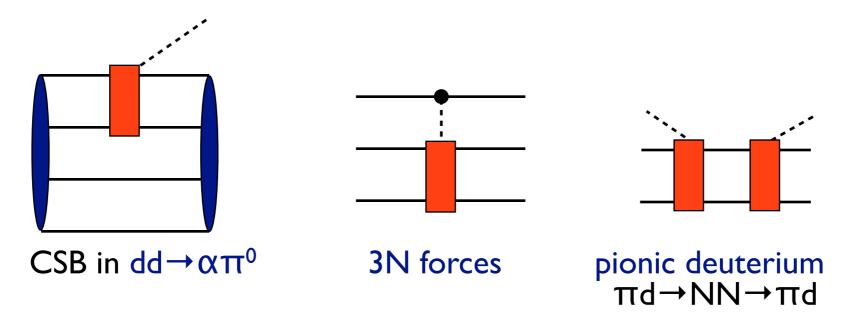
Pion production in NN collisions near threshold: complete NNLO calculation in chiral EFT

in collaboration with V. Baru, E. Epelbaum, C. Hanhart, H. Krebs, and F. Myhrer

Outline:

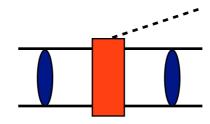

- Why is pion production interesting?
- High accuracy pion production operator
- Convolution with NN wave functions
- Summary and outlook

Why is pion production interesting?

- First inelastic process in nucleon-nucleon interactions
- Several channels: $pp\!\to\!pp\pi^0 \text{ and } pp\!\to\!d\pi^+ \text{ cross sections differ by an order of magnitude}$

$$\sigma_{\mathrm{tot}}(pp \to pp\pi^0) \simeq 3\,\mu b$$
 $\sigma_{\mathrm{tot}}(pp \to d\pi^+) \simeq 43\,\mu b$ $T_{\mathrm{lab}} = 293.5\,\,\mathrm{MeV}$ COSY-TOF (2003)

- Charge symmetry breaking (CSB) in pn \rightarrow d π^0
- Important prerequisite for more complicated processes:

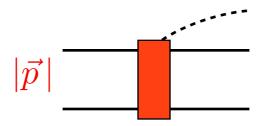

Goal: Study $NN \rightarrow NN\pi$ in chiral effective field theory

Strategy of NN→NNπ study

We use 'Hybrid' chiral EFT method:

I. Calculate irreducible production operator perturbatively in chiral EFT

2. Convolute it with non-perturbative NN wave functions



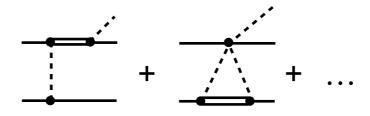
Phenomenological NN wave functions: CDBonn, AV18, Nijmegen, ...

Chiral NN wave functions [Epelbaum, Krebs, Meißner 2014]

- calculated up to N4LO
- describe phase shifts up to pion production
- several versions available with different R-space cutoff: 0.8-1.2fm
 (approximately correspond to momentum cutoff 330-500 MeV)

Pion production operator

Main specifics:


• NN momenta in CMS are large enough to produce a pion

$$|ec{p}| \sim \sqrt{m_\pi m_N} \sim 360~{
m MeV}$$
 – new soft scale

Special counting: Momentum Counting Scheme (MCS)

expansion parameter:
$$\chi_{
m MCS} \sim \frac{|ec{p}|}{\Lambda_\chi} \sim \sqrt{\frac{m_\pi}{m_N}}$$

- ullet Delta(1232)-resonance is close $\,m_\Delta m_N \sim 280\,\,{
 m MeV} \sim |ec p|$
 - => Include additional operators with explicit delta

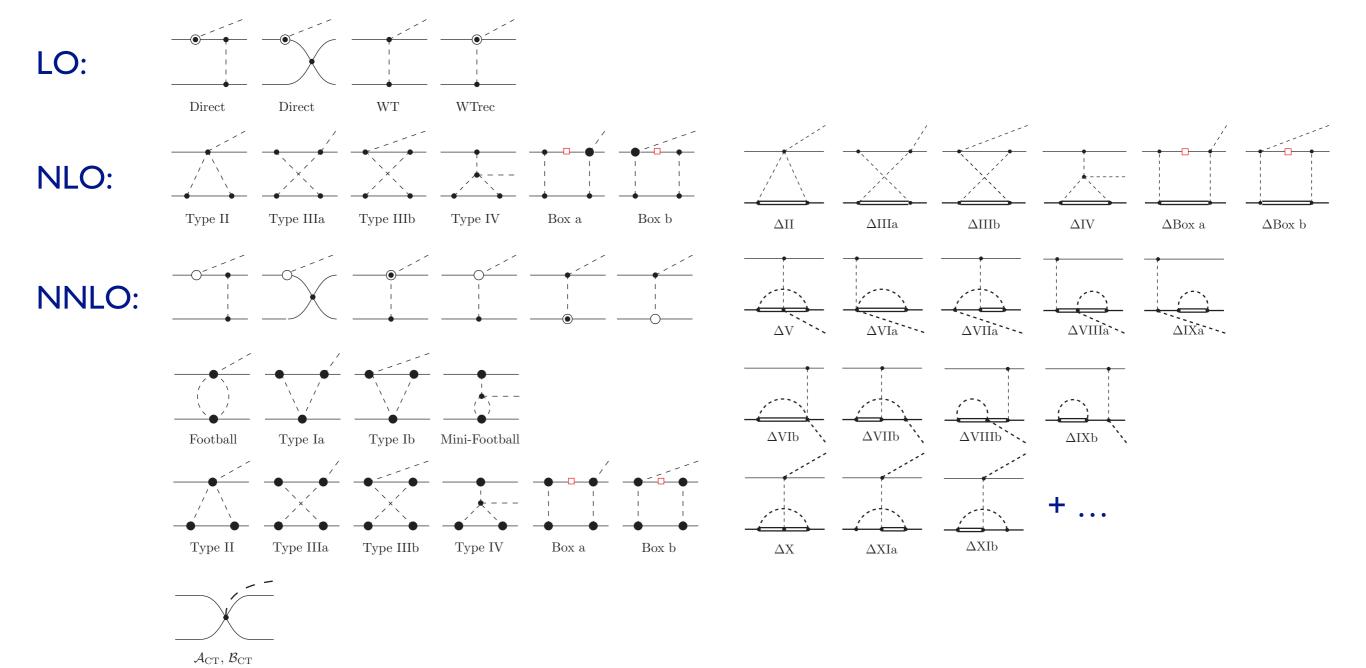
Part I:s-wave pion production operators

		LO	NLO	NNLO this work
			• • • • • • • • • • • • • • • • • • •	
exp				+
43µb	pp→dπ ⁺	big contribution Koltun et al. (1966)	0 Lensky et al. (2006)	small, correction to LO
3µb	pp→ppπ ⁰	almost negligible Cohen et al. (1996), Park et al. (1996)	0 Hanhart and Kaiser (2005)	small, but main contribution (!)

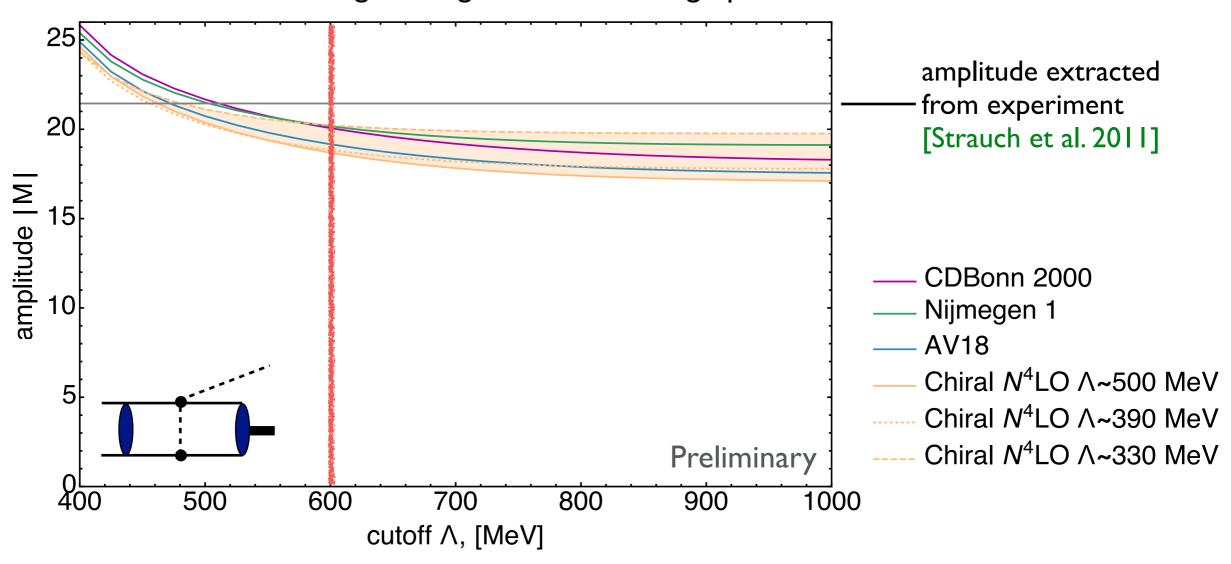
⇒ NNLO effects are crucial to understand cross section puzzle

Part I:s-wave pion production operators

		LO	NLO	NNLO this work
			• • • • • • • • • • • • • • • • • • •	
exp				+
43µb	pp→dπ ⁺	big contribution Koltun et al. (1966)	0 Lensky et al. (2006)	small, correction to LO
3µb	pp→ppπ ⁰	almost negligible Cohen et al. (1996), Park et al. (1996)	0 Hanhart and Kaiser (2005)	small, but main contribution (!)


⇒ NNLO effects are crucial to understand cross section puzzle

Pion production operator at NNLO — Results


We calculated full pion production operator at NNLO

[AF et al. 2012, 2013]

- Lots of cancellations found
- Finite contribution remains

Threshold amplitude in pp→dπ+ channel
Contribution of the longest range LO rescattering operator

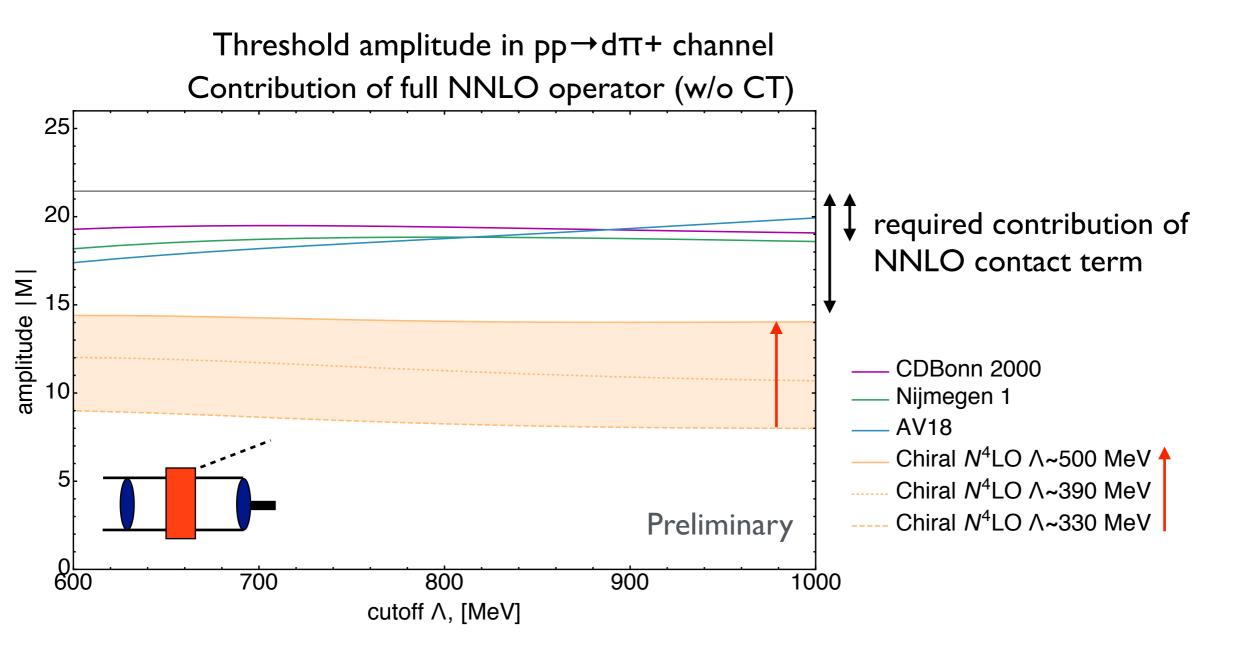
- Cutoff-independence for $\Lambda > 600 \text{ MeV}$ (Soft scale is 360 MeV)
- Agreement for all phenomenological as well as chiral potentials

Threshold amplitude in pp \rightarrow d π + channel amplitude extracted Contribution of full LO operator from experiment 25 [Strauch et al. 2011] required contribution of NNLO 20 amplitude | M 15 CDBonn 2000 10 Nijmegen 1 AV18 Chiral N⁴LO ∧~500 MeV ↑ 5 Chiral N⁴LO ∧~390 MeV **Preliminary** Chiral N⁴LO ∧~330 MeV

Consistent result for all phenomenological potentials

800

cutoff ∧, [MeV]


700

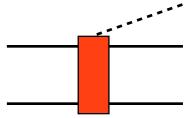
0L 600

Chiral WF cut intermediate momenta, which are kept in phenomenological WF

900

1000

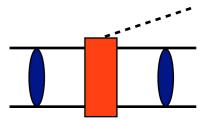
NNLO corrections give small (natural) contribution — consistent with our power counting


Summary and outlook

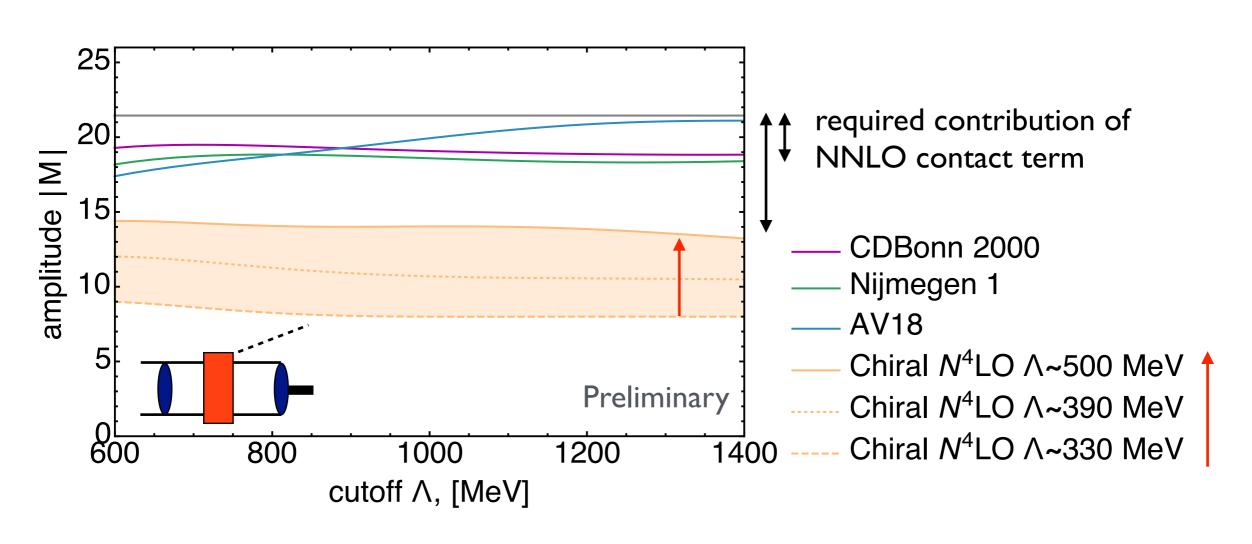
Study of NN \rightarrow NN π in Chiral EFT

- Test of chiral EFT at intermediate energies
- Tool to study charge symmetry breaking (pn \rightarrow d π^0)
- Building block for more complicated reactions (dd $\rightarrow \alpha \pi^0$, 3NF,...)

Current results:


 s-wave pion production operator at threshold up to N²LO MCS (6%) including explicit Delta(1232)

- convolution with nucleon-nucleon wave functions in $pp \rightarrow d\pi^+$
- hybrid calculations with all phenomenological potentials give consistent results
- since pion production probes intermediate distances
 the use of phenomenological WF for pion production is preferred


Next step

 Convolution with nucleon-nucleon wave functions and calculation of the observables in pp→ppπ⁰

spares

Threshold amplitude in pp \rightarrow d π + channel Contribution of full NNLO operator (w/o CT)

