

SEARCH FOR HIGH-MASS RESONANCES IN THE DILEPTON FINAL STATE IN P-P COLLISIONS WITH THE CMS DETECTOR

XXXII Workshop - Young Scientist Forum La Thuile (AO) ITALY, February 25th - March 03rd

Filippo Errico

University and INFN Bari

on behalf of the CMS Collaboration

HEREWEARE...

- Standard Model (SM) provides a successful description of particle physics.
- Still open issues are present: lack of a dark matter candidate, absence of gravity,.
- Many models developed to extend Standard Model
- New neutral massive resonance is a common signature:
 - GUT (Z'_{Ψ}) and Sequential Standard Model (Z'_{SSM}) [spin 1]
 - ✤ Extra dimensions model (Kaluza-Klein graviton G_{KK}) [spin 2]

THE CMS DETECTOR

OVERVIEW

 Search for high mass resonances performed in the dilepton channel (electrons and muons).

Results using data collected during:

- Run I (20 fb⁻¹) combined with 2015
 (2.9 fb⁻¹) [Phys. Lett. B 768 (2017) 57]
- ✤ 2016 (13 fb⁻¹) [CMS PAS EXO-16-03]
- ✤ 2017 (42 fb⁻¹): performance plots

EVENT SELECTION

• Search for resonance decaying to lepton pairs (ee or $\mu\mu$)

Electron channel:

- At trigger level, traverse energy
 (E_T) > 33 GeV
- In the offline reconstruction: $E_T > 35 \text{ GeV and } |\mathbf{\eta}_C| < 1.4442 \text{ or}$ $|.566 < |\mathbf{\eta}_C| < 2.5$
- Candidates are required to pass a dedicated high energy electron selection criteria (HEEP)
- Isolation requirement
- ✤ At least one electron in the barrel region

Muon channel:

- At trigger level, transverse momentum $(p_T) > 50 \text{ GeV/c}$
- In the offline reconstruction: $p_T > 53 \text{ GeV/c and } |\mathbf{\eta}| < 2.4$
- ♦ High-p⊤ muon ID
- Isolation requirement
- Opposite charge
- Constraint on the dimuon vertex χ^2 and on 3D angle

EVENT SELECTION

• Search for resonance decaying to lepton pairs (ee or $\mu\mu$)

A large dielectron mass event The invariant mass is 2.9 TeV. A large dimuon mass event The invariant mass is 2.4 TeV.

BACKGROUND ESTIMATION

- Drell-Yan (DY) process (Z/γ* —> e⁺e⁻/μ⁺μ⁻) is the dominant (~85%) and irreducible SM background.
- Real prompt leptons from (~15%):
 - top quark antiquark
 - single top quark
 - diboson
 - Drell-Yan in T^+T^- channel
- Jets misidentification (data driven estimation) (in dielectron channel is less then 3%)

EFFICIENCY AND RESOLUTION

• Total efficiency to trigger, reconstruct and select a mass of I TeV:

- dielectron pair = $(75 \pm 8)\%$ for both electrons in the barrel region (BB) and $(70 \pm 10)\%$ elsewhere (BE)
- dimuon pair = (91 ± 5)% independently of η
- Mass resolution for a mass of 2 TeV:
 - ✤ dielectron = 1% (BB) and 1.5% (BE)
 - ✤ dimuon channel = 5.5% (BB) and 8.5% (BE)

INVARIANT MASS DISTRIBUTION - 2016 DATA

Invariant mass spectra, together with the predicted SM background.

No evidence for a signal deviation from the SM expectations is observed.

LIMIT FOR SPIN-1 RESONANCE

- Limit using 2016 dataset corresponding to 13 fb⁻¹
- Width of 0.6% of the resonance mass
- 2016 limit more stringent then Run 1 + 2015 for dielectron (dimuon) channel:

◆ 3.65 TeV (3.75 TeV) for Z'SSM

← 3.10 TeV (3.20 TeV) for Z'_{Ψ}

TEST WITH DIFFERENT WIDTHS

- Limits for 0.0, 0.6 and 3% of the spin-1 resonance mass using 2015 only dataset
- For mass below I TeV, expected limits become less stringent as the resonance mass increases
- At high masses, the limits do not exhibit any dependence on the assumed resonance width.

LIMIT FOR SPIN-2 RESONANCE

- Limit using Run I + 2015 dataset
- Using two different constant coupling:
 - for 0.01 limit sets at 1.46 TeV
 - for 0.10 limit sets at 3.11 TeV

SUMMARY

Observed and expected limits for the mass of spin-**1** bosons with 2016 dataset:

Channel	Z' _{SSM}		Z'_{ψ}		
	Obs. (TeV)	Exp. (TeV)	Obs. (TeV)	Exp. (TeV)	
ee	3.65	3.65	3.10	3.10	
$\mu^+\mu^-$	3.75	3.75	3.20	3.20	
$ee + \mu^+\mu^-$	4.0	4.0	3.50	3.50	

Observed and expected limits for the mass of spin-2 bosons combining Run I and 2015 dataset:

Channel	$G_{KK} (k/\overline{M}_{Pl} = 0.01)$		$G_{KK} (k/\overline{M}_{Pl} = 0.10)$	
Charmer	Obs. (TeV)	Exp. (TeV)	Obs. (TeV)	Exp. (TeV)
ee	1.46	1.48	2.78	2.93
$\mu^+\mu^-$	1.26	1.41	3.03	3.03
$ee + \mu^+\mu^-$	1.46	1.61	3.11	3.23
ee + $\mu^+\mu^-$ 13 TeV only	1.38	1.45	2.98	3.15

2017 ANALYSIS PERFORMANCE PLOTS

2017 PRELIMINARY RESULTS

- Electron E_T (left) and muon pT (right) distribution using 2017 data.
- Good agreement in both channels.

CONCLUSION

- Search for new high mass resonances in dilepton channel using the CMS detector has been presented.
- New limits have been set:
 - ✤ for spin-1 particle:
 - $Z'_{SSM} = 4.0 \text{ TeV} \text{ (previous 3.37 TeV)}$

 $Z'_{\Psi} = 3.5 \text{ TeV} (2.82 \text{ TeV})$

• for spin-2 particle $G_{KK} = 1.46$ TeV and 3.11 TeV with constant coupling 0.01 and 0.1.

- Analysis with full 2016 data (36.3 fb⁻¹) is forthcoming
- Preliminary 2017 results shown good agreement in dielectron and dimuon channels. 16

THANKS FOR YOUR ATTENTION

BACKUP SLIDES

THEORETICAL MODEL

- $Z'_{\Psi} \in Z'_{X}$ associated with U(1) group obtained with E₆ symmetry breaking within Grand unified Theory.
- Z'SSM associated with U(1): it has a Z boson SM like coupling.
- Kaluza-Klein graviton predicted within Randall-Sundrum model of extra dimensions.

EXCLUSION LIMIT

- Limits are set using a Bayesin method with an unbinned extended likelihood function.
- The signal probability density function (PDF) used is a convolution of Breit-Wigner function and a Gaussian with exponential tails (Crujiff).
- The background PDF for both channels obtained fitting mass distribution.
- Limits extract on the product of production cross section and branching fraction for Z' relative to the product of production cross section and branching fraction of a Z boson.

$$R_{\sigma} = \frac{\sigma(\mathrm{pp} \to Z' + X \to \mu^{+}\mu^{-} + X)}{\sigma(\mathrm{pp} \to Z + X \to \mu^{+}\mu^{-} + X)} \longrightarrow R_{\sigma} = \frac{N(Z' \to \mu^{+}\mu^{-})}{N(Z \to \mu^{+}\mu^{-})} \times \frac{A(Z \to \mu^{+}\mu^{-})}{A(Z' \to \mu^{+}\mu^{-})} \times \frac{\varepsilon(Z \to \mu^{+}\mu^{-})}{\varepsilon(Z' \to \mu^{+}\mu^{-})}$$

EXCLUSION LIMIT

$$\mathcal{L}(\mathbf{m}|\boldsymbol{\theta},\boldsymbol{\nu}) = \frac{\mu^{N}e^{-\mu}}{N!} \cdot \prod_{i=1}^{N} \left(\frac{\mu_{sig}(\boldsymbol{\theta},\boldsymbol{\nu})}{\mu} f_{sig}(m_{i}|\boldsymbol{\theta},\boldsymbol{\nu}) + \frac{\mu_{bkg}(\boldsymbol{\theta},\boldsymbol{\nu})}{\mu} f_{bkg}(m_{i}|\boldsymbol{\theta},\boldsymbol{\nu}) \right)$$

 $f_{sig}(m|\theta, v) = BW(m|\Gamma) \otimes Gauss(m|\sigma)$

$$f_{bkg}(m|\theta, v) = e^{g(m)} m^k$$

- $\mu = \mu_{sig} + \mu_{bkg} = observed events$
- N = observed events above 200 GeV
- θ = nuisance parametres:

♦ signal:

★ M, Γ = mass and width of BW

 \star w = gaussian width

♦ background:

 \star parameters used to modelling the fit

INVARIANT MASS DISTRIBUTION - 2015 DATA

Invariant mass spectra, together with the predicted SM background.

No evidence for a signal deviation from the SM expectations is observed.

FERRICO, LA THUILE 25/02 - 03/03 LIMIT FOR A SPIN 1 RESONANCE: 8 TEV + 13 TEV

Limit for a **spin-1** resonance with a width of 0.6% of the resonance mass combining electron and muon channel using 20 fb⁻¹ (8 TeV) and 2.9 fb⁻¹ (13 TeV, 2015)

Limit for a **spin-1** resonance with a width of 0.6% of the resonance mass combining electron and muon channel using 13 fb⁻¹ collected during 2016, at 13 TeV

M [GeV]