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♒ Light	  by	  light	  scattering

4

M�1�2�3�4 = �⇤µ4

�4
(⇥q4) �

⇤µ3

�3
(⇥q3) �

µ2

�2
(⇥q2) �

µ1

�1
(⇥q1)Mµ1µ2µ3µ4

HELICITY	  AMPL. FEYNMAN	  AMPL.

Mµ1µ2µ3µ4 = A(s) gµ4µ2gµ3µ1 +B(s) gµ4µ1gµ3µ2 + C(s) gµ4µ3gµ2µ1 ,

M++++(s) = A(s) + C(s),

M+�+�(s) = A(s) +B(s),

M++��(s) = B(s) + C(s).

IN THE FORWARD DIRECTION  (                                               ):t = 0, s = 4�2, u = �s.
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Mµ1µ2µ3µ4 = A(s) gµ4µ2gµ3µ1 +B(s) gµ4µ1gµ3µ2 + C(s) gµ4µ3gµ2µ1 ,

M++++(s) = A(s) + C(s),

M+�+�(s) = A(s) +B(s),

M++��(s) = B(s) + C(s).

IN THE FORWARD DIRECTION  (                                               ):

1) CROSSING SYMMETRY (1 <-> 3, 2 <-> 4):

M+�+�(s) = M++++(�s), M++��(s) = M++��(�s)

t = 0, s = 4�2, u = �s.

f (±)(s) = M++++(s)±M+�+�(s)

g(s) = M++��(s)

AMPLITUDES WITH DEFINITE PARITY UNDER CROSSING: 
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2) CAUSALITY => ANALYTICITY => DISPERSION RELATIONS: 

Re

⇢
f (±)(s)
g(s)

�
=

1

�

⇤ 
�⇤

ds⇥

s⇥ � s
Im

⇢
f (±)(s⇥)
g(s⇥)

�
,
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ds⇥
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⇢
f (±)(s⇥)
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�
,

Im f (±)(s) = �s

8
[�0(s)± �2(s) ],

Im g(s) = �s

8
[�||(s)� ��(s) ].

3) OPTICAL THEOREM (UNITARITY): 

ARE CIRCULARLY (LINEARLY) POLARIZED PHOTON-PHOTON FUSION CROSS-
SECTIONS�0,2(�||,�)
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LOW-ENERGY EXPANSION

LEH = c1(Fµ�F
µ�)2 + c2(Fµ� F̃

µ�)2,4) “LOW-ENERGY THEOREM”:

f (+)(s) = �2(c1 + c2)s
2 +O(s4)

f (�)(s) = O(s5)

g(s) = �2(c1 � c2)s
2 +O(s4)

O(s1) : 0 =

1̂

0

ds

s

h
�2(s)� �0(s)

i
GERASIMOV	  &	  MOULIN,	  NPB	  (1976)	  
BRODSKY	  &	  SCHMIDT,	  PLB	  (1995)

O(s2) : c1 =
1

8�

�̂

0

ds

s2
⇥||(s) ,

c2 =
1

8�

�̂

0

ds

s2
⇥⇥(s)

V.	  P.	  	  &	  VANDERHAEGHEN,	  PRL	  (2010)
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2. One loop

We take one of the simplest examples: a self-interacting scalar field �(x) with charge e and
mass m as described by the following Lagrangian density,

L = (Dµ�)⇤Dµ��m2�⇤�+
�

4
(�⇤�)2 � 1

4
F µ⌫Fµ⌫ , (2)

where � is the self-interaction coupling constant, while the covariant derivatives and electro-
magnetic field-strength tensor are given as usual by Dµ = @µ + ieAµ and Fµ⌫ = @[µA⌫].

It is quite easy now to compute the cross-section for �� ! ��⇤ to leading order in � and
the fine-structure constant ↵ = e2/4⇡. The result for the helicity di↵erence cross-section is

��(s) = ��(tree)(s) + ↵2�
2m2

⇡s
arctanh v ReF (s), (3)

where ��(tree) is the tree-level cross section in scalar QED, the relative velocity

v =

r
1� 4m2

s
, (4)

and the transition form factor F is given by the Passarino-Veltman integral C12 [10], or more
explicitly:

ReF (s) = ReC12(0, s, 0,m
2,m2,m2) =

1

2s

✓
1� ⇡2m2

2s
+

4m2

s
arctanh2v

◆
, (5a)

ImF (s) = ImC12(0, s, 0,m
2,m2,m2) = �✓(s� 4m2)

2⇡m2

s2
arctanh v . (5b)

The tree-level cross section weighted with 1/s integrates to 0 by itself, and it can easily be
verified that

1Z

4m2

ds
ReF (s)

s2
arctanh �(s) = 0. (6)

Hence, we have shown that the sum rule is obeyed at the one-loop level.

In going beyond one loop, and in fact beyond perturbation theory, one often relies on a linear
integral equation of Lippmann-Schwinger type. In our field-theoretic case we are to consider
the Bethe-Salpeter equation for the �� elastic scattering amplitude:

T = V + V GT (7)

where V is the potential consisting of all the two-particle-irreducible and G is the two-particle
propagator. This equation as it is has the whole complexity of the non-perturbative quantum
field theory and to make it tractable one resorts to truncations. A popular method is treat the
potential perturbatively. For example in �4 theory the leading-order potential is simply given
by �, and the scattering amplitude is then given by the“bubble-chain sum” (see Fig. 1):

T =
1

��1 � 1
(4⇡)2B(s)

, (8)

where B(s) ⌘ B0(s,m
2,m2) is another Passarino-Veltman integral [10] given explicitly in

Eq. (12). In the next section we are going to see if this way of going beyond perturbation
theory is compatible with the sum rule and thus with the general principles such as causality
which the sum rule is based on.

2
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L
I

= ��

4
(�

a

�
a

)2 (3-66)

The Feynman amplitude of elastic �� scattering in the large-N limit is equal to the bubble
sum:

M = ��0 + �2
0G(s)� �3

0G
2(s) + . . . = � 1

��1
0 +G(s)

(3-67)

where �0 is the bare coupling constant and

G(s) = �i

Z

d4`

(2⇡)4
1

[(p+ `)2 �m2] (`2 �m2)
(3-68)

with p2 = s. Using the dimensional regularisation,

G(s) = �iµ2✏

Z

d4�2✏`

(2⇡)4�2✏

1

[(p+ `)2 �m2 + i0+] (`2 �m2 + i0+)

= � 1

(4⇡)2

✓

L
✏

+

Z 1

0
dx log

m2 � x(1� x)s� i0+

µ2

◆

(3-69)

= � 1

(4⇡)2

0

@L
✏

+ log
m2

µ2
� 2 + 2

r

4m2

s
� 1 arctan

1
q

4m2

s

� 1

1

A (3-70)

where L
✏

= �1/✏+ �
E

� ln 4⇡, �
E

= ��0(1) ' 0.5772.
In the following we work in terms of a Passarino-Veltman integral defined as

B0(s) ⌘ B0(s,m
2,m2) =

(2⇡µ)2✏

i⇡2

Z

d4�2✏`
1

[(p+ `)2 �m2] (`2 �m2)

= (4⇡)2G(s) (3-71)

= �L
✏

(µ2) + 2� 2v arctanh
1

v
, (3-72)

where µ is the dimreg scale and L
✏

(µ2) = �1/✏ + �
E

+ log(m2/4⇡µ2) is the corresponding
dimreg factor. The relative velocity v defined as:

v =
|k|
E

=
2|k|p

s
=

r

1� 4m2

s
(3-73)

The Feynman amplitude then reads

M = � (4⇡)2

(4⇡)2��1
0 +B0(s)

. (3-74)

Defining a renormalised coupling as

(4⇡)2��1(µ2) = (4⇡)2��1
0 � L

✏

(µ2) + 2, (3-75)

T (s) =
1

��1 �G(s)
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Defining a renormalised coupling as
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Bubble-‐chain	  sum:
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the Bethe-Salpeter equation for the �� elastic scattering amplitude:

T = V + V GT (7)

where V is the potential consisting of all the two-particle-irreducible and G is the two-particle
propagator. This equation as it is has the whole complexity of the non-perturbative quantum
field theory and to make it tractable one resorts to truncations. A popular method is treat the
potential perturbatively. For example in �4 theory the leading-order potential is simply given
by �, and the scattering amplitude is then given by the“bubble-chain sum” (see Fig. 1):

T =
1

��1 � 1
(4⇡)2B(s)

, (8)

where B(s) ⌘ B0(s,m
2,m2) is another Passarino-Veltman integral [10] given explicitly in

Eq. (12). In the next section we are going to see if this way of going beyond perturbation
theory is compatible with the sum rule and thus with the general principles such as causality
which the sum rule is based on.
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In the following we work in terms of a Passarino-Veltman integral defined as
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The Feynman amplitude then reads
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Defining a renormalised coupling as
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Bubble-‐chain	  sum:

where we also introduced the rescaled quantity (with tilde) in order to absorb factors (4⇡)2 in the
following. Within the perturbation theory, the counterterm defined by this renormalization equation
is a power series of the renormalized coupling constant � which regularizes the amplitude at each
order of perturbative expansion :

�0 = �(µ2)
 
1 + �

L"(µ2) � 2
(4⇡)2 + ...

!
. (13)

Using such renormalization, we will then use in the following the renormalized one-loop four-
point function :

B̃(s) = i⇡�(s)✓(s � 4m2) � �(s) ln
1 + �(s)
1 � �(s)

, (14)

where we also have absorbed a factor (4⇡)2 in its definition. We show the real and imaginary parts of
the renormalized function B̃(s) versus s in Fig. 3. We notice that our choice of the renormalization
point is conveniently chosen so as to yield at threshold : B̃(s = 4m2) = 0.

Figure 3: Real and imaginary part of the renormalized one-loop correction to the four-point function of Eq. (14) depending
on s.

The interference of two chain diagrams with total number of (n � 1) bubble loops gives rise to
a cross-section correction of the order O(�n). For the helicity-di↵erence cross-section, which in the
given case is equal to the helicity-0 cross section we obtain :
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where we used the notation
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One can check explicitly that the expression of Eq. (15) satisfies the helicity-di↵erence sum rule
exactly in each order of perturbation theory, i.e.

4

ReG(s)

ImG(s)

4m2

� > 0 : no poles

� < 0 : one pole and one K-matrix pole
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we can write:
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, (3-76)

with now the subtracted loop function:
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v
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The elastic scattering amplitude is expressed through a real phase shift �(s) as:

T (s) = ei�(s) sin �(s) (3-78)

or through the K-matrix amplitude K = tan �(s) as:
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Since the imaginary part of the loop function is
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for s � 4m2 we can define the elastic amplitude:
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and hence
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It is useful to see the low-momentum expansion of this amplitude, i.e.,
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From the definition of the e↵ective-range expansion:
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we identify the scattering length and the e↵ective range:
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Note that in for the above convention, a positive scattering length (a > 0) implies repulsion
while a negative one (a < 0) implies attraction. Then the relation a ⇠ � is consistent with
the sign of � in the above Lagrangian, where the sign of the e↵ective potential coincides with

0

s
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2. One loop

We take one of the simplest examples: a self-interacting scalar field �(x) with charge e and
mass m as described by the following Lagrangian density,

L = (Dµ�)⇤Dµ��m2�⇤�+
�

4
(�⇤�)2 � 1

4
F µ⌫Fµ⌫ , (2)

where � is the self-interaction coupling constant, while the covariant derivatives and electro-
magnetic field-strength tensor are given as usual by Dµ = @µ + ieAµ and Fµ⌫ = @[µA⌫].

It is quite easy now to compute the cross-section for �� ! ��⇤ to leading order in � and
the fine-structure constant ↵ = e2/4⇡. The result for the helicity di↵erence cross-section is

��(s) = ��(tree)(s) + ↵2�
2m2

⇡s
arctanh v ReF (s), (3)

where ��(tree) is the tree-level cross section in scalar QED, the relative velocity

v =

r
1� 4m2

s
, (4)

and the transition form factor F is given by the Passarino-Veltman integral C12 [10], or more
explicitly:

ReF (s) = ReC12(0, s, 0,m
2,m2,m2) =

1

2s

✓
1� ⇡2m2

2s
+

4m2

s
arctanh2v

◆
, (5a)

ImF (s) = ImC12(0, s, 0,m
2,m2,m2) = �✓(s� 4m2)

2⇡m2

s2
arctanh v . (5b)

The tree-level cross section weighted with 1/s integrates to 0 by itself, and it can easily be
verified that

1Z

4m2

ds
ReF (s)

s2
arctanh �(s) = 0. (6)

Hence, we have shown that the sum rule is obeyed at the one-loop level.

In going beyond one loop, and in fact beyond perturbation theory, one often relies on a linear
integral equation of Lippmann-Schwinger type. In our field-theoretic case we are to consider
the Bethe-Salpeter equation for the �� elastic scattering amplitude:

T = V + V GT (7)

where V is the potential consisting of all the two-particle-irreducible and G is the two-particle
propagator. This equation as it is has the whole complexity of the non-perturbative quantum
field theory and to make it tractable one resorts to truncations. A popular method is treat the
potential perturbatively. For example in �4 theory the leading-order potential is simply given
by �, and the scattering amplitude is then given by the“bubble-chain sum” (see Fig. 1):

T =
1

��1 � 1
(4⇡)2B(s)

, (8)

where B(s) ⌘ B0(s,m
2,m2) is another Passarino-Veltman integral [10] given explicitly in

Eq. (12). In the next section we are going to see if this way of going beyond perturbation
theory is compatible with the sum rule and thus with the general principles such as causality
which the sum rule is based on.
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We present a stringer causality criterion for relativistic scattering and bound state solutions. The
criterion is based on a sum rule for the forward light-by-light scattering and examined here on a
simple example of ��4 theory. We show that for a range of coupling � the sum rule is violated unless
one includes the channel for production of the bound state appearing dynamically in S -matrix for
elastic scattering. Still, for some range of � the bound state is a tachyon indicating causality violation.
The bound state appearance, independently of whether it is a tachyon or not, is complemented in this
theory with an appearance of a K-matrix pole above the elastic scattering threshold. We show that
this pole has no corresponding S -matrix pole anywhere in the complex energy plane, and as such it
does not a↵ect the validity of the sum rule, and needs not to be included as an asymptotic state. We
discuss the relevance of these results to physical systems.

Keywords:

1. Motivation

Studies of causality bounds for low-energy scattering go back to Wigner [1] but have been inten-
sifying recently in connection to the few-nucleon and cold-atom systems, see e.g. [2, 3, 4, 5]. In this
letter we formulate a stringent causality criterion which goes beyond low-energy scattering and and
study how it works on example of �4 theory.

The criterion is based on the Gerasimov-Drell-Hearn type of sum rule for the two-photon (��)
system [6, 7, 8]:

1Z

s0

ds
��(s)

s
= 0, (1)

where ��(s) = �0(s)��2(s) is the total helicity-di↵erence cross section of two-photon fusion process
�� ! X, with the Mandelstam variable s = (q1 + q2)2, where q1 and q2 are the colliding photon four-
momenta, and s0 is the lowest production threshold of the process. This sum rule is a consequence
of such general principles as analyticity and unitarity, see [9] for derivation, generalisation to virtual
photons, q1,2 , 0, and for the other sum rules for the �� system.

While this sum rule was verified at tree-level QED [8, 9], it has not been tried in quantum field
theory beyond the tree level. In what follows we compute this sum rule in a simple quantum field
theory at one-loop level (Sect. 2) and beyond one loop in the “bubble-chain” approximation (Sect. 3).
The results are discussed in Sect. 4, and an outlook is given in Sect. ??.
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small mass m) approximated by :

1Z

1

�n (ln s)n�1

s2 ds = �n(n � 1)! . (19)

As a result, the series

I(�) ⌘
1X

n=0

I(n)(�) =
1X

n=0

1Z

s0

��(n)(s)
s

ds , (20)

is non-Borel-summable and the I(�) cannot be uniquely defined by the expansion in � that we calculate
by Feynman diagrams. One still has the freedom to add a function in � whose perturbative expansion
vanishes. Thus we do not have reasons to expect that the sum rule integral will vanish for the cross-
section

��(s) =
1X

n=0

��(n)(s) = ⇡↵2�(s)

8>><
>>:⇠(s)Re

"
F̃(s)

�̃�1 � B̃(s)

#
+

s
4

������
F̃(s)

�̃�1 � B̃(s)

������

29>>=
>>; , (21)

which can be easily obtained by a formal resummation of the geometric series of corrections given
by Eq. (15) in terms of the renormalized coupling of Eq. (12). In Fig. 5 we show the dependence
of the sum rule integral for the cross section of Eq. (21) on the value of �̃. We can indeed see from
Fig. 5 that the sum rule is only valid for positive values of �̃ (denoted by region I), bus is violated
for negative values of l̃ (regions II and III on Fig. 5). This is a direct consequence of the divergence
of the perturbation series related with the asymptotical behavior, and the vacuum stability of the
approximation, as will be discussed below. In order to preserve validity of the sum rules we need to
find a way to evaluate the cross section correctly. We will discuss the physical situation for the three
regions of �̃ in the following.
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Figure 5: The dependence on the inverse coupling �̃�1 of the sum rule integral for the helicity di↵erence cross section of
the �� ! X process.

3.1. Region I : convergent perturbative expansion

Though the sum of Eq. (20) is formally undetermined, we can still use a naive resummation at
least in the region of positive �̃, as one can see from Fig. 5. For �̃�1 > 0 (region I) the series is
alternating-sign, since B̃(s) < 0. Indeed, since the function B̃(s) is negative for all complex values

6
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2. One loop
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where � is the self-interaction coupling constant, while the covariant derivatives and electro-
magnetic field-strength tensor are given as usual by Dµ = @µ + ieAµ and Fµ⌫ = @[µA⌫].

It is quite easy now to compute the cross-section for �� ! ��⇤ to leading order in � and
the fine-structure constant ↵ = e2/4⇡. The result for the helicity di↵erence cross-section is
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where ��(tree) is the tree-level cross section in scalar QED, the relative velocity

v =

r
1� 4m2

s
, (4)

and the transition form factor F is given by the Passarino-Veltman integral C12 [10], or more
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The tree-level cross section weighted with 1/s integrates to 0 by itself, and it can easily be
verified that
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ReF (s)

s2
arctanh �(s) = 0. (6)

Hence, we have shown that the sum rule is obeyed at the one-loop level.

In going beyond one loop, and in fact beyond perturbation theory, one often relies on a linear
integral equation of Lippmann-Schwinger type. In our field-theoretic case we are to consider
the Bethe-Salpeter equation for the �� elastic scattering amplitude:

T = V + V GT (7)

where V is the potential consisting of all the two-particle-irreducible and G is the two-particle
propagator. This equation as it is has the whole complexity of the non-perturbative quantum
field theory and to make it tractable one resorts to truncations. A popular method is treat the
potential perturbatively. For example in �4 theory the leading-order potential is simply given
by �, and the scattering amplitude is then given by the“bubble-chain sum” (see Fig. 1):
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Eq. (12). In the next section we are going to see if this way of going beyond perturbation
theory is compatible with the sum rule and thus with the general principles such as causality
which the sum rule is based on.
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To	  cancel	  the	  integral	  one	  need	  to	  introduce	  
the	  bound	  state	  as	  the	  asymptotic	  state	  

i.e.,	  new	  channel:

modification of our theory is quite legitimate since we are free to add to our cross section
a function whose perturbative expansion in � vanishes. We can define the amplitude of the
��-production of this new state as

Mb(s) =
↵

2

s F (s)p
B0(µ2)

. (18)

Corresponding Feynman diagram is shown in Fig.6.

Figure 6: The amplitude of the bound state production.

One can easily obtain this formula by calculating the residue of Eq.(13) in the pole position.
It is important to note that this singularity is not described by perturbation theory being
essentially of non-perturbative nature and reflecting non-linear features of our approximation.

If we include this channel in the sum rule we can see that the contribution of the single
particle production entirely cancels the contribution of (12), thus the causality is restored in
this region of �.

1Z

4m2

��(s)

s
ds+

⇡

µ4
M2

b (µ
2) = 0 (19)

As we already mentioned since above the threshold imaginary part of B(s) is not zero for
all complex s the amplitude (13) does not possess a S-matrix pole for s > 4m2. The resonance
emerging above the threshold corresponds to a pole of K-matrix.

The K-matrix formalism is widely used for a description of two-body process. The K-matrix
operator is defined by

K�1 = T�1 + iI, (20)

where T is a transition operator and I is the identity operator. One can introduce a phase shift
� and define the transition operator in terms of this quantity

T = ei� sin �. (21)

Then the K-matrix for this case is simply

K = tan �. (22)

Therefore, a pole of K-matrix is associated with � = ⇡/2 and in our case is defined by Eq.(16).

as we can see from the plot in Fig.(7) the phase shift crosses the value of 90� which corre-
sponds to

Region III. Ground state, tachyon

If we move to the region of large values of coupling constant the bound state pole mass
changes from the value 4m2 to 0. At the value of ��1 = 0 the pole crosses the point s = 0

7

small mass m) approximated by :

1Z

1

�n (ln s)n�1

s2 ds = �n(n � 1)! . (19)

As a result, the series

I(�) ⌘
1X

n=0

I(n)(�) =
1X

n=0

1Z

s0

��(n)(s)
s

ds , (20)

is non-Borel-summable and the I(�) cannot be uniquely defined by the expansion in � that we calculate
by Feynman diagrams. One still has the freedom to add a function in � whose perturbative expansion
vanishes. Thus we do not have reasons to expect that the sum rule integral will vanish for the cross-
section

��(s) =
1X

n=0

��(n)(s) = ⇡↵2�(s)

8>><
>>:⇠(s)Re

"
F̃(s)

�̃�1 � B̃(s)

#
+

s
4

������
F̃(s)

�̃�1 � B̃(s)

������

29>>=
>>; , (21)

which can be easily obtained by a formal resummation of the geometric series of corrections given
by Eq. (15) in terms of the renormalized coupling of Eq. (12). In Fig. 5 we show the dependence
of the sum rule integral for the cross section of Eq. (21) on the value of �̃. We can indeed see from
Fig. 5 that the sum rule is only valid for positive values of �̃ (denoted by region I), bus is violated
for negative values of l̃ (regions II and III on Fig. 5). This is a direct consequence of the divergence
of the perturbation series related with the asymptotical behavior, and the vacuum stability of the
approximation, as will be discussed below. In order to preserve validity of the sum rules we need to
find a way to evaluate the cross section correctly. We will discuss the physical situation for the three
regions of �̃ in the following.
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Figure 5: The dependence on the inverse coupling �̃�1 of the sum rule integral for the helicity di↵erence cross section of
the �� ! X process.

3.1. Region I : convergent perturbative expansion

Though the sum of Eq. (20) is formally undetermined, we can still use a naive resummation at
least in the region of positive �̃, as one can see from Fig. 5. For �̃�1 > 0 (region I) the series is
alternating-sign, since B̃(s) < 0. Indeed, since the function B̃(s) is negative for all complex values
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2. One loop

We take one of the simplest examples: a self-interacting scalar field �(x) with charge e and
mass m as described by the following Lagrangian density,

L = (Dµ�)⇤Dµ��m2�⇤�+
�

4
(�⇤�)2 � 1

4
F µ⌫Fµ⌫ , (2)

where � is the self-interaction coupling constant, while the covariant derivatives and electro-
magnetic field-strength tensor are given as usual by Dµ = @µ + ieAµ and Fµ⌫ = @[µA⌫].

It is quite easy now to compute the cross-section for �� ! ��⇤ to leading order in � and
the fine-structure constant ↵ = e2/4⇡. The result for the helicity di↵erence cross-section is

��(s) = ��(tree)(s) + ↵2�
2m2

⇡s
arctanh v ReF (s), (3)

where ��(tree) is the tree-level cross section in scalar QED, the relative velocity

v =

r
1� 4m2

s
, (4)

and the transition form factor F is given by the Passarino-Veltman integral C12 [10], or more
explicitly:

ReF (s) = ReC12(0, s, 0,m
2,m2,m2) =

1

2s

✓
1� ⇡2m2

2s
+

4m2

s
arctanh2v

◆
, (5a)

ImF (s) = ImC12(0, s, 0,m
2,m2,m2) = �✓(s� 4m2)

2⇡m2

s2
arctanh v . (5b)

The tree-level cross section weighted with 1/s integrates to 0 by itself, and it can easily be
verified that

1Z

4m2

ds
ReF (s)

s2
arctanh �(s) = 0. (6)

Hence, we have shown that the sum rule is obeyed at the one-loop level.

In going beyond one loop, and in fact beyond perturbation theory, one often relies on a linear
integral equation of Lippmann-Schwinger type. In our field-theoretic case we are to consider
the Bethe-Salpeter equation for the �� elastic scattering amplitude:

T = V + V GT (7)

where V is the potential consisting of all the two-particle-irreducible and G is the two-particle
propagator. This equation as it is has the whole complexity of the non-perturbative quantum
field theory and to make it tractable one resorts to truncations. A popular method is treat the
potential perturbatively. For example in �4 theory the leading-order potential is simply given
by �, and the scattering amplitude is then given by the“bubble-chain sum” (see Fig. 1):

T =
1

��1 � 1
(4⇡)2B(s)

, (8)

where B(s) ⌘ B0(s,m
2,m2) is another Passarino-Veltman integral [10] given explicitly in

Eq. (12). In the next section we are going to see if this way of going beyond perturbation
theory is compatible with the sum rule and thus with the general principles such as causality
which the sum rule is based on.
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Abstract

We present a stringer causality criterion for relativistic scattering and bound state solutions. The
criterion is based on a sum rule for the forward light-by-light scattering and examined here on a
simple example of ��4 theory. We show that for a range of coupling � the sum rule is violated unless
one includes the channel for production of the bound state appearing dynamically in S -matrix for
elastic scattering. Still, for some range of � the bound state is a tachyon indicating causality violation.
The bound state appearance, independently of whether it is a tachyon or not, is complemented in this
theory with an appearance of a K-matrix pole above the elastic scattering threshold. We show that
this pole has no corresponding S -matrix pole anywhere in the complex energy plane, and as such it
does not a↵ect the validity of the sum rule, and needs not to be included as an asymptotic state. We
discuss the relevance of these results to physical systems.

Keywords:

1. Motivation

Studies of causality bounds for low-energy scattering go back to Wigner [1] but have been inten-
sifying recently in connection to the few-nucleon and cold-atom systems, see e.g. [2, 3, 4, 5]. In this
letter we formulate a stringent causality criterion which goes beyond low-energy scattering and and
study how it works on example of �4 theory.

The criterion is based on the Gerasimov-Drell-Hearn type of sum rule for the two-photon (��)
system [6, 7, 8]:

1Z

s0

ds
��(s)

s
= 0, (1)

where ��(s) = �0(s)��2(s) is the total helicity-di↵erence cross section of two-photon fusion process
�� ! X, with the Mandelstam variable s = (q1 + q2)2, where q1 and q2 are the colliding photon four-
momenta, and s0 is the lowest production threshold of the process. This sum rule is a consequence
of such general principles as analyticity and unitarity, see [9] for derivation, generalisation to virtual
photons, q1,2 , 0, and for the other sum rules for the �� system.

While this sum rule was verified at tree-level QED [8, 9], it has not been tried in quantum field
theory beyond the tree level. In what follows we compute this sum rule in a simple quantum field
theory at one-loop level (Sect. 2) and beyond one loop in the “bubble-chain” approximation (Sect. 3).
The results are discussed in Sect. 4, and an outlook is given in Sect. ??.
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To	  cancel	  the	  integral	  one	  need	  to	  introduce	  
the	  bound	  state	  as	  the	  asymptotic	  state	  

i.e.,	  new	  channel:

modification of our theory is quite legitimate since we are free to add to our cross section
a function whose perturbative expansion in � vanishes. We can define the amplitude of the
��-production of this new state as

Mb(s) =
↵

2

s F (s)p
B0(µ2)

. (18)

Corresponding Feynman diagram is shown in Fig.6.

Figure 6: The amplitude of the bound state production.

One can easily obtain this formula by calculating the residue of Eq.(13) in the pole position.
It is important to note that this singularity is not described by perturbation theory being
essentially of non-perturbative nature and reflecting non-linear features of our approximation.

If we include this channel in the sum rule we can see that the contribution of the single
particle production entirely cancels the contribution of (12), thus the causality is restored in
this region of �.

1Z

4m2

��(s)

s
ds+

⇡

µ4
M2

b (µ
2) = 0 (19)

As we already mentioned since above the threshold imaginary part of B(s) is not zero for
all complex s the amplitude (13) does not possess a S-matrix pole for s > 4m2. The resonance
emerging above the threshold corresponds to a pole of K-matrix.

The K-matrix formalism is widely used for a description of two-body process. The K-matrix
operator is defined by

K�1 = T�1 + iI, (20)

where T is a transition operator and I is the identity operator. One can introduce a phase shift
� and define the transition operator in terms of this quantity

T = ei� sin �. (21)

Then the K-matrix for this case is simply

K = tan �. (22)

Therefore, a pole of K-matrix is associated with � = ⇡/2 and in our case is defined by Eq.(16).

as we can see from the plot in Fig.(7) the phase shift crosses the value of 90� which corre-
sponds to

Region III. Ground state, tachyon

If we move to the region of large values of coupling constant the bound state pole mass
changes from the value 4m2 to 0. At the value of ��1 = 0 the pole crosses the point s = 0

7

but	  not	  the	  K-‐matrix	  pole...

small mass m) approximated by :

1Z

1

�n (ln s)n�1

s2 ds = �n(n � 1)! . (19)

As a result, the series

I(�) ⌘
1X

n=0

I(n)(�) =
1X

n=0

1Z

s0

��(n)(s)
s

ds , (20)

is non-Borel-summable and the I(�) cannot be uniquely defined by the expansion in � that we calculate
by Feynman diagrams. One still has the freedom to add a function in � whose perturbative expansion
vanishes. Thus we do not have reasons to expect that the sum rule integral will vanish for the cross-
section

��(s) =
1X

n=0

��(n)(s) = ⇡↵2�(s)

8>><
>>:⇠(s)Re

"
F̃(s)

�̃�1 � B̃(s)

#
+

s
4

������
F̃(s)

�̃�1 � B̃(s)

������

29>>=
>>; , (21)

which can be easily obtained by a formal resummation of the geometric series of corrections given
by Eq. (15) in terms of the renormalized coupling of Eq. (12). In Fig. 5 we show the dependence
of the sum rule integral for the cross section of Eq. (21) on the value of �̃. We can indeed see from
Fig. 5 that the sum rule is only valid for positive values of �̃ (denoted by region I), bus is violated
for negative values of l̃ (regions II and III on Fig. 5). This is a direct consequence of the divergence
of the perturbation series related with the asymptotical behavior, and the vacuum stability of the
approximation, as will be discussed below. In order to preserve validity of the sum rules we need to
find a way to evaluate the cross section correctly. We will discuss the physical situation for the three
regions of �̃ in the following.
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Figure 5: The dependence on the inverse coupling �̃�1 of the sum rule integral for the helicity di↵erence cross section of
the �� ! X process.

3.1. Region I : convergent perturbative expansion

Though the sum of Eq. (20) is formally undetermined, we can still use a naive resummation at
least in the region of positive �̃, as one can see from Fig. 5. For �̃�1 > 0 (region I) the series is
alternating-sign, since B̃(s) < 0. Indeed, since the function B̃(s) is negative for all complex values
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and hence
K�1(s) =

1
�̃⇡�(s)

+
2
⇡

arctanh�(s). (35)

In the scattering region, we show plots of the phase shift for di↵erent values of the coupling con-
stant in Fig. 7. The K-matrix pole appears where the scattering amplitude becomes purely imaginary,
shown by the horizontal line on Fig.(7).
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Figure 7: Phase shift for di↵erent values of �̃.

The low-momentum expansion of the K-matrix amplitude is given by :

|q|K�1(s) =
m
�̃⇡
+

 
1 +

1
4�̃

!
2|q|2
⇡m
+ O(|q|4), (36)

where —q— is the absolute value of the 3-momentum of the colliding photons in the center-of-mass
reference frame. The first term in this expansion allows to read o↵ the inverse of the scattering
length, whereas the other terms give the e↵ective range parameters. For a physical scattering process,
the e↵ective range parameter should be positive. Notice that for �1 < �̃�1 < �4 the lowest-order
e↵ective range becomes negative. Considering the higher-order e↵ective range parameters, we find
that they can be negative for value of �̃�1 even above �4. In general, the coe�cient of q2n term is
negative for

�1 < �̃�1 < �(4n)/(2n � 1) (37)

Thus looking at the case n! 1, we conclude that the range of �̃ where at least some e↵ective-range
parameters become negative spans

�1 < �̃�1 < �2. (38)

This inequality precisely coincides with the region III on Fig. 5, where our approximation is incon-
sistent, as will be discussed in the following.

3.3. Region III : Ground state instability and tachyonic solution

If �̃�1 becomes smaller than �2 (corresponding with region III on Fig. 5), the binding energy of
the bound state exceeds 2m, and the pole crosses the point s = 0, moving into the unphysical region
s < 0, and producing a tachyonic solution (a pole with negative invariant mass). The occurrence of

9

The	  90	  degree	  crossing,	  i.e.	  the	  K-‐matrix	  pole	  does	  not	  
correspond	  to	  any	  S-‐matrix	  pole	  in	  this	  case

�(0) = ⇡N
bound states

Levinson’s	  theorem:



Vladimir	  Pascalutsa	  	  	  	  	  “Zero	  range	  interactions”	  	  	  	  @	  	  Chiral	  Dynamics	  Workshop	  	  	  	  	  	  	  	  	  Pisa	  	  	  	  	  	  June	  29,	  2015

Wigner’s	  causality	  bound

10

WIGNER,	  PHYS	  REV	  	  (1955)	  

PHILLIPS	  &	  COHEN,	  PLB	  (1997);	  
HAMMER	  &	  D.	  LEE,	  ANN	  PHYS	  (2010);	  ...

effective	  
range

r  0



Vladimir	  Pascalutsa	  	  	  	  	  “Zero	  range	  interactions”	  	  	  	  @	  	  Chiral	  Dynamics	  Workshop	  	  	  	  	  	  	  	  	  Pisa	  	  	  	  	  	  June	  29,	  2015

Wigner’s	  causality	  bound

10

WIGNER,	  PHYS	  REV	  	  (1955)	  

PHILLIPS	  &	  COHEN,	  PLB	  (1997);	  
HAMMER	  &	  D.	  LEE,	  ANN	  PHYS	  (2010);	  ...

effective	  
range

4. Causality bounds on e↵ective-range parameters

Consider the elastic �� scattering in �4 theory. In the bubble-chain approximation there is
only the S-wave scattering. The (dimensionless) elastic scattering amplitude f(s) is expressed
through a real phase shift �(s) as:

f(s) = ei�(s) sin �(s) (23)

or through the K-matrix amplitude K(s) ⌘ tan �(s) as:

f(s) =
1

K�1(s)� i
(24)

Since the imaginary part of the loop function is

ImB(s) = ⇡v ✓(s� 4m2) (25)

for s � 4m2 the elastic amplitude is:

f(s) = ⇡v
1

�̃�1 � B̃(s)
=

✓
1

�̃⇡v
+

2

⇡
arctanhv � i

◆�1

, (26)

and hence

K�1(s) =
1

�̃⇡v
+

2

⇡
arctanhv. (27)

In Fig. 6 we show plots of the phase shift for di↵erent values of the coupling constant. Note
that for negative �̃ the phase-shift starts from ⇡ which indicates the presence of one bound
state. Also for negative �̃ the phase shift crosses ⇡/2 at s > 4m2 satisfying the following
equation:

�̃�1 = ReB(s). (28)

This is also the location of the K-matrix pole. Usually this behaviour is attributed to a
resonance, however as argued in the previous section there is no S-matrix pole associated with
this K-matrix pole, and hence this is not a resonance.

Consider now the e↵ective-range expansion defined as:

|k| cot �(s) = �1

a
+

1

2

1X

n=1

(�1)n+1rn|k|2n (29)

where |k| = 1
2v
p
s is the absolute value of the relative momentum in the center-of-mass reference

frame, a is the scattering length, and rn are the e↵ective-range parameters. In our example
this expansion take the form:

|k| cot �(s) = m

�̃⇡
+

✓
1 +

1

4�̃

◆
2|k|2
⇡m

+O(|k|4), (30)

We note that for �1 < �̃�1 < �4 the e↵ective range r1 becomes negative. Considering the
higher-order e↵ective range parameters, we find that they may become negative for values of
�̃�1 above �4. In general, the coe�cient of q2n term is negative for

�1 < �̃�1 < �(4n)/(2n� 1) (31)

5

In	  the	  the	  tachyon	  	  (acausal)	  regime	  at	  least	  
one	  of	  the	  effective	  range	  parameters	  is	  negative.	  

Therefore	  our	  causality	  criterion	  yields:	  

rn � 0

small mass m) approximated by :

1Z

1

�n (ln s)n�1

s2 ds = �n(n � 1)! . (19)

As a result, the series

I(�) ⌘
1X

n=0

I(n)(�) =
1X

n=0

1Z

s0

��(n)(s)
s

ds , (20)

is non-Borel-summable and the I(�) cannot be uniquely defined by the expansion in � that we calculate
by Feynman diagrams. One still has the freedom to add a function in � whose perturbative expansion
vanishes. Thus we do not have reasons to expect that the sum rule integral will vanish for the cross-
section

��(s) =
1X

n=0

��(n)(s) = ⇡↵2�(s)

8>><
>>:⇠(s)Re

"
F̃(s)

�̃�1 � B̃(s)

#
+

s
4

������
F̃(s)

�̃�1 � B̃(s)

������

29>>=
>>; , (21)

which can be easily obtained by a formal resummation of the geometric series of corrections given
by Eq. (15) in terms of the renormalized coupling of Eq. (12). In Fig. 5 we show the dependence
of the sum rule integral for the cross section of Eq. (21) on the value of �̃. We can indeed see from
Fig. 5 that the sum rule is only valid for positive values of �̃ (denoted by region I), bus is violated
for negative values of l̃ (regions II and III on Fig. 5). This is a direct consequence of the divergence
of the perturbation series related with the asymptotical behavior, and the vacuum stability of the
approximation, as will be discussed below. In order to preserve validity of the sum rules we need to
find a way to evaluate the cross section correctly. We will discuss the physical situation for the three
regions of �̃ in the following.
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Figure 5: The dependence on the inverse coupling �̃�1 of the sum rule integral for the helicity di↵erence cross section of
the �� ! X process.

3.1. Region I : convergent perturbative expansion

Though the sum of Eq. (20) is formally undetermined, we can still use a naive resummation at
least in the region of positive �̃, as one can see from Fig. 5. For �̃�1 > 0 (region I) the series is
alternating-sign, since B̃(s) < 0. Indeed, since the function B̃(s) is negative for all complex values
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FIG. 3: The real (solid red) and imaginary (blue dashed) parts of the loop function B(s). The
“nonrel.” (dotted magenta) curve shows the non-relativistic approximation to the real part.

where B(s) is a subtracted Passarino-Veltman one-loop integral B0 [20]:

B(s) ⌘ B0(s,m
2,m2)� B0(4m

2,m2,m2) = �2v arctanh v�1, (7)

with m denoting the particle mass and v =
p
1� 4m2/s their relative velocity. The sub-

traction is chosen such that at the threshold (zero velocity) the interaction strength is given
by �. Then, the scattering length � = ��/(16⇡m) and hence the sign of the potential
unambiguously implies that negative or positive � corresponds respectively to repulsive or
attractive interaction.

In the center-of-mass frame, the two scatterers share the energy equally and hence their
relative momentum is

� = 1
2vs

1/2 =
�
1
4s�m2

�1/2
. (8)

In the following we use s, v, or � interchangeably as the energy variable. The amplitude is
independent of scattering angle in this case, hence has no partial waves beyond the s-wave.

The analytic properties of the amplitude T are determined by the loop function B plotted
in Fig. 3. For negative �, the amplitude develops a pole at the position where

(4⇡)2��1 = B(s). (9)

Solving this equation for s one finds the mass squared M2 of the corresponding bound state
solution. Since B(s) is negative, there is no solution for positive �. Furthermore, above the
threshold the loop function develops an imaginary part,

ImB(s) = ⇡v ✓(v2) =
⇡

(1 +m2/�2)1/2
✓(�2), (10)

and since � is real, there is only a solution below the threshold: a bound state with M2 <
4m2. There are no poles for complex s as is demonstrated in the Appendix.

4

T (s) =
1

��1 � (4⇡)�2B(s)

In	  non-‐rel.	  limi,	  K-‐matrix	  pole	  disappears	  and	  

in	  agreement	  with	  Wigner’s	  bound

r = 0

Zero	  eff.	  range	  of	  2-‐body	  force	  eventually	  leads	  to	  
the	  problems	  with	  the	  3-‐body	  force	  

[BEDAQUE,	  HAMMER,	  VAN	  KOLCK	  (1999)]
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