Chiral two-nucleon dynamics, analyticity and dispersion relations

A. M. Gasparyan, Ruhr-Universität Bochum

M.F.M. Lutz E. Epelbaum

June 30, 2015, Pisa, CD2015

Introduction

QCD — Chiral Effective Theory — hadron dynamics

Effective Lagrangian

$$\mathcal{L}(\Psi_N, U = e^{(i\vec{\tau} \cdot \vec{\pi})/f}, D_\mu) = \mathcal{L}_\pi + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \dots$$

The most general S-matrix, consistent with perturbative unitarity, analyticity, symmetries (Wei

(Weinberg '79)

Power Counting

expansion in small parameter Q $(|ec{p_i}|,\,M_\pi)/(\Lambda_\chi,\,m_N)$

Power Counting

expansion in small parameter Q $(|ec{p_i}|,\,M_\pi)/(\Lambda_\chi,\,m_N)$

KSW: resummation of leading contact terms Kaplan, Savage, Wise '97

KSW: resummation of leading contact terms

Kaplan, Savage, Wise '97

Resummation of leading contact terms and one-pion exchange

Long, Yang '12 Epelbaum, Gegelia '12

KSW: resummation of leading contact terms

Kaplan, Savage, Wise '97

Resummation of leading contact terms and one-pion exchange

Potential (Weinberg) approach: Lippmann-Schwinger Equation with a cutoff: resummation of all 2N reducible diagrams Long, Yang '12 Epelbaum, Gegelia '12

Weinberg '90,'91

Entem, Machleidt '03 Epelbaum, Glöckle, Meißner '05

KSW: resummation of leading contact terms

Kaplan, Savage, Wise '97

Resummation of leading contact terms and one-pion exchange

Potential (Weinberg) approach: Lippmann-Schwinger Equation with a cutoff: resummation of all 2N reducible diagrams Long, Yang '12 Epelbaum, Gegelia '12

Weinberg '90,'91

Entem, Machleidt '03 Epelbaum, Glöckle, Meißner '05

The most general S-matrix, consistent with perturbative unitarity, analyticity, symmetries?

Combining ChPT with dispersive approach Gasparyan, et al., '12, Oller et al., '13, Goldberger et al.,'60

Take into account the analyticity along the right-hand cut nonperturbatively:

1

$$\frac{1}{2i} \left(T^{(JP)}(s+i\epsilon) - T^{(JP)}(s-i\epsilon) \right) = T^{(JP)}(s+i\epsilon) \rho^{(JP)}(s) T^{(JP)}(s-i\epsilon) \rho^{(s)}(s-i\epsilon) \rho^{(s)}$$

Combining ChPT with dispersive approach Gasparyan, et al., '12, Oller et al., '13, Goldberger et al.,'60

Take into account the analyticity along the right-hand cut nonperturbatively:

 $\frac{1}{2i} \left(T^{(JP)}(s+i\epsilon) - T^{(JP)}(s-i\epsilon) \right) = T^{(JP)}(s+i\epsilon) \rho^{(JP)}(s) T^{(JP)}(s-i\epsilon)$ $\rho(s)-\text{phase space}$ $T(s) = U(s) + \int_{4m_N^2}^{\infty} \frac{ds'}{\pi} \frac{T(s) \rho(s') T^*(s')}{s'-s-i\epsilon} \frac{s-\mu_M^2}{s'-\mu_M^2}$

Left hand (t-channel) cuts: perturbative

Left hand (t-channel) cuts: perturbative

$$U(s) = T_L(s) = \int_{\Lambda_t = 4m_N^2 - (3M_\pi)^2}^{4m_N^2 - M_\pi^2} \frac{\Delta T(s')}{s' - s} \frac{ds'}{\pi} + \sum_i C_i \,\xi(s)^i$$

 $\xi(s)=s$, or conformal mapping of s

Short range contribution

Matching with ChPT expansion below threshold at $s = \mu_M^2 = 4m_N^2 - 2M_\pi^2$

 $C_i \longrightarrow LEC's of \mathcal{L}_{NN}$

Left hand (t-channel) cuts: perturbative

Covariant amplitudes (correct singularity structure)

Not so much relevant in the potential approach Epelbaum, '06

Uncoupled S- and P-wave pn phase shifts

Uncoupled S- and P-wave pn phase shifts

Coupled partial waves

 $\cdot Q^0$

 Q^1

 \mathbf{Q}^2

 \mathbf{Q}^{3}

Coupled partial waves

Coupled partial waves

It is preferable not to destroy the left-hand cut in a potential approach (r-space regularization) (Epelbaum et al. '15)

Convergence of chiral expansion below threshold

	${}^{1}S_{0}$	${}^{1}P_{1}$	${}^{3}P_{1}$	${}^{3}P_{0}$	${}^{3}S_{1}$	$^{3}P_{2}$
Q^0	$5.79 imes 10^2$	0	0	0	$-2.95 imes 10^2$	0
Q^1	5.82×10^2	4.91×10^3	4.33×10^3	12.41×10^3	$6.14 imes 10^2$	2.44×10^2
Q^2	8.53×10^2	1.42×10^3	3.46×10^3	-6.43×10^3	2.08×10^2	$5.59 imes 10^2$
Q^3	8.63×10^2	2.19×10^3	4.81×10^3	-5.70×10^3	2.07×10^2	7.50×10^2

Amplitude at the subthreshold matching point $T(\mu_M^2 = 4m_N^2 - 2M_\pi^2)$ at different chiral orders after subtracting one-pion exchange contribution.

approaches with resummation

Summary

- The unitarity and analyticity constraints are used to extrapolate the NN amplitude from the subthreshold to the physical region
- Matching to the perturbative (ChPT) amplitude is applied in the subthreshold region
- ➔ Indication of convergence below threshold
- → Solution to the dispersion relation is not unique scheme dependence

Outlook

Implement symmetry constraints and look at other reactions