Chiral two-nucleon dynamics, analyticity and dispersion relations

A. M. Gasparyan, Ruhr-Universität Bochum

M.F.M. Lutz

E. Epelbaum

June 30, 2015, Pisa, CD2015

Introduction

QCD \longrightarrow Chiral Effective Theory \longrightarrow hadron dynamics

Effective Lagrangian

$$
\mathcal{L}\left(\Psi_{N}, U=e^{(i \vec{\tau} \cdot \vec{\pi}) / f}, D_{\mu}\right)=\mathcal{L}_{\pi}+\mathcal{L}_{\pi N}+\mathcal{L}_{N N}+\ldots
$$

The most general S-matrix, consistent with perturbative unitarity, analyticity, symmetries

Power Counting

expansion in small parameter $\mathrm{Q}\left(\left|\vec{p}_{i}\right|, M_{\pi}\right) /\left(\Lambda_{\chi}, m_{N}\right)$

Power Counting

expansion in small parameter $\mathrm{Q}\left(\left|\vec{p}_{i}\right|, M_{\pi}\right) /\left(\Lambda_{\chi}, m_{N}\right)$

Non-perturbative approaches

KSW: resummation of leading contact terms
Kaplan, Savage, Wise '97

Non-perturbative approaches

KSW: resummation of leading contact terms

Resummation of leading contact terms and one-pion exchange

Kaplan, Savage, Wise '97

Long, Yang '12
Epelbaum, Gegelia '12

Non-perturbative approaches

KSW: resummation of leading contact terms

Resummation of leading contact terms and one-pion exchange

Potential (Weinberg) approach:
Lippmann-Schwinger Equation with a cutoff:
resummation of all 2 N reducible diagrams

Kaplan, Savage, Wise '97

Long, Yang '12
Epelbaum, Gegelia '12

Weinberg '90,'91
Entem, Machleidt '03
Epelbaum, Glöckle, Meißner '05

Non-perturbative approaches

KSW: resummation of leading contact terms

Resummation of leading contact terms and one-pion exchange

Potential (Weinberg) approach:
Lippmann-Schwinger Equation with a cutoff:
resummation of all 2 N reducible diagrams

Kaplan, Savage, Wise '97

Long, Yang '12
Epelbaum, Gegelia '12

Weinberg '90,'91
Entem, Machleidt '03
Epelbaum, Glöckle, Meißner '05

> The most general S-matrix, consistent with symmetries?

Combining ChPT with dispersive approach

Gasparyan, et al. , '12, Oller et al., '13, Goldberger et al.,'60
Take into account the analyticity along the right-hand cut nonperturbatively:

$$
\frac{1}{2 i}\left(T^{(J P)}(s+i \epsilon)-T^{(J P)}(s-i \epsilon)\right)=T^{(J P)}(s+i \epsilon) \rho^{(J P)}(s) T^{(J P)}(s-i \epsilon)
$$

Combining ChPT with dispersive approach

Gasparyan, et al. , '12, Oller et al., '13, Goldberger et al., '60
Take into account the analyticity along the right-hand cut nonperturbatively:

$$
\frac{1}{2 i}\left(T^{(J P)}(s+i \epsilon)-T^{(J P)}(s-i \epsilon)\right)=T^{(J P)}(s+i \epsilon) \rho^{(J P)}(s) T^{(J P)}(s-i \epsilon)
$$

$$
T(s)=U(s)+\int_{4 m_{N}^{2}}^{\infty} \frac{d s^{\prime}}{\pi} \frac{T(s) \rho\left(s^{\prime}\right) T^{*}\left(s^{\prime}\right)}{s^{\prime}-s-i \epsilon} \frac{s-\mu_{M}^{2}}{s^{\prime}-\mu_{M}^{2}}
$$

Left hand (t-channel) cuts: perturbative

Left hand (t-channel) cuts: perturbative

$$
U(s)=T_{L}(s)=\int_{\Lambda_{t}=4 m_{N}^{2}-\left(3 M_{\pi}\right)^{2}}^{4 m_{N}^{2}-M_{\pi}^{2}} \frac{\Delta T\left(s^{\prime}\right)}{s^{\prime}-s} \frac{d s^{\prime}}{\pi}+\sum_{i} C_{i} \xi(s)^{i}
$$

$\xi(\mathrm{s})=\mathrm{s}$, or conformal mapping of s
Short range contribution

Matching with ChPT expansion below threshold at $s=\mu_{M}^{2}=4 m_{N}^{2}-2 M_{\pi}^{2}$
$\mathrm{C}_{\mathrm{i}} \longleftrightarrow$ LEC's of $\mathcal{L}_{N N}$

Left hand (t-channel) cuts: perturbative

Covariant amplitudes (correct singularity structure)

Not so much relevant in the potential approach Epelbaum, '06

Uncoupled S- and P-wave pn phase shifts

- Nijmegen PWA $\boldsymbol{\Delta}$ SAID PWA

Uncoupled S- and P-wave pn phase shifts

- Nijmegen PWA $\boldsymbol{\Delta}$ SAID PWA

Coupled partial waves

Coupled partial waves

Coupled partial waves

It is preferable not to destroy the left-hand cut in a potential approach (r-space regularization) (Epelbaum et al. '15)

Convergence of chiral expansion below threshold

	${ }^{1} S_{0}$	${ }^{1} P_{1}$	${ }^{3} P_{1}$	${ }^{3} P_{0}$	${ }^{3} S_{1}$	${ }^{3} P_{2}$
Q^{0}	5.79×10^{2}	0	0	0	-2.95×10^{2}	0
Q^{1}	5.82×10^{2}	4.91×10^{3}	4.33×10^{3}	12.41×10^{3}	6.14×10^{2}	2.44×10^{2}
Q^{2}	8.53×10^{2}	1.42×10^{3}	3.46×10^{3}	-6.43×10^{3}	2.08×10^{2}	5.59×10^{2}
Q^{3}	8.63×10^{2}	2.19×10^{3}	4.81×10^{3}	-5.70×10^{3}	2.07×10^{2}	7.50×10^{2}

Amplitude at the subthreshold matching point $T\left(\mu_{M}^{2}=4 m_{N}^{2}-2 M_{\pi}^{2}\right)$ at different chiral orders after subtracting one-pion exchange contribution.

Scheme dependence

Non-uniqueness of the solution to the dispersion relation
(CDD poles \longleftrightarrow poles on an unphysical sheet)
Castillejo, Dalitz, Dyson '56

Scheme dependence

Non-uniqueness of the solution to the dispersion relation
(CDD poles \longleftrightarrow poles on an unphysical sheet)
Castillejo, Dalitz, Dyson '56

Cut off (renormalization scale) dependence in approaches with resummation

Summary

\rightarrow The unitarity and analyticity constraints are used to extrapolate the NN amplitude from the subthreshold to the physical region
\rightarrow Matching to the perturbative (ChPT) amplitude is applied in the subthreshold region
\rightarrow Indication of convergence below threshold
\rightarrow Solution to the dispersion relation is not unique - scheme dependence

Outlook

\rightarrow Implement symmetry constraints and look at other reactions

