

$\overline{}^{26}$ Al yields from massive single and binary stars

H. E. Brinkman^a, C. L. Doherty^{*a,b*}, E. T. Li^{*a,c*}, B. Côté^{*a,d*}, and M. Lugaro^{*a*}

^{*a}Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences*, ^{*b*} Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Australia, ^{*c*}College of Physics & Energy, Shenzhen University, China, ^{*d*}Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements, USA</sup>

Aluminium-26, a radioactive isotope with a half life of 0.72 Myr, was present in the early Solar System, as inferred from ²⁶Mg excess in meteorites, see e.g. [1]. It is also detected in the Galaxy via γ -ray observations from COMPTEL and INTEGRAL, see [2]. While it is known that ²⁶Al is produced in stars, many uncertainties are left related to the production sites and the nuclear physics input. Past research has focused mostly on yields of ²⁶Al from massive single stars, both rotating and non-rotating, including their winds and supernova explosions, see [3], [4], [5], and [6]. Here we present my planned research that will focus on the yields from massive star winds, primarily Wolf-Rayet stars (\gtrsim 30M_o), both single and in binary systems, and on the yields from non-conservative mass transfer in binary systems with primary masses \gtrsim 15M_o. The final goal is to discover the impact of massive binary stars on the galactic abundance of ²⁶Al and on the origin of the ²⁶Al in the early Solar System.

References

- [1] Jacobsen, B. et al., 2008, Earth and Planetary Science Letters, 272, 353
- [2] Diehl, R., 2013, Reports on Progress in Physics, 76, 026301
- [3] Limongi, M. and Chieffi, A., 2006, ApJ, 647, 483
- [4] Chieffi, A., and Limongi, M., 2013, ApJ, 764, 21
- [5] Ekström, S. et al., 2012, AAP, 537, 146
- [6] Woosley, S. E. and Heger, A., 2007, Physics Reports, 442, 269