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1. Introduction 1. 1 "Standard model" of heavy-ion collisions

"Standard model" of heavy-ion collisions

Hadron Freezeout
Hydrodynamic"

Evolution
Energy Stopping
Hard Collisions

Initial state

Time 

T. K. Nayak, Lepton-Photon 2011 Conference

FIRST STAGE — HIGHLY OUT-OF EQUILIBRIUM (0 < τ0 . 1 fm)

initial conditions, including fluctuations, reflect to large extent the distribution of
matter in the colliding nuclei

emission of hard probes: heavy quarks, photons, jets

hydrodynamization stage – the system becomes well described by equations
of viscous hydrodynamics
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1. Introduction 1. 1 "Standard model" of heavy-ion collisions

"Standard model" of heavy-ion collisions

SECOND STAGE — HYDRODYNAMIC EXPANSION (1 fm . τ . 10 fm)

expansion controlled by viscous hydrodynamics (effective description)

thermalization stage

phase transition from QGP to hadron gas takes place (encoded in the equation
of state)

equilibrated hadron gas

THIRD STAGE — FREEZE-OUT

freeze-out and free streaming of hadrons (10 fm . τ )

THIS TALK:
EFFECTS OF FINITE BARYON NUMBER DENSITY ARE NEGLECTED
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1. Introduction 1. 1 "Standard model" of heavy-ion collisions

Thermal fit to hadron multiplicity ratios

M. Floris, Nucl. Phys. A931 (2014) c103

elaborate studies by F. Becattini et al., P. Braun-Munzinger et al.,...

In the end of its space-time evolution, the system is close to local equilibrium
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1. Introduction 1. 1 "Standard model" of heavy-ion collisions

hydro expansioninitial conditions
hadronic

freeze-out

hydrodynamization

STANDARD MODEL (MODULES) of HEAVY-ION COLLISIONS

Glauber or CGC or AdS/CFT viscous THERMINATOR or URQMD

FLUCTUATIONS IN THE INITIAL STATE / EVENT-BY-EVENT HYDRO / FINAL-STATE FLUCTUATIONS

EQUATION OF STATE = lattice QCD

1 < VISCOSITY < 3 times the lower bound

W. Broniowski, M. Chojnacki, WF, A. Kisiel, Phys.Rev.Lett. 101 (2008) 022301

H. Song, S. Bass, U. Heinz, T. Hirano, and C. Shen, Phys. Rev. Lett. 106 (2011) 192301

W. Florkowski (UJK / IFJ PAN) URHIC June 25, 2017 7 / 40



1 Introduction 1.2 Basic hydrodynamic concepts

Basic hydrodynamic concepts

WF, M. P. Heller, M. Spalinski, to be published

genuine hydrodynamic behaviour is a property of physical systems
evolving toward equilibrium
1) one separates between transient (nonhydrodynamic) and slowly decaying
(hydrodynamic) modes, 2) the latter are connected with real hydrodynamic
behaviour, 3) typical modern hydrodynamic equations include both of them

hydrodynamics (set of hydrodynamic equations) may be formulated
without explicit reference to microscopic degrees of freedom
1) this is important if we deal with strongly interacting matter —
in this case neither hadronic nor partonic degrees of freedom seem to be
adequate degrees of freedom, 2) such a general formulation of hydrodynamics
may be limited – based on the gradient expansion, which does not converge

hydrodynamics (set of hydrodynamic equations) may be also constructed
in a direct relation to some underlying, microscopic theory
1) the most common approaches refer to kinetic theory, 2) new developments
based in the AdS/CFT correspondance
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1 Introduction 1.2 Basic hydrodynamic concepts

Basic hydrodynamic concepts

hydrodynamic equations describe the space-time evolution of the
energy-momentum tensor components, Tµν , seems to be a limited
knowledge but ...

the information about the state of matter is, to large extent, encoded in the
structure of its energy-momentum tensor
1) equation of state, kinetic (transport) coefficients including the shear and bulk
viscosities, 2) this structure may be a priori determined by modelling of heavy-ion
collisions, 3) we are lucky that this scenario has been indeed realised, this is
largely so, because the created system evolves towards local equilibrium state
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1 Introduction 1.3 Global and local equilibrium

Global equilibrium

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New York, 1959

The equilibrium energy-momentum tensor in the fluid rest-frame is given by

TµνEQ =

∣∣∣∣∣∣∣∣
EEQ 0 0 0

0 P(EEQ) 0 0
0 0 P(EEQ) 0
0 0 0 P(EEQ)

∣∣∣∣∣∣∣∣ (1)

assumption: the equation of state is known, so that the pressure P is a given function
of the energy density EEQ

in an arbitrary frame of reference

TµνEQ = EEQuµuν − P(EEQ)∆µν , (2)

where uµ is a constant velocity, and ∆µν is the operator that projects on the space
orthogonal to uµ, namely

∆µν = gµν − uµuν . (3)
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1 Introduction 1.3 Global and local equilibrium

Local equilibrium – perfect fluid

The energy-momentum tensor of a perfect fluid is obtained by allowing the variables E
and uµ to depend on the spacetime point x

Tµνeq (x) = E(x)uµ(x)uν(x)− P(E(x))∆µν(x) (4)

the subscript “eq” refers to local thermal equilibrium.

local effective temperature T (x) is determined by the condition that the equilibrium
energy density at this temperature agrees with the non-equilibrium value of the energy
density, namely

EEQ(T (x)) = Eeq(x) = E(x) (5)
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1 Introduction 1.3 Global and local equilibrium

Perfect fluid

T (x) and uµ(x) are fundamental fluid variables

the relativistic perfect-fluid energy-momentum tensor is the most general symmetric
tensor which can be expressed in terms of these variables without using derivatives.

dynamics of the perfect fluid theory is provided by the conservation equations of the
energy-momentum tensor

∂µTµνeq = 0 (6)

four equations for the four independent hydrodynamic fields – a self-consistent
(hydrodynamic) theory

DISSIPATION DOES NOT APPEAR!

∂µ(Suµ) = 0 (7)

entropy conservation follows from the energy-momentum conservation and the form of
the energy-momentum tensor
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

Navier-Stokes hydrodynamics

Claude-Louis Navier, 1785–1836, French engineer and physicist
Sir George Gabriel Stokes, 1819–1903, Irish physicist and mathematician

C. Eckart, Phys. Rev. 58 (1940) 919

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New York, 1959

complete energy-momentum tensor

Tµν = Tµνeq + Πµν (8)

where Πµνuν = 0, which corresponds to the Landau definition of the hydrodynamic
flow uµ

Tµνuν = E uµ. (9)

It proves useful to further decompose Πµν into two components,

Πµν = πµν + Π∆µν , (10)

which introduces the bulk viscous pressure Π (the trace part of Πµν ) and the shear
stress tensor πµν which is symmetric, πµν = πνµ, traceless, πµµ = 0, and orthogonal
to uµ, πµνuν = 0.
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

Navier-Stokes hydrodynamics

in the Navier-Stokes theory, the bulk pressure and shear stress tensor are given by
the gradients of the flow vector

Π = −ζ ∂µuµ, πµν = 2ησµν . (11)

Here ζ and η are the bulk and shear viscosity coefficients, respectively, and σµν is the
shear flow tensor defined as

σµν = 2 ∆µν
αβ∂

αuβ , (12)

where the projection operator ∆µν
αβ has the form

∆µν
αβ =

1
2
(
∆µ

α∆ν
β + ∆µ

β∆ν
α

)
− 1

3
∆µν∆αβ . (13)
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

Viscosity

shear viscosity η
⇓

reaction to a change of shape

πµνNavier−Stokes = 2η σµν

bulk viscosity ζ
⇓

reaction to a change of volume

ΠNavier−Stokes = −ζθ

bulk viscosity and pressure vanish for conformal fluids

0 = Tµµ = E − 3P︸ ︷︷ ︸
=0

−3Π + πµµ︸︷︷︸
=0

= −3Π, Π = 0
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

QGP shear viscosity: large or small?

John Mainstone (Wikipedia)

Wikipedia: The ninth drop touched the eighth drop on 17 April 2014. However, it was still attached to the funnel. On 24 April

2014, Prof. White decided to replace the beaker holding the previous eight drops before the ninth drop fused to them. While the

bell jar was being lifted, the wooden base wobbled and the ninth drop snapped away from the funnel.

ηqgp > ηpitch

ηqgp ∼ 1011 Pa s, (η/s)qgp < 3/(4π)~ (from experiment)
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

Shear vs. bulk viscosity

η/S reaches minimum in the region of the
phase transition
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figures from: S. I. Finazzo, R. Rougemont, H. Marrochio, J. Noronha, JHEP 1502 (2015) 051
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

Navier-Stokes hydrodynamics

complete energy-momentum tensor

Tµν = Tµνeq + πµν + Π∆µν = Tµνeq + 2ησµν − ζθ∆µν (14)

again four equations for four unknowns

∂µTµν = 0 (15)

W. A. Hiscock and L. Lindblom, Phys.Rev. D31 (1985) 725

THIS SCHEME DOES NOT WORK IN PRACTICE!
ACAUSAL BEHAVIOR + INSTABILITIES!

NEVERTHELESS, THE GRADIENT FORM (14) IS A GOOD APPROXIMATION
FOR SYSTEMS APPROACHING LOCAL EQUILIBRIUM
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

Gradient expansion

complete energy-momentum tensor

Tµν = Tµνeq + πµν + Π∆µν = Tµνeq + 2ησµν − ζθ∆µν︸ ︷︷ ︸
first order terms in gradients

(16)

Tµν = Tµνeq + 2ησµν − ζθ∆µν︸ ︷︷ ︸
first order terms in gradients

+ .......................︸ ︷︷ ︸
second order terms in gradients

+ . . . (17)

HYDRODYNAMIC EXPANSION OF THE ENERGY-MOMENTUM TENSOR,
ASYMPTOTIC SERIES
M.P. Heller, R. Janik, R. Witaszczyk, PRL 110 (2013) 211602
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

Pressure anisotropy

M. Strickland, Acta Phys.Polon. B45 (2014) 2355

space-time gradients in boost-invariant expansion
increase the transverse pressure and decrease the longitudinal pressure

PT = P +
π

2
, PL = P − π, π =

4η
3τ

(18)

(
PL

PT

)
NS

=
3τT − 16η̄
3τT + 8η̄

, η̄ =
η

S

using the AdS/CFT lower bound for viscosity, η̄ = 1
4π

RHIC-like initial conditions, T0 = 400 MeV at τ0 = 0.5 fm/c, (PL/PT )NS ≈ 0.50
LHC-like initial conditions, T0 = 600 MeV at τ0 = 0.2 fm/c, (PL/PT )NS ≈ 0.35
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1 Introduction 1.4 Navier Stokes viscous hydrodynamics

2. Viscous fluid dynamics
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2. Viscous fluid dynamics 2.1 Navier-Stokes equations

Relativistic Navier-Stokes equations

Navier-Stokes equations (NS)

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P + Π) + πµν

# of unknowns: 5 + 6 (E ,P, uµ(3),Π, πµν(5))
# of equations: 4 + 1 (equation of state E(P))
we need 6 extra equations - different methods possible

Π̇+
Π

τΠ
= −βΠθ, θ = ∂µuµ– expansion scalar

π̇〈µν〉+
πµν

τπ
= 2βπσµν , σµν– shear flow tensor

T , uµ are the only hydrodynamic variables, uµµ = 1
kinetic coefficients: τΠβΠ = ζ → bulk viscosity, τπβπ = η → shear viscosity
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2. Viscous fluid dynamics 2.2 Israel-Stewart equations

Israel-Stewart equations

Israel-Stewart equations — Π, πµν promoted to dynamic variables —
non-hydrodynamic modes are introduced with the appropriate relaxation times τΠ, τπ

W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals of Physics 118 (1979) 341

Π̇ +
Π

τΠ
= −βΠθ+λΠππ

µνσµν

π̇〈µν〉 +
πµν

τπ
= 2βπσµν−τπππ〈µγ σν〉γ + λπΠΠσµν

1) HYDRODYNAMIC EQUATIONS DESCRIBE BOTH HYDRODYNAMIC AND NON-HYDRODYNAMIC MODES

2) HYDRODYNAMIC MODES CORRESPOND TO GENUINE HYDRODYNAMIC BEHAVIOR

3) NON-HYDRODYNAMIC MODES (TERMS) SHOULD BE TREATED AS REGULATORS OF THE THEORY

4) NON-HYDRODYNAMIC MODES GENERATE ENTROPY
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2. Viscous fluid dynamics 2.2 Israel-Stewart equations

MIS equations

Müller-Israel-Stewart or Muronga-Israel-Stewart (MIS)

I. Müller, Zum Paradoxon der Wärmeleitungstheorie, Zeit. f. Physik 198 (1967) 329

A. Muronga, Second-order dissipative fluid dynamics for ultra relativistic nuclear collisions, PRL 88 (2002) 062302

Π̇ +
Π

τΠ
= −βΠθ −

ζT
2τΠ

Π ∂λ

(
τΠ

ζT
uλ
)

π̇〈µν〉 +
πµν

τπ
= 2βπσµν −

ηT
2τπ

πµν ∂λ

(
τπ
ηT

uλ
)
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2. Viscous fluid dynamics 2.3 BRSSS equations

BRSSS equations

Baier, Romatschke, Son, Starinets, Stephanov (BRSSS)
symmetry arguments due to Lorentz and conformal symmetry, ...

R. Baier, P. Romatschke, D.T. Son, A. O. Starinets, M. A. Stephanov,

Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP 0804 (2008) 100

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P + Π) + πµν

Π = 0

π̇〈µν〉 +
πµν

τπ
= 2βπσµν −

4
3
πµνθ +

λ1

τπη2 π
〈µ
λπ

ν〉λ

(+ terms including vorticity and curvature)
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2. Viscous fluid dynamics 2.4 DNMR equations

DNMR equations

Denicol, Niemi, Molnar, Rischke (DNMR)
simultaneous expansion in the Knudsen number and inverse Reynolds number

approach based on the kinetic theory

Π̇ +
Π

τΠ
= −βΠθ − δΠΠΠθ+λΠππ

µνσµν

π̇〈µν〉 +
πµν

τπ
= 2βπσµν + 2π〈µγ ω

ν〉γ − δπππµνθ−τπππ〈µγ σν〉γ + λπΠΠσµν

the version valid for the RTA version of the Boltzmann kinetic equation, for standard form of the collision term additional terms
(with new kinetic coefficients) appear

shear-bulk coupling η − ζ
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2. Viscous fluid dynamics 2.4 DNMR equations

Review of different viscous-fluid frameworks

Bjorken viscous expansion
φ = −πy

y component of the shear stress tensor (the only independent one)
energy-momentum conservation

τ ε̇ = −4
3
ε+ φ

BRSSS

τπφ̇ =
4η
3τ
− λ1φ

2

2η2 −
4τπφ
3τ
− φ (19)

DNMR with RTA kinetic equation

τπφ̇ =
4η
3τ
− 38

21
τπφ

τ
− φ (20)

MIS with RTA kinetic equation

τπφ̇ =
4η
3τ
− 4τπφ

3τ
− φ (21)
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2. Viscous fluid dynamics 2.5 Gradient expansion

Exact solutions of RTA kinetic equation

Boltzmann equation in the (RTA) relaxation time approximation

pµ∂µf (x , p) = C[f (x , p)] C[f ] = pµuµ
f eq − f
τeq

Bhatnagar, Gross, Krook, Phys. Rev. 94 (1954) 511

background distribution (Boltzmann statistics)

f eq =
gs

(2π)3 exp
(
−pµuµ

T

)
implementation of boost invariance, exact solutions may be found
A. Bialas and W. Czyz, Phys. Rev. D30 (1984) 2371

τ =
√

t2 − z2, w = tp‖ − zE , v = tE − zp‖,
∂f
∂τ

=
f eq − f
τeq

G. Baym, Phys. Lett. B138 (1984) 18; Nucl. Phys. A418 (1984) 525c

WF, R. Ryblewski and M. Strickland, Nucl. Phys. A916 (2013) 249; Phys.Rev. C88 (2013) 024903
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2. Viscous fluid dynamics 2.5 Gradient expansion

Gradient expansion

following the works by R. Janik, M. P. Heller, M. Spalinski, P. Witaszczyk

Formal expansion of Tµν in gradients of hydrodynamic variables T and uµ

Tµν = Tµνeq + powers of gradients of T and uµ

Formal tool to make comparisons between different theories and check their close to
equilibrium behaviour, no useful for finding approximate solutions of the theory, unless
completed as a transseries

underlying microscopic
model or theory

phenomenological
hydrodynamic model

gradient expansion

gradient expansion

fixing parameters

of hydrodynamic model

underlying microscopic
model or theory

gradient expansion

Knudsen and inverse Reynolds numbers expansion

hydrodynamic model

gradient expansion

gradient expansion

fixing parameters

of hydrodynamic model
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2. Viscous fluid dynamics 2.5 Gradient expansion

Gradient expansion

Simple structures for boost-invariant flow with the relaxation time τπ = c/T ,
for example, T is expanded around the Bjorken flow

T = T0

(τ0

τ

)1/3
(

1 +
∞∑

n=1

(
c

T0τ0

)n

tn
(τ0

τ

)2n/3
)

similarly for φ, it is better to use f (w)

f =
1
T

dw
dτ

, w = τT , ∆ =
∆P
P

= 3
P‖ − P⊥

ε
= 12

(
f − 2

3

)
The gradient expansion for boost-invariant flow takes the form of an expansion

f (w) =
∞∑

n=0

fnw−n, f0 =
2
3
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2. Viscous fluid dynamics 2.5 Gradient expansion

Gradient expansion

RTA - gradient expansion for the RTA kinetic-theory model
M. P. Heller, Kurkela, Spalinski, arXiv:1609.04803

WF, R. Ryblewski, M. Spalinski, Phys.Rev. D94 (2016) 114025

values of fn

n RTA BRSSS DNMR MIS
0 2/3 2/3 2/3 2/3
1 4/45 4/45 4/45 4/45
2 16/945 16/945 16/945 8/135
3 −208/4725 −1712/99225 -304/33075 112/2025
3 −0.044 −0.017 -0.009 0.055
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3. Relativistic fluid dynamics with spin

3. Relativistic fluid dynamics with spin

WF, Bengt Friman, Amaresh Jaiswal, Enrico Speranza, arXiv:1705.00587
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3. Relativistic fluid dynamics with spin 3.1 Motivation

Motivation

Non-central heavy-ion collisions create fireballs with large global angular
momenta which may generate a spin polarization of the hot and dense matter
(Einstein-de Haas and Barnett effects)

Much effort has recently been invested in studies of polarization and spin
dynamics of particles produced in high-energy nuclear collisions, both from
the experimental and theoretical point of view

L. Adamczyk et al. (STAR), (2017), arXiv:1701.06657, to appear in Nature
Global Λ hyperon polarization in nuclear collisions:
evidence for the most vortical fluid

www.sciencenews.org/article/smashing-gold-ions-creates-most-swirly-fluid-ever
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3. Relativistic fluid dynamics with spin 4.2 Local distribution functions

Local distribution functions

Our starting point: phase-space distribution functions for spin-1/2 particles and
antiparticles in local equilibrium. In order to incorporate the spin degrees of freedom,
they have been generalized from scalar functions to two by two spin density
matrices for each value of the space-time position x and momentum p, F. Becattini
et al., Annals Phys. 338 (2013) 32

f +
rs (x , p) =

1
2m

ūr (p)X +us(p), f−rs (x , p) = − 1
2m

v̄s(p)X−vr (p)

Following the notation used by F. Becattini et al., we introduce the matrices

X± = exp [±ξ(x)− βµ(x)pµ] M±

where

M± = exp
[
±1

2
ωµν(x)Σ̂µν

]
Here we use the notation βµ = uµ/T and ξ = µ/T , with the temperature T , chemical
potential µ and four velocity uµ. The latter is normalized to u2 = 1. Moreover, ωµν is
the spin tensor, while Σ̂µν is the spin operator expressed in terms of the Dirac gamma
matrices, Σ̂µν = (i/4)[γµ, γν ].
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3. Relativistic fluid dynamics with spin 4.3 Spin/polarization tensor

Spin/polarization tensor

ωµν ≡ kµuν − kνuµ + εµνβγuβωγ .

We can assume that both kµ and ωµ are orthogonal to uµ, i.e., k · u = ω · u = 0,

kµ = ωµνuν , ωµ =
1
2
εµναβ ω

ναuβ .

It is convenient to introduce the dual spin tensor ω̃µν ≡ 1
2 εµναβω

αβ .
One finds 1

2ωµνω
µν = k · k − ω · ω and 1

2 ω̃µνω
µν = 2k · ω. Using the constraint

k · ω = 0

we find the compact form

M± = cosh(ζ)± sinh(ζ)

2ζ
ωµνΣ̂µν , (22)

where

ζ ≡ 1
2
√

k · k − ω · ω. (23)

We now assume also that k · k − ω · ω ≥ 0, which implies that ζ is real.
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3. Relativistic fluid dynamics with spin 4.4 Charge current

Charge current

The charge current

Nµ =

∫
d3p

2(2π)3Ep
pµ
[
tr(X+)− tr(X−)

]
= nuµ

where ‘tr’ denotes the trace over spinor indices and n is the charge density

n = 4 cosh(ζ) sinh(ξ) n(0)(T ) = 2 cosh(ζ)
(

eξ − e−ξ
)

n(0)(T )

Here n(0)(T ) = 〈(u · p)〉0 is the number density of spin 0, neutral Boltzmann particles,
obtained using the thermal average

〈· · · 〉0 ≡
∫

d3p
(2π)3Ep

(· · · ) e−β·p,

where Ep =
√

m2 + p2.
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3. Relativistic fluid dynamics with spin 4.5 Energy-momentum tensor

Energy-momentum tensor

The energy-momentum tensor for a perfect fluid then has the form

Tµν =

∫
d3p

2(2π)3Ep
pµpν

[
tr(X+) + tr(X−)

]
= (ε+ P)uµuν − Pgµν ,

where the energy density and pressure are given by

E = 4 cosh(ζ) cosh(ξ) E(0)(T )

and

P = 4 cosh(ζ) cosh(ξ)P(0)(T ),

respectively. In analogy to the density n(0)(T ), we define the auxiliary quantities
E(0)(T ) = 〈(u · p)2〉0 and P(0)(T ) = −(1/3)〈

[
p · p − (u · p)2]〉0.
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3. Relativistic fluid dynamics with spin 4.6 Entropy current

Entropy current

The entropy current is given by an obvious generalization of the Boltzmann
expression

Sµ = −
∫

d3p
2(2π)3Ep

pµ
(
tr
[
X+(ln X+ − 1)

]
+ tr

[
X−(ln X− − 1)

] )
This leads to the following entropy density

S = uµSµ =
E + P − µ n − Ωw

T
,

where Ω is defined through the relation ζ = Ω/T and

w = 4 sinh(ζ) cosh(ξ) n(0).

This suggests that Ω should be used as a thermodynamic variable of the grand
canonical potential, in addition to T and µ. Taking the pressure P to be a function of
T , µ and Ω, we find

S =
∂P
∂T

∣∣∣∣
µ,Ω

, n =
∂P
∂µ

∣∣∣∣
T ,Ω

, w =
∂P
∂Ω

∣∣∣∣
T ,µ

.
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3. Relativistic fluid dynamics with spin 4.7 Basic conservation laws

Basic conservation laws
The conservation of energy and momentum requires that

∂µTµν = 0.

This equation can be split into two parts, one longitudinal and the other transverse
with respect to uµ:

∂µ[(E + P)uµ] = uµ∂µP ≡
dP
dτ

,

(E + P)
duµ

dτ
= (gµα − uµuα)∂αP. (24)

Evaluating the derivative on the left-hand side of the first equation we find

T ∂µ(Suµ) + µ∂µ(nuµ) + Ω ∂µ(wuµ) = 0. (25)

The middle term vanishes due to charge conservation,

∂µ(nuµ) = 0. (26)

Thus, in order to have entropy conserved in our system (for the perfect-fluid
description we are aiming at), we demand that

∂µ(wuµ) = 0. (27)

Consequently, we self-consistently arrive at the equation for conservation of entropy,
∂µ(Suµ) = 0.
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3. Relativistic fluid dynamics with spin 4.8 Spin dynamics

Spin dynamics

Since we use a symmetric form of the energy-momentum tensor Tµν , the spin tensor
Sλ,µν satisfies the conservation law,

∂λSλ,µν = 0.

For Sλ,µν we use

Sλ,µν =

∫
d3p

2(2π)3Ep
pλ tr

[
(X +−X−)Σ̂µν

]
=

wuλ

4ζ
ωµν

Using the conservation law for the spin density and introducing the rescaled spin
tensor ω̄µν = ωµν/(2ζ), we obtain

uλ∂λ ω̄µν =
d ω̄µν

dτ
= 0,

with the normalization condition ω̄µν ω̄µν = 2.

With this definition of the spin tensor we obtain a consistent system of 10 differential
equations for all 10 coefficients appearing in the local distribution function.
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