Causality constraint on bound states and scattering with zero-range force arXiv: I 402.4973 [nucl-th].

do perturbative pions deserve another chance?

Vladimir Pascalutsa

Institut für Kernphysik,
University of Mainz, Germany

jg|u

4SFB쿨
THE LOW-ENERGY FRONTIER OF THE STANDARD MODEL
@ 8th Chiral Dynamics Workshop, Pisa, Italy, June 29, 2015

Outline

Motivation

Chiral EFT of few-nucleon systems
« Light-by-light scattering sum rules
general principles: unitarity, causality, etc.
\propto° Zero-range force:
Bound state, tachyon, K-matrix pole
using the sum rules as consistency (causality) criterion phi^4 theory
\geq (Relativistic) Wigner's inequality
positive effective range parameters

X Conclusions and outlook

Motivation

Motivation

Meson and 1-Baryon	Few baryons, Sectors:	Few baryons, "Kaplan- Savage-Wise (KSW)" counting

Motivation

Meson and 1-Baryon Sectors:	Few baryons, "Weinberg counting"	Few baryons, "Kaplan- Savage-Wise (KSW)" counting	
Pions	perturbative	nonperturbative Zero-range +Pion-exchange at LO	perturbative Zero-range NN force at LO only

Motivation

	Meson and 1-Baryon Sectors:	Few baryons, "Weinberg counting"	Few baryons, "Kaplan-Savage-Wise (KSW)" counting
Pions	perturbative	nonperturbative Zero-range +Pion-exchange at LO	perturbative Zero-range NN force at LO only
Symmetries, Field-theor. aspects	straightforward	unclear potential is cut off and plugged into Schroedinger equation... unlike in atoms (QED), no systematic way to account for relativistic effects	straightforward

Motivation

	Meson and 1-Baryon Sectors:	Few baryons, "Weinberg counting"	Few baryons, "Kaplan-Savage-Wise (KSW)" counting
Pions	perturbative	nonperturbative Zero-range +Pion-exchange at LO	perturbative Zero-range NN force at LO only
Symmetries, Field-theor: aspects	straightforward	unclear potential is cut off and plugged into Schroedinger equation... unlike in atoms (QED), no systematic way to account for relativistic effects	straightforward
Converges ?	Maybe	Yes!	No! Another conceptual problem: 3 N force goes from NLO to LO

\approx Light by light scattering

$$
M_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}=\varepsilon_{\lambda_{4}}^{* \mu_{4}}\left(\vec{q}_{4}\right) \varepsilon_{\lambda_{3}}^{* \mu_{3}}\left(\vec{q}_{3}\right) \varepsilon_{\lambda_{2}}^{\mu_{2}}\left(\vec{q}_{2}\right) \varepsilon_{\lambda_{1}}^{\mu_{1}}\left(\vec{q}_{1}\right) \mathcal{M}_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}
$$

HELICITY AMPL.
FEYNMAN AMPL.

IN THE FORWARD DIRECTION $\left(t=0, \quad s=4 \omega^{2}, \quad u=-s.\right)$:

$$
\begin{gathered}
\mathcal{M}_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=A(s) g_{\mu_{4} \mu_{2}} g_{\mu_{3} \mu_{1}}+B(s) g_{\mu_{4} \mu_{1}} g_{\mu_{3} \mu_{2}}+C(s) g_{\mu_{4} \mu_{3}} g_{\mu_{2} \mu_{1}}, \\
M_{++++}(s)=A(s)+C(s) \\
M_{+-+-}(s)=A(s)+B(s) \\
M_{++--}(s)=B(s)+C(s)
\end{gathered}
$$

\approx Light by light scattering

$$
M_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}=\varepsilon_{\lambda_{4}}^{* \mu_{4}}\left(\vec{q}_{4}\right) \varepsilon_{\lambda_{3}}^{* \mu_{3}}\left(\vec{q}_{3}\right) \varepsilon_{\lambda_{2}}^{\mu_{2}}\left(\vec{q}_{2}\right) \varepsilon_{\lambda_{1}}^{\mu_{1}}\left(\vec{q}_{1}\right) \mathcal{M}_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}
$$

HELICITY AMPL.
FEYNMAN AMPL.

IN THE FORWARD DIRECTION $\left(t=0, \quad s=4 \omega^{2}, \quad u=-s.\right)$:

$$
\begin{gathered}
\mathcal{M}_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=A(s) g_{\mu_{4} \mu_{2}} g_{\mu_{3} \mu_{1}}+B(s) g_{\mu_{4} \mu_{1}} g_{\mu_{3} \mu_{2}}+C(s) g_{\mu_{4} \mu_{3}} g_{\mu_{2} \mu_{1}} \\
M_{++++}(s)=A(s)+C(s) \\
M_{+-+-}(s)=A(s)+B(s) \\
M_{++--}(s)=B(s)+C(s)
\end{gathered}
$$

1) CROSSING SYMMETRY ($1<->3,2<->4$):

$$
M_{+-+-}(s)=M_{++++}(-s), \quad M_{++--}(s)=M_{++--}(-s)
$$

AMPLITUDES WITH DEFINITE PARITY UNDER CROSSING:

$$
\begin{aligned}
& f^{(\pm)}(s)=M_{++++}(s) \pm M_{+-+-}(s) \\
& g(s)=M_{++--}(s)
\end{aligned}
$$

LbL sum rules

2) CAUSALITY $=>$ ANALYTICITY $=>$ DISPERSION RELATIONS:

$$
\operatorname{Re}\left\{\begin{array}{l}
f^{(\pm)}(s) \\
g(s)
\end{array}\right\}=\frac{1}{\pi} f_{-\infty}^{\infty} \frac{d s^{\prime}}{s^{\prime}-s} \operatorname{Im}\left\{\begin{array}{l}
f^{(\pm)}\left(s^{\prime}\right) \\
g\left(s^{\prime}\right)
\end{array}\right\}
$$

LbL sum rules

2) CAUSALITY => ANALYTICITY => DISPERSION RELATIONS:

$$
\operatorname{Re}\left\{\begin{array}{l}
f^{(\pm)}(s) \\
g(s)
\end{array}\right\}=\frac{1}{\pi} f_{-\infty}^{\infty} \frac{d s^{\prime}}{s^{\prime}-s} \operatorname{Im}\left\{\begin{array}{l}
f^{(\pm)}\left(s^{\prime}\right) \\
g\left(s^{\prime}\right)
\end{array}\right\}
$$

3) OPTICAL THEOREM (UNITARITY):

$$
\begin{aligned}
\operatorname{Im} f^{(\pm)}(s) & =-\frac{s}{8}\left[\sigma_{0}(s) \pm \sigma_{2}(s)\right] \\
\operatorname{Im} g(s) & =-\frac{s}{8}\left[\sigma_{\|}(s)-\sigma_{\perp}(s)\right]
\end{aligned}
$$

$\sigma_{0,2}\left(\sigma_{\|, \perp}\right) \begin{aligned} & \text { ARE CIRCULARLY (LINEARLY) POLARIZED PHOTON-PHOTON FUSION CROSS- } \\ & \text { SECTIONS }\end{aligned}$

LbL sum rules

2) CAUSALITY $=>$ ANALYTICITY $=>$ DISPERSION RELATIONS:

$$
\operatorname{Re}\left\{\begin{array}{l}
f^{(\pm)}(s) \\
g(s)
\end{array}\right\}=\frac{1}{\pi} f_{-\infty}^{\infty} \frac{d s^{\prime}}{s^{\prime}-s} \operatorname{Im}\left\{\begin{array}{l}
f^{(\pm)}\left(s^{\prime}\right) \\
g\left(s^{\prime}\right)
\end{array}\right\}
$$

3) OPTICAL THEOREM (UNITARITY):

$$
\begin{aligned}
\operatorname{Im} f^{(\pm)}(s) & =-\frac{s}{8}\left[\sigma_{0}(s) \pm \sigma_{2}(s)\right] \\
\operatorname{Im} g(s) & =-\frac{s}{8}\left[\sigma_{\|}(s)-\sigma_{\perp}(s)\right]
\end{aligned}
$$

$\sigma_{0,2}\left(\sigma_{\|, \perp}\right) \begin{aligned} & \text { ARE CIRCULARLY (LINEARLY) POLARIZED PHOTON-PHOTON FUSION CROSS- } \\ & \text { SECTIONS }\end{aligned}$

$$
\begin{array}{cl}
\operatorname{Re} f^{(+)}(s)=-\frac{1}{2 \pi} \int_{0}^{\infty} d s^{\prime} s^{\prime 2} \frac{\sigma\left(s^{\prime}\right)}{s^{\prime 2}-s^{2}}, & \sigma=\left(\sigma_{0}+\sigma_{2}\right) / 2=\left(\sigma_{\|}+\sigma_{\perp}\right) / 2 \\
\operatorname{Re} f^{(-)}(s)=-\frac{s}{4 \pi} \int_{0}^{\infty} d s^{\prime} \frac{s^{\prime} \Delta \sigma\left(s^{\prime}\right)}{s^{\prime 2}-s^{2}}, & \Delta \sigma=\sigma_{2}-\sigma_{0} \\
\operatorname{Re} g(s)=-\frac{1}{4 \pi} \int_{0}^{\infty} d s^{\prime} s^{\prime 2} \frac{\sigma_{\| \mid}\left(s^{\prime}\right)-\sigma_{\perp}\left(s^{\prime}\right)}{s^{\prime 2}-s^{2}}, & \\
\text { Vadimir Pascalutsa "Zero range interactions" @ chiral Dynamics Workshop Pisa June 29, 2015 }
\end{array}
$$

Light-by-light scattering sum rules

4) "LOW-ENERGY THEOREM": $\quad \mathcal{L}_{\mathrm{EH}}=c_{1}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+c_{2}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}$,

$$
\begin{array}{r}
f^{(+)}(s)=-2\left(c_{1}+c_{2}\right) s^{2}+O\left(s^{4}\right) \\
f^{(-)}(s)=O\left(s^{5}\right) \\
g(s)=-2\left(c_{1}-c_{2}\right) s^{2}+O\left(s^{4}\right)
\end{array}
$$

LOW-ENERGY EXPANSION
$O\left(s^{1}\right):$

$$
\begin{array}{ll}
0 & =\int_{0}^{\infty} \frac{\mathrm{d} s}{s}\left[\sigma_{2}(s)-\sigma_{0}(s)\right] \quad \begin{array}{c}
\text { GERASIMOV \& MOULIN, NPB (1976) } \\
\text { BRODSKY \& SCHMIDT, PLB (1995) }
\end{array} \\
c_{1}=\frac{1}{8 \pi} \int_{0}^{\infty} \frac{\mathrm{d} s}{s^{2}} \sigma_{\|}(s), & \text { V.P. \& VANDERHAEGHEN, PRL (2010) }
\end{array} c_{2}=\frac{1}{8 \pi} \int_{0}^{\infty} \frac{\mathrm{d} s}{s^{2}} \sigma_{\perp}(s) \quad . \quad .
$$

Zero-range force in light of the LbL sum rule

PAUK, V.P. \& VANDERHAEGHEN, PLB 2014

$$
\begin{gathered}
T=V+V G T \\
V=\lambda
\end{gathered}
$$

$$
T(s)=\frac{1}{\lambda^{-1}-G(s)}
$$

$G(s)=-i \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{1}{\left[(p+\ell)^{2}-m^{2}\right]\left(\ell^{2}-m^{2}\right)} \quad$ with $p^{2}=s$.

Zero-range force in light of the LbL sum rule

PAUK, V.P. \& VANDERHAEGHEN, PLB 2014
Bubble-chain sum:

$$
\begin{gathered}
T=V+V G T \\
V=\lambda
\end{gathered}
$$

$$
T(s)=\frac{1}{\lambda^{-1}-G(s)}
$$

$$
G(s)=-i \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{1}{\left[(p+\ell)^{2}-m^{2}\right]\left(\ell^{2}-m^{2}\right)}
$$

$$
\text { with } p^{2}=s
$$

$$
\lambda>0: \text { no poles }
$$

$$
\lambda<0 \text { : one pole and one K-matrix pole }
$$

Light-by-light sum rule as causality criterion

$$
\int_{s_{0}}^{\infty} \mathrm{d} s \frac{\Delta \sigma(s)}{s}=0, \quad \mathcal{L}=\left(D^{\mu} \phi\right)^{*} D_{\mu} \phi-m^{2} \phi^{*} \phi+\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}
$$

Light-by-light sum rule as causality criterion

$$
\int_{s_{0}}^{\infty} \mathrm{d} s \frac{\Delta \sigma(s)}{s}=0
$$

To cancel the integral one need to introduce the bound state as the asymptotic state i.e., new channel:

Light-by-light sum rule as causality criterion

$$
\int_{s_{0}}^{\infty} \mathrm{d} s \frac{\Delta \sigma(s)}{s}=0
$$

To cancel the integral one need to introduce the bound state as the asymptotic state i.e., new channel:

but not the K-matrix pole...

Phase shifts

Levinson's theorem:
$\delta(0)=\pi N_{\text {bound states }}$

Figure 7: Phase shift for different values of $\tilde{\lambda}$.
The 90 degree crossing, i.e. the K-matrix pole does not correspond to any S-matrix pole in this case

Wigner's causality bound

$r \leq 0$
effective
range

[^0]
Wigner's causality bound

$$
r \leq 0
$$

effective range

WIGNER, PHYS REV (1955)
PHILLIPS \& COHEN, PLB (1997);
HAMMER \& D. LEE, ANN PHYS (2010); ..

$$
|\mathbf{k}| \cot \delta(s)=-\frac{1}{a}+\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n+1} r_{n}|\mathbf{k}|^{2 n}
$$

In the the tachyon (acausal) regime at least one of the effective range parameters is negative.

Therefore our causality criterion yields:

$$
r_{n} \geq 0
$$

Non-relativistic limit

In non-rel. limi, K-matrix pole disappears and

$$
r=0
$$

in agreement with Wigner's bound

Zero eff. range of 2-body force eventually leads to the problems with the 3-body force
[BEDAQUE, HAMMER, VAN KOLCK (1999)]

X Conclusion and outlook

X Conclusion and outlook

X. Conclusion and outlook

- Light-by-light scattering sum rule used as

X Conclusion and outlook

- Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation

X Conclusion and outlook

- Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation

X Conclusion and outlook

- Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation
- Positive eff. range(s) emerge, Wigner's bound violated/NA. :) will help in 3-body problem

X Conclusion and outlook

- Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation
- Positive eff. range(s) emerge, Wigner's bound violated/NA. :) will help in 3-body problem

X Conclusion and outlook

- Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation
- Positive eff. range(s) emerge, Wigner's bound violated/NA. :) will help in 3-body problem
- Chiral EFT of NN and few-nucleon systems?

X Conclusion and outlook

- Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation
- Positive eff. range(s) emerge, Wigner's bound violated/NA. :) will help in 3-body problem
- Chiral EFT of NN and few-nucleon systems?

X Conclusion and outlook

- Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation
- Positive eff. range(s) emerge, Wigner's bound violated/NA. :) will help in 3-body problem
- Chiral EFT of NN and few-nucleon systems?

[^0]: WIGNER, PHYS REV (1955)
 PHILLIPS \& COHEN, PLB (1997);
 HAMMER \& D. LEE, ANN PHYS (2010); ...

