

CMOS pixel development for the ATLAS experiment at the HL-LHC

XVI Incontri di Fisica della Alte Energie Trieste, 20 April 2017

Attilio Andreazza

Università di Milano and INFN

on behalf of the CMOS pixel working group within the ATLAS/ITk collaboration

- Depleted-CMOS sensors
 - Motivations for HL-LHC
 - Detector features
- Experimental results on CMOS sensors
 - Covering large- and small- fill factor
 - Charge collection
 - Efficiency
 - Timing
 - Radiation hardness
- From sensors to detectors: the next R&D frontier
 - hybrid detectors
 - monolithic solutions

A non exhaustive list of references to recent conference talks is provided at the end of the presentation

Pixel Detectors in HEP

Detector requirements depend strongly on the experimental environment:

• particularly demanding for general purpose LHC experiments

	STAR	ALICE	ILC	BELLE II	ATLAS	ATLAS@HL-LHC
Beam type	pp/AA	pp/AA	e⁺e⁻	e⁺e⁻	рр	рр
Energy [TeV]	0.2 A	8 A	0.25-0.5	0.01	14	14
Time resolution [ns]	200 000	20 000	350	20 000	25	25 - Fast
Particle rate [MHz/mm ²]	0.1	0.01	0.25	0.1	1	10 High data rate
NIEL [1 MeV n/cm ²]	10 ¹²	10 ¹³	1012	10 ¹³	10 ¹⁵	2×10 ¹⁶
Dose [MRad]	0.3	0.7	0.4	10	80	1000 hard

CMOS pixel detectors

CMOS detector:

- detector + front-end electronics + readout in a single device
- commercial technology: large volume/low cost productions
- low resistivity substrate (1-10 Ω · cm):
 - very small depletion region
- charge collection by diffusion
 - charge carriers diffuse in the substrate
 - until either recombine or are collected by an electrode
 - long collection time / partial charge collection
- not suitable for high rate application
- not radiation hard: sensitive to reduction of trapping time

Depleted CMOS detectors

 $V_{\rm BI}$

- Can one merge the two detection approaches?
 - CMOS detector with a depleted layer
 - *e-h* produced in the depleted layer are collected by drift:
 - full ionization signal (in the depleted region)
 - fast: no trapping
 - additional slow signal from holes and diffusion
- Enabling technologies:
 - High Voltage processes
 - Availability of processes with high voltage capability, driven by automotive and power management applications

 $d = \sqrt{\varepsilon_{\rm Si} \varepsilon_0 \mu_{\rm carrier}}$

- High Resistivity substrates
 - Foundries accepting/qualifying wafers or epitaxial substrates with mid-high resistivity
- 130-180 nm feature size
 - deep submicron technologies needed for the design of radiation hard electronics
 - multiple-well process to decouple front-end electronics from the sensitive region

Depletion technologies

- Depletion zone built in a 10-30 µm mid-resistivity p-type epitaxial layer,
- Growth on top of an undepleted ptype substrate.
 - Can be fully depleted with ~ few V
 - Signal 1-2 ke
- Example: AMS, TowerJazz

- Collection electrode is a deep n-well or a buried n-layer,
- Direct implant onto a p-type substrate.
 - Size of depleted region limited by the breakdown voltage (technology dependent)
 - Signal up to 10-20 ke (varying with irradiation)
- Example: LFoundry, STMicroelectronics

 n-MOS devices always available, availability of p-MOS devices depends on the number of deep wells and on the electrode layout

Large vs. small elecrodes

Electron drift velocity (T. Hemperek from ref. 5) Collecting electrode is always an n-well

- fast electron signal

Two major configurations:

- front-end electronics inside the collecting well (large electrode/large fill factor)
 - uniform charge collection
 - short drift path \rightarrow less trapping
 - large electrode capacitance ~100 fF, dominated by parasitic capacitance between the deep wells

- front-end electronics **outside** the collecting well (small electrode/small fill factor)
 - non uniform drift field
 - long drift path, includes low-field regions between electrodes
 - \rightarrow more sensitive to trapping
 - small electrode capacitance <10 fF

Trieste, 20 April 2017

AS Capacitance, noise, risetime

References 1,2

 Equivalent Noise Charge (ENC) noise measured as equivalent signal at input

$$ENC^{2} = \frac{e^{2}}{4q^{2}} \left(\frac{\tau}{2} I_{0} + \frac{1}{2\tau} V C_{\text{in}}^{2} + 2V C_{\text{in}}^{2} \right)$$

 $t_{\rm rise} \propto \frac{1}{g_{\rm m}} \frac{C_{\rm in}}{C_{\rm f}}$

- e = 2.718, $q = electron charge 1.6 \times 10^{-19} C$
- $-\tau$ = shaping time
- $I_0 = 2qI_{\text{leak}}$ from detector leackage current

-
$$V_0 = \frac{8}{3} \frac{kT}{g_m}$$
 from transistor channel noise

- $V_{-1} = \frac{K_f}{C_WL}$ from excess flicker (1/f) noise

 $K_f = 1/f$ noise energy $C_{ox} = oxide$ capacitance per unit area W,L = transistor width and length

• High input capacitance C_{in} can be compensated with transconductance g_m , at price of power (ALPIDE 24 mW/cm², ATLAS target 500 mW/cm²)

Risetime

CATLAS ATLAS Depleted CMOS R&D

- Collaborative effort of ~25 ATLAS ITK institutes
- Capable of attracting also non-ATLAS institutes and resources

Trieste, 20 April 2017

Example of smart sensors

LFoundry

- 150 nm process
- Both deep n-well and pwell
- Up to 7 metal layers
- Substrate >2 k Ω · cm
- **CCPD_LF** small (5×5 mm²) prototype
- LF-CPIX "demonstrator" $50x250 \ \mu m^2$ pixel

AMS

- 350 nm and 180 nm HV-CMOS process
- $20-1000 \Omega \text{ cm}$ substrates
- **CCPD** prototype in H18, 33x125 µm² pixel
- H35DEMO, H35 process 50x250 µm² pixel

TowerJazz

- 180 nm epitaxial process
- **Investigator** chip (ALICE)
- Small fill-factor
- Pixel dimensions from 20x20 to 50x50 µm²
- 25 µm epi layer

Trieste, 20 April 2017

10

LFoundry CPIX: Edge-TCT

- >2 k Ω · cm substrate
- Laser scan of the depleted region: Transient Current Technique
- Measuring charge collection as function of laser beam position
- Irradiation up to 5×10¹⁵ n_{eq}/cm²
- Still significant size of the depleted region

B. Hiti, I. Mandic (Ljubljana)

UNIVERSITÀ DEGLI STUE

• Depletion depth can be interpreted as an effective doping concentration:

$$d = \sqrt{\varepsilon_{\rm Si}\varepsilon_0 \frac{V + V_{\rm BI}}{qN_{A,\rm eff}}}$$

- At low dose acceptors are effectively neutralized
- Above 10¹⁵ n_{eq}/cm² the behaviour is approximately independent from the starting point.

AMS: test beam data

Trieste, 20 April 2017

TowerJazz: small fill factor

Small collection electrodes:

- Higher gain and faster response due to smaller capacitance (~5fF) and higher Q/C
- Potentially lower power consumption
- Signal collection under DPW after irradiation more difficult on edges
- Modified process to improve charge collection under the deep p-wells
 - uniform charge collection in the inter-pixel region

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

FROM SMART SENSORS TO DETECTORS

Capacitive Coupling

- Connection of passive sensors to a front-end chip by bump-bonding is a mature technology.
- The interconnection cost is significan fraction of the total detector cost
 - similar to sensitive part
- Challenges for HL-LHC detectors:
 - ×5 bump density
 - thin detector and chips (planarity)

- Exploit local amplification integrated front-end
 - or broadcast digital signal
- via capacitive coupling
 - dielectric glue layer
 - provides both mechanical and electrical coupling.
 - simpler and faster process
 - **Separate functionality** of smart sensor and readout chip:
 - may exploit best available technologies on each side

Uniformity and repeatability

- Uniformity by inserting spacers on chip
- Deposition of photoresist pillars tested on single dies in the past years.

Basic process

Glue deposition

DETECTOR CHIP R/O CHIP

Deposition of SU8 photoresist by spinning

Full wafer tests running just now:

Trieste, 20 April 2017

A. Andreazza, CMOS pixel R&D for ATLAS at the HL-LHC

17

Monolithic architectures

- Integrate smart sensor and readout chip in a single device:
 - Depleted Monolithic Active Pixels (DMAPS)
 - less material
 - no interconnection required: simpler and faster production time
 - integration level of HV/HR CMOS processes lower than the 65 nm process used for the HL-LHC front-end: limitation on it rate and local memory size
 - potential cross talk between analog cell and digital readout part

Two approaches currently under evaluation:

Column drain

- Similar to various implementations in FEI3, FEI4, RD53 chips
- Local buffering of hits in the matrix
- Readout synchronous with clock
- Require distributions of clock and (in some implementations) trigger signal along the whole pixel matrix

- Asynchronous readout
 - Analog or digital output sent directly to chip periphery
 - Time stamping and hit storage at periphery
 - A first implementation in the MUPIX chip for the MU3E experiment

Monolithic prototypes

LFoundry

- Subm. in Aug. 2016
- Monopix01 and Coolpix1
- "Demonstrator size"
- 50 x 250 µm² pixels
- Fast standalone R/O
- Column drain approach

AMS H180

- Subm. in Jan. 2017
- Mu3E + ATLAS (monolithic)
- Additional production step isolated PMOS
- 80 and 200 Ωcm wafers
- Reticle size about 21mm x 23mm

- Subm. in May 2017
 - Two large scale demonstrators **MALTA** and Monopix:
 - Focus on small fill-factor pixels
 - Asynchronous matrix readout (no clock distribution over the matrix)
 - Column Drain Read-Out (based on Monopix)

Trieste, 20 April 2017

- Monolithic CMOS detector are an interesting option for ATLAS ITk
 - reduction of material, simplification of assembly, potential reduction of power consumption
- Candidate application is for the **outermost pixel layer**
 - largest area layer, where practical benefits are outstanding
 - reducing pressure on bump bonding and simplifying the assembly, it provides contingency to the whole pixel project

20

Conclusions

- Depleted-CMOS sensors are undergoing an active R&D phase
 - This presentation focuses on developments from the ATLAS pixel community
 - Efforts also within ATLAS strip groups, MU3E collaboration, and other INFN projects (SEED, HVR_CCPD) and European grants (IMPACT, some WP in AIDA2020)
- Many progresses have been achieved on the CMOS sensors
 - Good understanding of the depletion zone and charge collection
 - Efficiency is >99% even after irradiation at fluences >10¹⁵ n_{eq} /cm²
 - Recently very encouraging results have been shown also on a small fill factor design, which is very attractive for applications, due to the low input capacitance and low power
- The major next R&D step is the integration of the sensors with a high rate readout architecture
 - For extremely high rate, a hybrid solution, with capacitive coupling to a highly integrated front-end, is under development
 - The 130-180 nm feature size of the currently available technologies should allow monolithic solutions able to sustain the hit rate of the external pixel layers at the HL-LHC
 - Different prototypes will become available and will undergo extensive characterization in the next months
 - Development of fast-thin-radiation hard CMOS sensors will provide an interesting opportunity for future tracking detectors

This work partly funded by INFN HVR_CCPD and AIDA-2020 Project EU- INFRA Proposal no. 654168

References

Textbooks

- 1) H. Spieler, *Semiconductor Detector Systems*, Oxford University Press, 2005
- 2) L. Rossi, T. Rohe, P. Fischer and N. Wermes, *Pixel Detectors From Fundamentals to Applications*, Springer, 2006.

Articles

- 3) E. Heijne, Semiconductor micropattern pixel detectors: a review of the beginnings, Nucl. Instr. and Method A 465 (2001) 1-12, doi: 10.1016/s0168-9002(01)00340-0
- 4) N. Wermes et al., *Depleted CMOS pixels for LHC proton–proton experiments*, Nucl. Instr. and Method A 824 (2016) 483-486, doi: 10.1016/j.nima.2015.09.038
- 5) I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology, Nucl. Instr. and Method A 582 (2007) 876-885, doi: 10.1016/j.nima.2007.07.115
- 6) P. Giubilato et al., *Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture*, Nucl. Instr. and Method A 731 (2013) 146-153, doi: 10.1016/j.nima.2013.04.042
- 7) T. Hemperek et al., A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process, Nucl. Instr. and Method A 796 (2015) 8-12, doi: 10.1016/j.nima.2015.02.052

References

23

- 8) T. Miyoshi et al., Advanced monolithic pixel sensors using SOI technology, Nucl. Instr. and Method A 824 (2016) 439-442, doi: 10.1016/j.nima.2015.11.109
- 9) I. Peric et al., *The FEI3 readout chip for the ATLAS pixel detector*, Nucl. Instr. and Method A 565 (2006) 178-187, doi: 10.1016/j.nima.2006.05.032
- 10) M. Garcia-Sciveres et al., *The FE-I4 pixel readout integrated circuit*, Nucl. Instr. and Method A 636 (2011) S155-S159, doi: 10.1016/j.nima.2010.04.101
- 11) H. Augustin et al., *The MuPix system-on-chip for the Mu3e experiment*, Nucl. Instr. and Method A 845 (2016) 194-198, doi: 10.1016/j.nima.2016.06.095
- M. Benoit et al., Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype, JINST 11 (2016) P07019, doi: 10.1088/1748-0221/11/07/P07019
- 13) G. Kramemberg et al., Charge collection studies in irradiated HV-CMOS particle detectors, JINST 11 (2016) P04007, doi: 10.1088/1748-0221/11/04/P04007

References

24

Recent conferences

- 14) 12th "Trento" Workshop on Advanced Silicon Detectors, Trento, February 2017, http://indico.cern.ch/event/587631/
 - a) I. Peric, HVCMOS Sensors for high rate particle tracking
 - b) B. Hiti, Measurements of passive structures on irradiated HV-CMOS detectors
 - c) H. Pernegger, First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors
 - d) T. Weston, An overview of recent HV-CMOS results
- 15) 8th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging, Sestri Levante, September 2016,

https://agenda.infn.it/conferenceDisplay.py?confId=10190

- a) I. Peric, Status of HVCMOS development for ATLAS, JINST 12 (2016) C02030
- F. Meier Aeschbacher, MuPix7 A fast monolithic HV-CMOS pixel chip for Mu3e, JINST 11 (2016) C11029
- c) T. Hemperek, Overview and perspectives of HR&HV CMOS
- d) A. Gaudiello, Pixel hybridization technologies for HL-LHC, JINST 11(2016) C12077
- 16) 25th International Workshop on Vertex Detector, La Biodola, September 2016, https://indico.cern.ch/event/452781/
 - a) F. Huegging, CMOS pixel development for HL-LHC

BACKUP

CATLAS Transient Current Technique

Trieste, 20 April 2017

Acceptor removal

Trieste, 20 April 2017

CATLAS MUPIX Readout Architecture

- For high rate applications **sparse readout** is required:
 - hit information is transferred from the **pixel cell** to the **chip periphery**...
 - ...where it is usually serialized and transmitted to off-detector readout electronics.
- Split the pixel cell in a pure analog sensor and mirror pixel in the periphery with all digital functionality.
- Asynchronous readout:
 - analog signal cell transmitted to the periphery.
 - where it is time-stamped and readout.
- **Pros**: no digital-to-analog cross talk, low power.
- **Cons**: large number of interconnections: line-to-line pickup noise, may not scale to large matrices.

FEI4 Readout Architecture

- store: when analog signal exceeds a defined threshold, a hit is created.
- filter: all hits are registered in local buffers, shared by block of pixels. They are stored for the time needed for trigger decision, and deleted if the even is not triggered.
- readout: only hits corresponding to the triggered events are sent to the chip periphery and trasmitted to the offdetector electronic.
- **Pros**: distributed memory, less data transfer.
- Cons: it requires clock and trigger distribution on the whole chip (skew <2ns).
- It provides significant improvements at high hit rate:
 - used in the ATLAS FE-I4 chip
 - base of the RD53 design

Depletion: epitaxial layers

- Depletion zone built in a 10-30 µm mid-resistivity p-type epitaxial layer,
- Growth on top of an undepleted p-type substrate.
 - Can be fully depleted with ~ few V
 - Signal 1-2 ke
 - n-MOS devices always available
 - availability of p-MOS devices depends on the number of deep wells and on the electrode layout
- Example: AMS, TowerJazz

Depletion: high resistivity

- Collection electrode is a deep n-well or a buried n-layer,
- Direct implant onto a p-type substrate.
 - Size of depleted region limited by the breakdown voltage (technology dependent)
 - Signal up to 10-20 ke (varying with irradiation)
 - Multiple-wells process gives access to the full set of CMOS devices
 - Depending on the process large- or small-electrode configurations may be available
- Example: LFoundry, STMicroelectronics

