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For high energy 8B neutrinos - object of 
observation by SNO and SuperKamiokaNDE - 
matter dominated oscillations in the high 
density of electrons Ne in sun’s core

For low energy neutrinos, flavor change 
dominated by vacuum oscillations.

Regime transition expected between 1-2 MeV

Fundamental prediction of MSW-LMA theory
Exploring the vacuum-matter transition:

untested feature of MSW-LMA solution
possibly sensitive to new physics

pep and 7Be neutrinos good sources to study 
the transition!

Bahcall &
Peña-Garay

Resonant Oscillations in Matter:
the MSW effect

1� 1
2

sin2 2�12

sin2 �12

�
��m2

12
4E cos 2�12 +

⇥
2GF Ne

�m2
12

4E sin 2�12
�m2

12
4E sin 2�12

�m2
12

4E cos 2�12

⇥

Pee

E
0.0

0.2

0.4

0.6

0.8

1.0

β≈cos(2θ12)

� =
23/2GF NeE

�m2
= 0.22

�
E

1 MeV

⇥ �
⇥ · Z/A

100 g cm�3

⇥ �
7⇥ 10�5 ev2

�m2

⇥

E[MeV] = 6.8� 106 cos (2�12)�m2
12[eV2]

⇥[g/cm3]Z/A
⇥ 1–2 MeV

� > 1

� < cos 2⇥12



Before Borexino  [MeV]E
1 10

e
e

P

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MSW-LMA Prediction

SNO Data

Ga/Cl Data Before Borexino

Solar Neutrino Survival Probability



Before Borexino

Barger et al.,
PRL 95, 211802 (2005)

Friedland et al.,
PLB 594, 347 (2004)
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Borexino: the Science Goals
• To make the first ever observations of sub-MeV neutrinos in real time, 

especially for 7Be neutrinos, testing the Standard Solar Model and the MSW-
LMA solution of the Solar Neutrino Problem

• To provide a strong constraint on the 7Be rate, at or below 5%, such as to 
provide an  essential input to check the balance between photon luminosity 
and neutrino luminosity of the Sun

balance check at 1% level ideal.  Requires 7Be flux measured at 5% and pp 
flux measured at 1% level 

• To confirm the solar origin of 7Be neutrinos, by checking the expected 7% 
seasonal variation of the signal due to the Earth’s orbital eccentricity

• To explore possible traces of non-standard neutrino-matter interactions or 
presence of mass varying neutrinos.

LJ(neutrino� inferred)
LJ(photon)

= 1.4+0.2
�0.3(

+0.7
�0.6)

J.N. Bahcall and C. Pena-Garay,
JHEP 11, 004 (2003)



Detection Principles

• Detection via scintillation light

• Features: 
• Very low energy threshold
• Good position recostruction by time of flight
• Good energy resolution

• Drawbacks:
• No direction measurements
• ν induced events can’t be distinguished from 

other β/γ due to natural radioactivity

• Experiment requires extreme purity from all 
radioactive contaminants
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in Nylon Vessel of 4.25 m radius
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1st shield: 890 tons of ultra-pure buffer liquid
in a stainless steel sphere of 6.75 m radius
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• Low background nylon vessel fabricated in 
hermetically sealed low radon clean room (~1 yr)

• Rapid transport of scintillator solvent (PC) from 
production plant to underground lab to avoid 
cosmogenic production of radioactivity (7Be)

• Underground purification plant to distill scintillator 
components. 

• Gas stripping of scintillator with special nitrogen free 
of radioactive 85Kr and 39Ar from air

• All materials electropolished SS or teflon, precision 
cleaned with a dedicated cleaning module

Special Methods Developed















Expected (or dream?) Spectrum
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Data: Raw Spectrum (No Cuts)
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Data: Fiducial Cut (100 tons)

0 200 400 600 800 1000
-210

-110

1

10

210

310

410

510
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Photoelectrons [pe]

Energy [MeV]
Co

un
ts

/(
10

 k
eV

 x
 d

ay
 x

  
10

0 
to

ns
) Measured Spectrum

All data after basic selection cuts
After fiducial volume cut

Expected Spectrum
Total Spectrum 7Be



Data: α/β Stat. Subtraction
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Data: Final Comparison
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7Be Results



Borexino: Additional Possibilities 
for First Time Measurements

• pep neutrinos (indirect constraint on pp neutrino 
flux)

• Low energy (2-5 MeV) 8B neutrinos 

• Tail end of pp neutrinos spectrum

• CNO neutrinos (direct indication of metallicity in 
the Sun’s core)



Data: Final Comparison
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Data: Final Comparison
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Data: Final Comparison
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Data: Final Comparison
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pep and CNO neutrinos
• Tests of MSW-LMA with 7Be limited due to 

uncertainty in solar flux.

• pep flux predicted with higher precision, 1.2% 
uncertainty.  Allows for more stringent tests of 
oscillation models.  Also mono-energetic.

• CNO fluxes directly related to Solar Metallicity.  It 
could allow to discern between High Z and Low Z 
models.

• Small fluxes: ~5 interactions per day per 100 tons 
of target.  End points 1-2 MeV.

• 11C is the dominant background in Borexino.



Cosmogenic 11C

Reconstructed μ entry/exit points

Reconstructed position of neutron

Reconstructed position of 11C

Track of the parent μ.
Neutrons within 1.6 ms after 

μ.
11C candidates within 2 h 

after μ.

Can use space + time 
correlation with μ + n to 

veto regions of the detector 
with higher 11C background:

Three-fold coincidence 
(TFC)  technique

μ + 12C μ + n + 11C



TFC decreases 11C rate to ~10% of its original value with ~50% loss 
of exposure.

Limiting background internal 210Bi.
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Additional pulse shape rejection of α particles 
andof 11C by BDT exploitation of β+/β- pulse shape differences 

(next slides)
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β-/β+ Pulse Shape Discrimination (BDT) 
Formation of positronium and multiple energy deposits from 

annihilation γ’s lead to different reconstructed emission time profiles.



Multivariate Analysis

• Symultaneous fit:

1. Pulse shape distribution with β+ (11C,10C) and 
β- (other)

2. Radial distribution with external background 
and signal + internal backgrounds

3. Energy distribution with spectral shapes



Simultaneously fit three parameter spaces 
1. Pulse shape distribution with β+ (11C,10C) and β- (other)



Simultaneously fit three parameter spaces 
2. Radial distribution with external background and signal + 

internal backgrounds



Simultaneously fit three parameter spaces 
 3. Energy distribution with spectral shapes



Energy Fit Residuals

pep flux:
(1.6±0.3)x108 cm-2s-1

CNO flux:
<7.4x108 cm-2s-1



Total fluxes from direct 
measurement:

pep flux:
(1.6±0.3)x108 cm-2s-1

CNO flux:
<7.4x108 cm-2s-1

pep:
Fit uncertainty: 18% 

Syst uncertainty: 10%
Statistical significance 
of pep measurement 

97% C.L.

No oscillation hypothesis disfavored at 96% C.L. 
CNO rate limit 1.4 times High Z prediction
Results consistent with MSW-LMA and SSM

Implications
CNO:

Correlation between 210Bi 
and CNO spectral shapes 

lead to only a limit on CNO



pp neutrinos and backgrounds
expected spectral contributions



pp Neutrinos

Nature 512, 383-386 (28 August 2014)pp = 144 ± 13 (stat) cpd/100 t



Final result

pp detection rate: 144 ± 13 (stat) ± 10 (syst) cpd/100 t
HM-SSM + LMA-MSW: 131 ± 2 cpd/100 t



Interpretation: 
Survival probability measurement



Check the time stability of the Sun (time scale 105 
years), which is a crucial assumption in the Standard 

Solar Model

Interpretation: 
Solar (in)variability

[Los Alamos Science, 1982]



What Next?



Neutrinos and Solar Metallicity

• A direct measurement of the CNO neutrinos rate could help solve 
the latest controversy surrounding the Standard Solar Model

• One fundamental input of the Standard Solar Model is the metallicity 
of the Sun - abundance of all elements above Helium

• The Standard Solar Model, based on the old metallicity derived by 
Grevesse and Sauval (Space Sci. Rev. 85, 161 (1998)), is in agreement 
within 0.5% with the solar sound speed measured by 
helioseismology. 

• Latest work by Asplund, Grevesse and Sauval (Nucl. Phys. A 777, 1 
(2006)) indicates a metallicity lower by a factor ~2.  This result 
destroys the agreement with helioseismology

maybe it was fortuitous agreement before with high metallicity?

• use solar neutrino measurements to help resolve!
7Be (12% difference) and CNO (50-60% difference)



Solar Model Chemical Controversy
Bahcall, Serenelli and Basu, AstropJ 621, L85(2005)

Helioseismology incompatible with low metallicity solar 
models.  Could be resolved by measuring CNO neutrinos

Φ
(cm-2s-1)

pp
(×1010)

7Be
(×109)

8B
(×106)

13N
(×108)

15O
(×108)

17F
(×106)

BS05
GS 98

5.99 4.84 5.69 3.07 2.33 5.84

BS05 
AGS 05

6.05 4.34 4.51 2.01 1.45 3.25

Δ +1% -10% -21% -35% -38% -44%

σ
SSM

±1% ±5% ±16% ±15% ±15% ±15%



The End



Interpretation 2: 
pp neutrino flux measurement


