + \frac{\phi_{\mathbf{j}}}{N} a_{\mathbf{0}}^{*} a_{\mathbf{0}}\right) \left(a_{\mathbf{j}}^{*} a_{\mathbf{j}} + a_{-\mathbf{j}}^{*} a_{-\mathbf{j}}\right) + \frac{\phi_{\mathbf{j}}}{N} \left\{a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{\mathbf{j}} a_{-\mathbf{j}} + a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{\mathbf{0}} a_{\mathbf{0}}\right\}$$

- ▶ H is restricted to $\mathcal{F}^N \equiv \text{subspace of } \mathcal{F}$ with exactly N particles (N even)
- \vdash $H = H^B + V$
 - $ightharpoonup V \equiv$ cubic and quartic terms in the nonzero modes
- $\blacktriangleright H^B := \frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} H^B_{\mathbf{j}}$
- ► Three-modes Bogoliubov Hamiltonian

$$H_{\mathbf{j}}^{B} := \underbrace{(k_{\mathbf{j}}^{2} + \frac{\phi_{\mathbf{j}}}{N} a_{\mathbf{0}}^{*} a_{\mathbf{0}})(a_{\mathbf{j}}^{*} a_{\mathbf{j}} + a_{-\mathbf{j}}^{*} a_{-\mathbf{j}})}_{+ \underbrace{\left\{\frac{\phi_{\mathbf{j}}}{N} a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{\mathbf{j}} a_{-\mathbf{j}}\right\}}_{W_{\mathbf{j}}} + \underbrace{\left\{\frac{\phi_{\mathbf{j}}}{N} a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{\mathbf{0}} a_{\mathbf{0}}\right\}}_{W_{\mathbf{i}}^{*}}$$

- ▶ If ψ_{gs} ground state of H, $\langle \sum_{\mathbf{j} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} a^*_{\mathbf{j}} a_{\mathbf{j}} \rangle_{\psi_{gs}}$ stays bounded as $N \to \infty$
 - \Rightarrow Conjecture: An effective Hamiltonian in a neighborhood of E_{gs} is a multiple of the projection

$$|\eta\rangle\langle\eta|$$
 , $\eta:=\frac{1}{\sqrt{N!}}a_0^*\ldots a_0^*\Omega$

- ▶ If ψ_{gs} ground state of H, $\langle \sum_{\mathbf{j} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} a^*_{\mathbf{j}} a_{\mathbf{j}} \rangle_{\psi_{gs}}$ stays bounded as $N \to \infty$
 - \Rightarrow Conjecture: An effective Hamiltonian in a neighborhood of E_{gs} is a multiple of the projection

$$|\eta\rangle\langle\eta|$$
 , $\eta:=\frac{1}{\sqrt{N!}}a_0^*\ldots a_0^*\Omega$

▶ Feshbach map $(\mathscr{P}=\mathscr{P}^2,\,\overline{\mathscr{P}}=\overline{\mathscr{P}}^2,\,\mathscr{P}+\overline{\mathscr{P}}=1_{\mathcal{H}})$

$$\mathscr{F}(K-z) := \mathscr{P}(K-z)\mathscr{P} - \mathscr{P}K\overline{\mathscr{P}}\frac{1}{\overline{\mathscr{P}}(K-z)\overline{\mathscr{P}}}\overline{\mathscr{P}}K\mathscr{P}$$

- ▶ If ψ_{gs} ground state of H, $\langle \sum_{\mathbf{j} \in \mathbb{Z}^d \setminus \{\mathbf{0}\}} a^*_{\mathbf{j}} a_{\mathbf{j}} \rangle_{\psi_{gs}}$ stays bounded as $N \to \infty$
 - \Rightarrow Conjecture: An effective Hamiltonian in a neighborhood of E_{gs} is a multiple of the projection

$$|\eta\rangle\langle\eta|$$
 , $\eta:=\frac{1}{\sqrt{N!}}a_0^*\ldots a_0^*\Omega$

▶ Feshbach map $(\mathscr{P}=\mathscr{P}^2,\,\overline{\mathscr{P}}=\overline{\mathscr{P}}^2,\,\mathscr{P}+\overline{\mathscr{P}}=1_{\mathcal{H}})$

$$\mathscr{F}(K-z) := \mathscr{P}(K-z)\mathscr{P} - \mathscr{P}K\overline{\mathscr{P}}\frac{1}{\overline{\mathscr{P}}(K-z)\overline{\mathscr{P}}}\overline{\mathscr{P}}K\mathscr{P}$$

▶ Isospectrality: 1) $\mathscr{F}(K-z)$ is bounded invertible on \mathscr{PH} if and only if z is in the resolvent set of K (on \mathcal{H}); 2) z is an eigenvalue of K if and only if 0 is an eigenvalue of $\mathscr{F}(K-z)$

▶ Selection rules of H w.r.t. $\sum_{j=\pm j_*} a_j^* a_j$ ⇒ choose \mathscr{P} , $\overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{j=\pm j_*} a_i^* a_j$

▶ Selection rules of H w.r.t. $\sum_{j=\pm j_*} a_j^* a_j$ ⇒ choose \mathscr{P} , $\overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{j=\pm j_*} a_i^* a_j$

Ideas

▶ Selection rules of H w.r.t. $\sum_{j=\pm j_*} a_j^* a_j$ ⇒ choose \mathscr{P} , $\overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{j=\pm j_*} a_j^* a_j$

▶ The Rayleigh-Schrödinger expansion of ψ_{gs} is not under control for strong interaction potentials (thermodynamic limit)

Ideas

▶ Selection rules of H w.r.t. $\sum_{j=\pm j_*} a_j^* a_j$ ⇒ choose \mathscr{P} , $\overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{j=\pm j_*} a_j^* a_j$

▶ The Rayleigh-Schrödinger expansion of ψ_{gs} is not under control for strong interaction potentials (thermodynamic limit)

▶ Can $\overline{\mathscr{P}}$ help to avoiding *small denominator problems*?

Three-modes system

▶ Pick a couple of interacting modes $(-j_*; j_*)$

Three-modes system

▶ Pick a couple of interacting modes $(-\mathbf{j}_*; \mathbf{j}_*)$

lacktriangle Study the Hamiltonian $\hat{H}^B\equiv H^B_{\mathbf{j}_*}$

Three-modes system

▶ Pick a couple of interacting modes $(-\mathbf{j}_*; \mathbf{j}_*)$

lacksquare Study the Hamiltonian $\hat{H}^B\equiv H^B_{\mathbf{j}_*}$

▶ For the purpose of this talk the Hilbert space \mathcal{F}^N contains only the degrees of freedom $(0; -j_*; j_*)$

Feshbach Projections for \hat{H}^B

▶ $Q^{(i,i+1)}$:= the projection (in \mathcal{F}^N) onto the subspace spanned by the vectors with N-i or N-i-1 particles in the modes \mathbf{j}_* and $-\mathbf{j}_*$ \rightarrow the operator $a_{\mathbf{j}_*}^* a_{\mathbf{j}_*} + a_{-\mathbf{j}_*}^* a_{-\mathbf{j}_*}$ has eigenvalues N-i and N-i-1 when restricted to $Q^{(i,i+1)}\mathcal{F}^N$

Feshbach Projections for \hat{H}^B

▶ $Q^{(i,i+1)}$:= the projection (in \mathcal{F}^N) onto the subspace spanned by the vectors with N-i or N-i-1 particles in the modes \mathbf{j}_* and $-\mathbf{j}_*$ \rightarrow the operator $a_{\mathbf{j}_*}^* a_{\mathbf{j}_*} + a_{-\mathbf{j}_*}^* a_{-\mathbf{j}_*}$ has eigenvalues N-i and N-i-1 when restricted to $Q^{(i,i+1)}\mathcal{F}^N$

$$\mathcal{F}^{N} = Q^{(0,1)}\mathcal{F}^{N} \oplus Q^{(2,3)}\mathcal{F}^{N} \oplus \cdots \oplus Q^{(N-2,N-1)}\mathcal{F}^{N} \oplus \{\mathbb{C}\eta\}$$

Feshbach Projections for \hat{H}^B

▶ $Q^{(i,i+1)}$:= the projection (in \mathcal{F}^N) onto the subspace spanned by the vectors with N-i or N-i-1 particles in the modes \mathbf{j}_* and $-\mathbf{j}_*$ \rightarrow the operator $a_{\mathbf{j}_*}^* a_{\mathbf{j}_*} + a_{-\mathbf{j}_*}^* a_{-\mathbf{j}_*}$ has eigenvalues N-i and N-i-1 when restricted to $Q^{(i,i+1)}\mathcal{F}^N$

$$\mathcal{F}^{N} = Q^{(0,1)}\mathcal{F}^{N} \oplus Q^{(2,3)}\mathcal{F}^{N} \oplus \cdots \oplus Q^{(N-2,N-1)}\mathcal{F}^{N} \oplus \{\mathbb{C}\eta\}$$

- $m{\mathcal{Q}}^{(>1)}:=$ the projection onto the orthogonal complement of $Q^{(0,1)}\mathcal{F}^N$ in \mathcal{F}^N \longrightarrow $Q^{(>1)}+Q^{(0,1)}=\mathbf{1}_{\mathcal{F}^N}$
- ▶ Iteratively, for *i* even, $2 \le i \le N-2$, define

$$Q^{(>i+1)}$$
 the projection such that $Q^{(>i+1)}+Q^{(i,i+1)}=Q^{(>i-1)}$

$$Q^{(>N-1)} \equiv |\eta\rangle\langle\eta|$$

▶ Define $\mathscr{P}^{(i)} := Q^{(>i+1)}$, $\overline{\mathscr{P}^{(i)}} := Q^{(i,i+1)}$

lacksquare Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}$, $\overline{\mathscr{P}^{(i)}}:=Q^{(i,i+1)}$

• Starting from $K_{-2}^B(z) := \hat{H}^B - z$

$$\begin{array}{ll}
K_{i}^{B}(z) \\
:= \mathscr{P}^{(i)} K_{i-2}^{B}(z) \mathscr{P}^{(i)} \\
-\mathscr{P}^{(i)} K_{i-2}^{B}(z) \overline{\mathscr{P}}^{(i)} \frac{1}{\overline{\mathscr{P}}^{(i)} K_{i-2}^{B}(z) \overline{\mathscr{P}}^{(i)}} K_{i-2}^{B}(z) \mathscr{P}^{(i)}
\end{array}$$

$$lacksquare$$
 Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}$, $\overline{\mathscr{P}^{(i)}}:=Q^{(i,i+1)}$

For i = 0

$$\begin{split} & \mathcal{K}_0^B(z) \\ &:= & Q^{(>1)}(\hat{H}^B-z)Q^{(>1)} \\ & - Q^{(>1)}\hat{H}^BQ^{(0,1)}\frac{1}{Q^{(0,1)}(\hat{H}^B-z)Q^{(0,1)}}Q^{(0,1)}\hat{H}^BQ^{(>1)} \end{split}$$

Model: Particle Preserving Bogoliubov Hamiltonian

- ► H is restricted to

 F^N ≡ subspace of F with exactly N particles

 Temperature

 The provided H is restricted to the provided H is restricted.

 The provided H is restricted to the provided H is restricted H is restricted H is restricted.

 The provided H is restricted H is restricted.

 The provided H is restricted H is rest
- $ightharpoonup H = H^B + V$
- $lacksquare H^B:=rac{1}{2}\sum_{\mathbf{j}\in\mathbb{Z}^d\setminus\{\mathbf{0}\}}H^B_{\mathbf{j}}$
- ► Three-modes Bogoliubov Hamiltonian

$$\hat{H}^{B} := \underbrace{(k_{j_{*}}^{2} + \frac{\phi_{j_{*}}}{N} a_{0}^{*} a_{0})(a_{j_{*}}^{*} a_{j_{*}} + a_{-j_{*}}^{*} a_{-j_{*}})}_{+ \underbrace{\left\{\frac{\phi_{j_{*}}}{N} a_{0}^{*} a_{j_{*}}^{*} a_{-j_{*}}\right\}}_{W} + \underbrace{\left\{\frac{\phi_{j}}{N} a_{j_{*}}^{*} a_{-j_{*}}^{*} a_{0} a_{0}\right\}}_{W}}_{*}$$

$$lacksquare$$
 Define $\mathscr{P}^{(i)}:=Q^{(>i+1)},\ \overline{\mathscr{P}^{(i)}}:=Q^{(i,i+1)}$

For i = 0

$$\begin{array}{ll}
K_0^B(z) \\
:= & Q^{(>1)}(\hat{H}^B - z)Q^{(>1)} \\
& - Q^{(>1)} W Q^{(0,1)} \frac{1}{Q^{(0,1)}(\hat{H}^B - z)Q^{(0,1)}} Q^{(0,1)} W^* Q^{(>1)}
\end{array}$$

▶ Define
$$\mathscr{P}^{(i)} := Q^{(>i+1)}$$
, $\overline{\mathscr{P}^{(i)}} := Q^{(i,i+1)}$

For
$$i=2$$

$$\mathcal{K}_{2}^{B}(z) :=
= Q^{(>3)}(\hat{H}^{B}-z)Q^{(>3)}
-Q^{(>3)}WQ^{(2,3)} \times
\times \frac{1}{Q^{(2,3)}(\hat{H}^{B}-WQ^{(0,1)}\frac{1}{Q^{(0,1)}(\hat{H}^{B}-z)Q^{(0,1)}}Q^{(0,1)}W^{*}-z)Q^{(2,3)}}
\times Q^{(2,3)}W^{*}Q^{(>3)}$$

▶ Define
$$\mathscr{P}^{(i)} := Q^{(>i+1)}$$
, $\overline{\mathscr{P}^{(i)}} := Q^{(i,i+1)}$

$$ightharpoonup$$
 For $i=2$

$$Q^{(>3)}(\hat{H}^B-z)Q^{(>3)}$$

$$-Q^{(>3)}WQ^{(2,3)}\times$$

$$\times \frac{1}{Q^{(2,3)}(\hat{H}^{B} - W \underbrace{Q^{(0,1)} \frac{1}{Q^{(0,1)}(\hat{H}^{B} - z)Q^{(0,1)}} Q^{(0,1)} W^{*} - z)Q^{(2,3)}}_{R_{0,0}^{B}(z)}$$

$$\times Q^{(2,3)}W^*Q^{(>3)}$$

- ▶ Define $\mathscr{P}^{(i)} := Q^{(>i+1)}, \ \overline{\mathscr{P}^{(i)}} := Q^{(i,i+1)}$
- For i=2

$$K_2^B(z) :=
= Q^{(>3)}(\hat{H}^B - z)Q^{(>3)}
- Q^{(>3)}W Q^{(2,3)} \sum_{l_2=0}^{\infty} R_{2,2}^B(z) \Big[W R_{0,0}^B(z) W^* R_{2,2}^B(z) \Big]^l
\times Q^{(2,3)} W^* Q^{(>3)}$$

General Term

► For *i* (even)

$$K_{i}^{B} := Q^{(>i+1)}(\hat{H}^{B}-z)Q^{(>i+1)}$$

$$-Q^{(>i+1)}W R_{i,i}^{B}(z) \sum_{l_{i}=0}^{\infty} \left[\Gamma_{i,i}^{B}(z)R_{i,i}^{B}(z)\right]^{l_{i}}W^{*}Q^{(>i+1)}$$

$$\Gamma^{B}_{i+2,i+2}(z) :=$$

$$= Q^{(i+2,i+3)}W R_{i,i}^B(z) \sum_{l_i=0}^{\infty} \left[\Gamma_{i,i}^B(z) R_{i,i}^B(z) \right]^{l_i} W^* Q^{(i+2,i+3)}$$

$$\Gamma_{2,2}^B(z) := Q^{(2,3)} W R_{0,0}^B(z) W^* Q^{(2,3)}$$

Range of the spectral parameter z

- ▶ Spectrum of $H_{\mathbf{j}_*}^B$ as $N \to \infty$ (Seiringer):
 - ▶ the ground state energy tends to

$$E_{\mathbf{j}_*}^B := -\left[k_{\mathbf{j}_*}^2 + \phi_{\mathbf{j}_*} - \sqrt{(k_{\mathbf{j}_*}^2)^2 + 2\phi_{\mathbf{j}_*}k_{\mathbf{j}_*}^2}\right]$$

$$E_{\mathbf{j}_*}^B \to -\phi_{\mathbf{j}_*}$$
 as $\epsilon_{\mathbf{j}_*} \to 0$

the first excited eigenvalue tends to

$$E_{\mathbf{j}_*}^B + \sqrt{(k_{\mathbf{j}_*}^2)^2 + 2\phi_{\mathbf{j}_*}k_{\mathbf{j}_*}^2}$$

Range of the spectral parameter z

- ▶ Spectrum of $H_{\mathbf{j}_*}^B$ as $N \to \infty$ (Seiringer):
 - the ground state energy tends to

$$E_{\mathbf{j}_*}^B := -\left[k_{\mathbf{j}_*}^2 + \phi_{\mathbf{j}_*} - \sqrt{(k_{\mathbf{j}_*}^2)^2 + 2\phi_{\mathbf{j}_*}k_{\mathbf{j}_*}^2}\right]$$

$$E_{\mathbf{j}_*}^B \to -\phi_{\mathbf{j}_*}$$
 as $\epsilon_{\mathbf{j}_*} \to 0$

the first excited eigenvalue tends to

$$E_{\mathbf{j}_*}^B + \sqrt{(k_{\mathbf{j}_*}^2)^2 + 2\phi_{\mathbf{j}^*}k_{\mathbf{j}_*}^2}$$

Question: Can we control the flow for $z < E^B_{\mathbf{j}_*} + \sqrt{(k^2_{\mathbf{j}_*})^2 + 2\phi_{\mathbf{j}^*}k^2_{\mathbf{j}_*}}$?

General Term

Recursive relation

$$\Gamma_{i+2,i+2}^{B}(z) :=$$

$$= Q^{(i+2,i+3)} W(R_{i,i}^{B}(z))^{\frac{1}{2}} \sum_{l_{i}=0}^{\infty} \left[(R_{i,i}^{B}(z))^{\frac{1}{2}} \Gamma_{i,i}^{B}(z) (R_{i,i}^{B}(z))^{\frac{1}{2}} \right]^{l_{i}} \times$$

$$\times (R_{i,i}^{B}(z))^{\frac{1}{2}} W^{*} Q^{(i+2,i+3)}$$

Initial term

$$\Gamma_{2,2}^B(z) := Q^{(2,3)}W R_{0,0}^B(z)W^*Q^{(2,3)}$$

▶ The flow is well defined if for each $i \le N-2$ and even

$$\sum_{l=0}^{\infty} \left[(R_{i,i}^{B}(z))^{\frac{1}{2}} \Gamma_{i,i}^{B}(z) (R_{i,i}^{B}(z))^{\frac{1}{2}} \right]^{l}$$

is well defined

Main Theorem:

$$\|\sum_{l=0}^{\infty} \left[(R_{i,i}^{B}(z))^{\frac{1}{2}} \Gamma_{i,i}^{B}(z) (R_{i,i}^{B}(z))^{\frac{1}{2}} \right]^{l} \| \leq \frac{1}{X_{i}}$$

where $X_0 \equiv 1$ and

$$X_{i+2} := 1 - \frac{1}{4(1 + a_{\epsilon_{j_*}} - \frac{b_{\epsilon_{j_*}}}{N-i+1} - \frac{1-c_{\epsilon_{j_*}}}{(N-i+1)^2})} \frac{1}{X_i}$$

$$ightharpoonup z \le E_{j_*}^B + (\delta - 1)\phi_{j_*} \sqrt{\epsilon_{j_*}^2 + 2\epsilon_{j_*}}, \, \frac{\delta}{\delta} < 2$$

$$ightharpoonup z \le E_{j_*}^B + (\delta - 1)\phi_{j_*} \sqrt{\epsilon_{j_*}^2 + 2\epsilon_{j_*}}, \, \delta < 2$$

$$\qquad \qquad \bullet_{\mathbf{j}_*} := \tfrac{k_{\mathbf{j}_*}^2}{\phi_{\mathbf{j}_*}} \text{ small but } \epsilon_{\mathbf{j}_*}^\nu \geq \tfrac{1}{N} \text{ for some } \nu > \tfrac{11}{8}$$

$$ightharpoonup z \le E_{j_*}^B + (\delta - 1)\phi_{j_*} \sqrt{\epsilon_{j_*}^2 + 2\epsilon_{j_*}}, \, \delta < 2$$

- $lackbox{} \epsilon_{\mathbf{j}_*} := rac{k_{\mathbf{j}_*}^2}{\phi_{\mathbf{j}_*}}$ small but $\epsilon_{\mathbf{j}_*}^
 u \geq rac{1}{N}$ for some $u > rac{11}{8}$
- key estimate

$$\begin{split} \| \left[R_{i,i}^{B}(z) \right]^{\frac{1}{2}} W \left[R_{i-2,i-2}^{B}(z) \right]^{\frac{1}{2}} \| \| \left[R_{i-2,i-2}^{B}(z) \right]^{\frac{1}{2}} W^* \left[R_{i,i}^{B}(z) \right]^{\frac{1}{2}} \| \\ & \leq \frac{1}{4(1 + a_{\epsilon_{j_*}} - \frac{2b_{\epsilon_{j_*}}}{N - i + 1} - \frac{1 - c_{\epsilon_{j_*}}}{(N - i + 1)^2})} \end{split}$$

$$\text{where } a_{\epsilon_{i}} := \mathcal{O}(\epsilon_{j_*}), b_{\epsilon_{i}} := \mathcal{O}(\sqrt{\epsilon_{j_*}}), c_{\epsilon_{i}} := \mathcal{O}(\epsilon_{j_*})$$

lacktriangle Artificial ϕ_{i_*} -dependent Gap

$$R_{i,i}^{B}(z) = Q^{(i,i+1)} \frac{1}{Q^{(i,i+1)}(\hat{H}^{B} - z)Q^{(i,i+1)}} Q^{(i,i+1)}$$

ightharpoonup Artificial ϕ_{i_*} -dependent Gap

$$R_{i,i}^{B}(z) = Q^{(i,i+1)} \frac{1}{Q^{(i,i+1)}(H^{(0)} + W + W^* - z)Q^{(i,i+1)}} Q^{(i,i+1)}$$

lacktriangle Artificial $\phi_{\mathbf{j}_*}-$ dependent Gap

$$R_{i,i}^{B}(z)$$

$$= Q^{(i,i+1)} \frac{1}{Q^{(i,i+1)}(H^{(0)} - z)Q^{(i,i+1)}} Q^{(i,i+1)}$$
 $H^{(0)} \ge 0 \quad \text{and} \quad z \simeq -\phi_{\mathbf{j}_*}$

Control of the sequence

$$X_{i+2} := 1 - \frac{1}{4(1 + a_{\epsilon_{j_*}} - \frac{b_{\epsilon_{j_*}}}{N-i+1} - \frac{1-c_{\epsilon_{j_*}}}{(N-i+1)^2})} \frac{1}{X_i}$$

 $X_0 \equiv 1$ and, $0 \le i \le N-2$ and even

For $\epsilon_{\mathbf{j}_*} = 0$

$$X_{i+2} := 1 - \frac{1}{4(1 - \frac{1}{(N-i+1)^2})X_i}$$

from $X_0 \equiv 1$ up to X_{N-2}

For $\epsilon_{\mathbf{j}_*} = 0$

$$X_{i+2} := 1 - \frac{1}{4(1 - \frac{1}{(N-i+1)^2})X_i}$$

from $X_0 \equiv 1$ up to X_{N-2}

► Exact Solution

$$X_i = \frac{1}{2}(1 - \frac{1}{N-i})$$

but for $X_0 = \frac{1}{2}(1 - \frac{1}{N})$

For $\epsilon_{\mathbf{j}_*} = 0$

$$X_{i+2} := 1 - \frac{1}{4(1 - \frac{1}{(N-i+1)^2})X_i}$$

from $X_0 \equiv 1$ up to X_{N-2}

► Exact Solution

$$X_i = \frac{1}{2}(1 - \frac{1}{N-i})$$

but for
$$X_0 = \frac{1}{2}(1 - \frac{1}{N})$$

▶ By induction (for $\epsilon_{\mathbf{j}_*} > 0$)

$$X_i \geq \frac{1}{2}(1 - \frac{1}{N-i}) + o(1)$$

$$\text{for } \delta < 1 + \sqrt{\epsilon_{\mathbf{j}_*}} \quad \Longleftrightarrow \quad z < E_{\mathbf{j}_*}^B + \sqrt{\epsilon_{\mathbf{j}_*}} \sqrt{(k_{\mathbf{j}_*}^2)^2 + 2\phi_{\mathbf{j}_*} k_{\mathbf{j}_*}^2}$$

$$K_{N-2}^{B}(z) =$$

$$= Q^{(>N-1)}(\hat{H}^{B}-z)Q^{(>N-1)}$$

$$-Q^{(>N-1)}W \times$$

$$\times R_{N-2,N-2}^{B}(z) \sum_{l=0}^{\infty} \left[\Gamma_{N-2,N-2}^{B}(z) R_{N-2,N-2}^{B}(z) \right]^{l}$$

$$\times W^{*} Q^{(>N-1)}$$

$$\begin{split} & \triangleright Q^{(>N-1)} = P_{\eta} = |\eta\rangle\langle\eta| \text{ , hence} \\ & \mathcal{K}_{N-2}^{B}(z) = \\ & = P_{\eta}(\hat{H}^{B} - z)P_{\eta} \\ & -P_{\eta}W\,R_{N-2,N-2}^{B}(z)\sum_{l=0}^{\infty}\left[\Gamma_{N-2,N-2}^{B}(z)R_{N-2,N-2}^{B}(z)\right]^{l}W^{*}\,P_{\eta} \end{split}$$

$$\begin{array}{l} \blacktriangleright \ Q^{(>N-1)} = P_{\eta} = |\eta\rangle\langle\eta| \ , \ \text{hence} \\ \\ \mathcal{K}^{B}_{N-2}(z) = \\ \\ = -zP_{\eta} \\ \\ -P_{\eta}W \ R^{B}_{N-2,N-2}(z) \sum_{l=0}^{\infty} \left[\Gamma^{B}_{N-2,N-2}(z) R^{B}_{N-2,N-2}(z) \right]^{l} W^{*} \ P_{\eta} \end{array}$$

$$extstyle Q^{(>N-1)}=P_{\eta}=|\eta
angle\langle\eta|$$
 , hence $K_{N-2}^{B}(z)=f(z)P_{\eta}$

$$f(z) = -z$$

$$-\langle \eta, W R_{N-2,N-2}^{B}(z) \sum_{l=0}^{\infty} \left[\Gamma_{N-2,N-2}^{B}(z) R_{N-2,N-2}^{B}(z) \right]^{l} W^{*} \eta \rangle$$

 $ightharpoonup Q^{(>N-1)}=P_{\eta}=|\eta
angle\langle\eta|$, hence

$$K_{N-2}^B(z) = f(z)P_{\eta}$$

$$f(z) = -z$$

$$-\langle \eta, W R_{N-2,N-2}^{B}(z) \sum_{l=0}^{\infty} \left[\Gamma_{N-2,N-2}^{B}(z) R_{N-2,N-2}^{B}(z) \right]^{l} W^{*} \eta \rangle$$

• f(z) is decreasing and there is (only) one point z_* in the interval

$$(-\infty, E_{\mathbf{j}_*}^B + \sqrt{\epsilon_{\mathbf{j}_*}} \sqrt{(k_{\mathbf{j}_*}^2)^2 + 2\phi_{\mathbf{j}_*} k_{\mathbf{j}_*}^2})$$

such that $f(z_*) = 0$

Final Feshbach Hamiltonian, Fixed Point, and GS Energy

ho $Q^{(>N-1)}=P_{\eta}=|\eta
angle\langle\eta|$, hence

$$K_{N-2}^B(z) = f(z)P_{\eta}$$

$$f(z)=-z$$

$$-\langle \eta \,,\, W \, R_{N-2,N-2}^B(z) \sum_{l=0}^{\infty} \left[\Gamma_{N-2,N-2}^B(z) R_{N-2,N-2}^B(z) \right]^l W^* \, \eta \rangle$$

► f(z) is decreasing and there is (only) one point z_{*} in the interval

$$(-\infty, E_{\mathbf{j}_*}^B + \sqrt{\epsilon_{\mathbf{j}_*}} \sqrt{(k_{\mathbf{j}_*}^2)^2 + 2\phi_{\mathbf{j}_*} k_{\mathbf{j}_*}^2})$$

such that $f(z_*) = 0$

• $f(z_*) = 0$ \Rightarrow z_* is the ground state energy of \hat{H}^B

GS vector

▶ Feshbach theory: If φ eigenvector of $\mathscr{F}(K-z_*)$ with eigenvalue 0

$$[\mathcal{P} - \frac{1}{\overline{\mathcal{P}}(K - z_*)\overline{\mathcal{P}}}\overline{\mathcal{P}}K\mathcal{P}]\varphi$$

is eigenvector of K with eigenvalue z_*

GS vector

Convergent expansion (up to any desired precision)

$$\begin{split} \psi^B &= \\ &= \eta \\ &- \frac{1}{Q^{(N-2,N-1)} K_{N-4}^B(z_*) Q^{(N-2,N-1)}} Q^{(N-2,N-1)} W^* \eta \\ &- \sum_{j=2}^{N/2} \prod_{r=2j}^4 \left[- \frac{1}{Q^{(N-r,N-r+1)} K_{N-r-2}^B(z_*) Q^{(N-r,N-r+1)}} W_{N-r,N-r+2}^* \right] \times \\ &\times \frac{1}{Q^{(N-2,N-1)} K_{N-4}^B(z_*) Q^{(N-2,N-1)}} Q^{(N-2,N-1)} W^* \eta \\ &\text{where } W_{N-r,N-r+2}^* := Q^{(N-r,N-r+1)} W^* Q^{(N-r+2,N-r+3)} \end{split}$$

▶ The flow is well defined if $\epsilon_{j_*} := \frac{k_{j_*}^2}{\phi_{j_*}}$ is sufficiently small and for some $\nu > \frac{11}{8}$

$$\epsilon^{
u}_{\mathbf{j}_*} \geq \frac{1}{N} \quad \Longleftrightarrow \quad \frac{k^2_{\mathbf{j}_*}}{\phi_{\mathbf{j}_*}} > (\frac{1}{N})^{\frac{8}{11}}$$

▶ The flow is well defined if $\epsilon_{j_*} := \frac{k_{j_*}^2}{\phi_{j_*}}$ is sufficiently small and for some $\nu > \frac{11}{8}$

$$\epsilon^{\nu}_{\mathbf{j}_*} \geq \frac{1}{N} \quad \Longleftrightarrow \quad \frac{k^2_{\mathbf{j}_*}}{\phi_{\mathbf{j}_*}} > (\frac{1}{N})^{\frac{8}{11}}$$

When is this condition fulfilled?

▶ The flow is well defined if $\epsilon_{j_*}:=rac{k_{j_*}^2}{\phi_{j_*}}$ is sufficiently small and for some $u>rac{11}{8}$

$$\epsilon^{
u}_{\mathbf{j}_*} \geq rac{1}{N} \quad \Longleftrightarrow \quad rac{k^2_{\mathbf{j}_*}}{\phi_{\mathbf{j}_*}} > (rac{1}{N})^{rac{8}{11}}$$

- When is this condition fulfilled?
 - mean field limiting regime

▶ The flow is well defined if $\epsilon_{j_*}:=\frac{k_{j_*}^2}{\phi_{j_*}}$ is sufficiently small and for some $\nu>\frac{11}{8}$

$$\epsilon^{\nu}_{\mathbf{j}_{*}} \geq \frac{1}{N} \quad \Longleftrightarrow \quad \frac{k^{2}_{\mathbf{j}_{*}}}{\phi_{\mathbf{j}_{*}}} > (\frac{1}{N})^{\frac{8}{11}}$$

- When is this condition fulfilled?
 - mean field limiting regime
 - at fixed ρ only if

$$\left[\frac{(2\pi\mathbf{j}_*)^2}{L^2\phi_{\mathbf{j}_*}}\right]^{\nu} \ge \frac{1}{\rho L^d}$$

 \Rightarrow $d \geq 3$ and L large enough

Existence of the fixed point if

$$\rho \ge \rho_0 (\frac{L}{L_0})^{3-d}$$

with ho_0 sufficiently large ($L_0 \equiv 1$)

Existence of the fixed point if

$$\rho \ge \rho_0 (\frac{L}{L_0})^{3-d}$$

with ρ_0 sufficiently large $(L_0 \equiv 1)$

- ▶ If $d \ge 3$, ρ sufficiently large but L-independent is enough
 - $\Rightarrow~L<\infty$ can be taken arbitrarily large at fixed ρ

Existence of the fixed point if

$$\rho \ge \rho_0 (\frac{L}{L_0})^{3-d}$$

with ρ_0 sufficiently large $(L_0 \equiv 1)$

- ▶ If $d \ge 3$, ρ sufficiently large but L-independent is enough
 - \Rightarrow $L<\infty$ can be taken arbitrarily large at fixed ho
- lacktriangle In the mean field limiting regime, $z_* o E_{{f j}_*}^{Bog}$ as $N o \infty$

Existence of the fixed point if

$$\rho \ge \rho_0 (\frac{L}{L_0})^{3-d}$$

with ρ_0 sufficiently large ($L_0 \equiv 1$)

- ▶ If $d \ge 3$, ρ sufficiently large but L-independent is enough
 - \Rightarrow $L<\infty$ can be taken arbitrarily large at fixed ho
- lacktriangle In the mean field limiting regime, $z_* o E_{{f j}_*}^{Bog}$ as $N o \infty$
- ▶ For d=3 and $\rho \geq \rho_0(\frac{L}{L_0})^s$ with s>0, $z_* \to E_{\mathbf{j}_*}^{Bog}$ as $L\to \infty$

lacktriangleright N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$H = -\sum_{i} \Delta_{i}^{(x)} + g N^{2} \sum_{i < j} \phi(N(x_{i} - x_{j}))$$

with $N, g \rightarrow +\infty$

lacktriangleright N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$H = -\sum_{i} \Delta_{i}^{(x)} + g N^{2} \sum_{i < j} \phi(N(x_{i} - x_{j}))$$

with $N, g \rightarrow +\infty$

▶ Rescaling: $y = Nx \Rightarrow N$ particles in a box of volume $|\Lambda| = N^3$

$$H = -N^2 \sum_i \Delta_i^{(y)} + g N^2 \sum_{i < j} \phi(y_i - y_j)$$

lacktriangleright N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$H = -\sum_{i} \Delta_{i}^{(x)} + g N^{2} \sum_{i < j} \phi(N(x_{i} - x_{j}))$$

with $N, g \rightarrow +\infty$

▶ Rescaling: $y = Nx \Rightarrow N$ particles in a box of volume $|\Lambda| = N^3$

$$H = -N^2 \sum_i \Delta_i^{(y)} + g N^2 \sum_{i < j} \phi(y_i - y_j)$$

Three-modes Hamiltonian

$$H_{\mathbf{j}_{*}}^{B} = \sum_{\pm \mathbf{i}_{*}} (\frac{N^{2}}{N^{2}} k_{\mathbf{j}}^{2} + \frac{g}{N} \frac{\phi_{\mathbf{j}_{*}}}{N} a_{\mathbf{0}}^{*} a_{\mathbf{0}}) a_{\mathbf{j}}^{*} a_{\mathbf{j}} + \frac{g}{N} \frac{\phi_{\mathbf{j}_{*}}}{N} \left\{ a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{\mathbf{j}} a_{-\mathbf{j}} + a_{\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}^{*} a_{\mathbf{0}} a_{\mathbf{0}} \right\}$$

where $k_{\mathbf{i}}^2 \gtrsim N^{-2}$

lacktriangleright N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$H = -\sum_{i} \Delta_{i}^{(x)} + g N^{2} \sum_{i < j} \phi(N(x_{i} - x_{j}))$$

with $N, g \rightarrow +\infty$

▶ Rescaling: $y = Nx \Rightarrow N$ particles in a box of volume $|\Lambda| = N^3$

$$H = -N^2 \sum_{i} \Delta_i^{(y)} + g N^2 \sum_{i < j} \phi(y_i - y_j)$$

Three-modes Hamiltonian

$$H_{\mathbf{j}_{*}}^{B} = \mathbf{g}\phi_{\mathbf{j}_{*}} \left[\sum_{\pm \mathbf{j}_{*}} \left(\frac{N^{2}k_{\mathbf{j}}^{2}}{\mathbf{g}\phi_{\mathbf{j}_{*}}} + \frac{1}{N}a_{\mathbf{0}}^{*}a_{\mathbf{0}} \right) a_{\mathbf{j}}^{*}a_{\mathbf{j}} + \frac{1}{N} \left\{ a_{\mathbf{0}}^{*}a_{\mathbf{0}}^{*}a_{\mathbf{j}}a_{-\mathbf{j}} + a_{\mathbf{j}_{*}}^{*}a_{-\mathbf{j}_{*}}^{*}a_{\mathbf{0}}a_{\mathbf{0}} \right\} \right]$$

where
$$k_{\mathbf{j}}^2 \gtrsim N^{-2}$$
 \Rightarrow $\frac{N^2}{g} \frac{k_{\mathbf{j}}^2}{\phi_{\mathbf{j}_*}} > N^{-\frac{8}{11}}$ for $g \lesssim N^{\frac{8}{11}}$

THANK YOU