Clockwork theory and phenomenology

DANIELE TERESI

daniele.teresi@ulb.ac.be

Service de Physique Théorique, Université Libre de Bruxelles, Belgium

What's the clockwork mechanism?

- clockwork mechanism \to an elegant and economical way to generate tiny numbers/large hierarchies X with only $\mathcal{O}(1)$ couplings and $\mathcal{N} \sim \log X$ fields
- Originally introduced in the context of relaxation models, to solve technical issues present in these [Choi, Im, '15; Kaplan, Rattazzi, '15]
- Then realized as a framework for model building: ¡Giudice, McCullough, '16
 - low-scale invisible axions [Giudice, McCullough, '16; Farina, Pappadopulo, Rompineve, Tesi, '16;
 Giudice, Katz, McCullough, DT, Urbano, in prep.]
 - hierarchy problem [Giudice, McCullough, '16; Giudice, McCullough, Katz, Torre, Urbano, '17; DT, '18]
 - inflation [Kehagias, Riotto, '16; ...]
 - dark matter [Hambye, DT, Tytgat, '16; ...]
 - neutrino physics [Hambye, DT, Tytgat, '16; Ibarra, Kushwaha, Vempati, '17; ...]
 - UV/EFT relation [Craig, Garcia Garcia, Sutherland, '17; Giudice, McCullough, '17]
 - Supergravity [Kehagias, Riotto, '17; Antoniadis, Delgado, Markou, Pokorski, '17]
 - UV origin [DT, '18]
 - collider pheno and cosmology [Giudice, McCullough, Katz, Torre, Urbano, '17; Giudice, McCullough, Katz, DT, Urbano, in orep.]
 - ... [not cited here for brevity]

What's the clockwork mechanism?

- clockwork mechanism \to an elegant and economical way to generate tiny numbers/large hierarchies X with only $\mathcal{O}(1)$ couplings and $\mathcal{N} \sim \log X$ fields
- Originally introduced in the context of relaxation models, to solve technical issues present in these [Choi, Im, '15; Kaplan, Rattazzi, '15]
- Then realized as a framework for model building: [Giudice, McCullough, '16]
 - low-scale invisible axions [Giudice, McCullough, '16; Farina, Pappadopulo, Rompineve, Tesi, '16; Giudice, Katz, McCullough, DT, Urbano, in prep.]
 - hierarchy problem [Giudice, McCullough, '16; Giudice, McCullough, Katz, Torre, Urbano, '17; DT, '18]
 - inflation [Kehagias, Riotto, '16; ...]
 - dark matter [Hambye, DT, Tytgat, '16; ...]
 - neutrino physics [Hambye, DT, Tytgat, '16; Ibarra, Kushwaha, Vempati, '17; ...]
 - UV/EFT relation [Craig, Garcia Garcia, Sutherland, '17; Giudice, McCullough, '17]
 - Supergravity [Kehagias, Riotto, '17; Antoniadis, Delgado, Markou, Pokorski, '17]
 - UV origin [DT, '18]
 - collider pheno and cosmology [Giudice, McCullough, Katz, Torre, Urbano, '17; Giudice, McCullough, Katz, DT, Urbano, in prep.]
 - ... [not cited here for brevity]

How the clockwork works (made easy)

Based on the simple observation that:

$$1/2 \times 1/2 \times 1/2 \times 1/2 \times 1/2 \times \dots \times 1/2$$
 can easily be tiny

Use a chain of N fields

$$\phi_0 \stackrel{1/q}{\longrightarrow} \phi_1 \stackrel{1/q}{\longrightarrow} \phi_2 \stackrel{1/q}{\longrightarrow} \phi_3 \stackrel{1/q}{\longrightarrow} \dots \stackrel{1/q}{\longrightarrow} \phi_N \longrightarrow \mathbf{SM}$$

if clever symmetry
$$\longrightarrow \phi_{light} \approx \phi_0 \implies \phi_{light} - SM \sim 1/q^N \quad (q > 1)$$

How the clockwork works (made easy)

Based on the simple observation that:

$$1/2 \times 1/2 \times 1/2 \times 1/2 \times 1/2 \times \dots \times 1/2$$
 can easily be tiny

Use a chain of N fields

$$\phi_0 \stackrel{1/q}{=} \phi_1 \stackrel{1/q}{=} \phi_2 \stackrel{1/q}{=} \phi_3 \stackrel{1/q}{=} \dots \stackrel{1/q}{=} \phi_N \longrightarrow SM$$

if clever symmetry \longrightarrow $\phi_{light} \approx \phi_0 \implies \phi_{light} - SM \sim 1/q^N$ (q > 1)

For fermions use chiral symmetries

$$R_0 \stackrel{m}{=} \underbrace{L_1 \quad R_1}_{qm} \stackrel{m}{=} \underbrace{L_2 \quad R_2}_{qm} \stackrel{m}{=} \underbrace{L_3 \quad R_3}_{qm} \stackrel{m}{=} \cdots \stackrel{m}{=} \underbrace{L_N \quad R_N}_{qm} \stackrel{L}{=} \underbrace{L_{SM}}_{qm}$$

light $N \approx R_0 \implies N - L_{SM} \sim 1/q^N$

How the clockwork works (made easy)

Based on the simple observation that:

$$1/2 \times 1/2 \times 1/2 \times 1/2 \times 1/2 \times \dots \times 1/2$$
 can easily be tiny

Use a chain of N fields

$$\phi_0 \stackrel{1/q}{=} \phi_1 \stackrel{1/q}{=} \phi_2 \stackrel{1/q}{=} \phi_3 \stackrel{1/q}{=} \dots \stackrel{1/q}{=} \phi_N \longrightarrow SM$$

if clever symmetry \longrightarrow $\phi_{light} \approx \phi_0 \implies \phi_{light} - SM \sim 1/q^N$ (q > 1)

Chain to have clockwork dark matter [Hambye, DT, Tytgat, '16]

$$\mathbf{R_0} \stackrel{S_1}{=} L_1 \stackrel{C_1}{=} R_1 \stackrel{S_2}{=} L_2 \stackrel{C_2}{=} \dots \stackrel{C_N}{=} R_{\mathcal{N}} \stackrel{\mathbf{L_{SM}}}{=} \mathbf{L_{SM}}$$

light
$$N \approx R_0 \implies N - L_{SM} \sim 1/q^N$$

The spectrum

• the dark-matter Majorana fermion N with mass $\approx m_N$:

$$N \approx R_0 + \frac{1}{q^1}R_1 + \frac{1}{q^2}R_2 + \ldots + \frac{1}{q^N}R_N$$

• a band of $\mathcal N$ pseudo-Dirac ψ_i with mass pprox qm:

$$\psi_i \approx \frac{1}{\sqrt{N}} \sum_k \mathcal{O}(1) L_k + \mathcal{O}(1) R_k$$

• \mathcal{N} scalars S_i and C_i expected in the same mass range (not necessarily dynamic, but not discussed here)

The spectrum

N = 15, a = 10., $m_N/m = 5.0$

• the dark-matter Majorana fermion N with mass $\approx m_N$:

$$N \approx R_0 + \frac{1}{q^1}R_1 + \frac{1}{q^2}R_2 + \ldots + \frac{1}{q^N}R_N$$

• a band of \mathcal{N} pseudo-Dirac ψ_i with mass $\approx qm$:

$$\psi_i pprox rac{1}{\sqrt{\mathcal{N}}} \sum_k \mathcal{O}(1) L_k + \mathcal{O}(1) R_k$$

• \mathcal{N} scalars S_i and C_i expected in the same mass range (not necessarily dynamic, but not discussed here)

$$\mathbf{R_0} \stackrel{S_1}{=} L_1 \stackrel{C_1}{=} R_1 \stackrel{S_2}{=} L_2 \stackrel{C_2}{=} \dots \stackrel{C_N}{=} R_N \stackrel{\mathbf{L_{SM}}}{=} \mathbf{L_{SM}}$$

sizeable:
$$N \longrightarrow S_{1}h$$
 suppressed $\sim 1/q^N$: $N \longrightarrow h$

$$N \rightarrow -\frac{h}{2}$$

A clockwork WIMP [Hambye, DT, Tytgat, '16]

for
$$q \sim 10$$
, $\mathcal{N} \sim 26$ $\implies N$ cosmologically **stable**

The decay lifetime of N longer than the age of the Universe with $\mathcal{O}(1)$ couplings and \lesssim TeV-scale states

but large $N \longrightarrow -\frac{S_1}{\psi_j}$

N is produced thermally in the early Universe and freezes out

⇒ N is a WIMP

Yukawa needed for correct Ω_{DM}

 \implies N and ψ_i light enough

Clockwork chain from an extra dimension

$$\phi_0 \stackrel{1/q}{\longrightarrow} \phi_1 \stackrel{1/q}{\longrightarrow} \phi_2 \stackrel{1/q}{\longrightarrow} \phi_3 \stackrel{1/q}{\longrightarrow} \dots \stackrel{1/q}{\longrightarrow} \phi_N \longrightarrow SM$$

- the different fields ϕ_i could be a **single** field on different points of a discretized extra dimension $y_i = i \times \pi R/\mathcal{N}$
- 5th dimension $0 \le y \le \pi R$ with a single ϕ in the bulk, 2 branes $y = 0, \pi R$ and the SM localized at y = 0:

- a well-defined continuum limit exists and selects either
 - massless field in curved **clockwork** metric $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$ [Giudice, McCullough, '16]
 - massive field in flat spacetime [Hambye, DT, Tytgat, '16; Craig, Garcia Garcia, Sutherland, '17]
 - the two are equivalent from EFT perspective, related by field redefinitions [Giudice, McCullough, '17; Giudice, Katz, McCullough, DT, Urbano, in prep.]

Clockwork chain from an extra dimension

$$\phi_0 \stackrel{1/q}{=} \phi_1 \stackrel{1/q}{=} \phi_2 \stackrel{1/q}{=} \phi_3 \stackrel{1/q}{=} \dots \stackrel{1/q}{=} \phi_N \longrightarrow SM$$

- the different fields ϕ_i could be a **single** field on different points of a discretized extra dimension $y_i = i \times \pi R/\mathcal{N}$
- 5th dimension $0 \le y \le \pi R$ with a single ϕ in the bulk, 2 branes $y = 0, \pi R$ and the SM localized at y = 0:

- a well-defined continuum limit exists and selects either
 - massless field in curved **clockwork** metric $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$ [Giudice, McCullough, '16]
 - massive field in flat spacetime [Hambye, DT, Tytgat, '16; Craig, Garcia Garcia, Sutherland, '17]
 - the two are equivalent from EFT perspective, related by field redefinitions [Giudice, McCullough, '17; Giudice, Katz, McCullough, DT, Urbano, in prep.]

- we want massless 5D gravity with clockwork metric $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- metric must be obtained dynamically!
- linear dilaton model (Jordan frame): [Antoniadis, Dimopoulos, Giveon, '01]

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \, e^S (\mathcal{R} + g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2) \, + \, \text{brane terms}$$

• go to Einstein frame by $g_{MN} \rightarrow e^{-2S/3} g_{MN}$:

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \left(\mathcal{R} \, - \, \frac{1}{3} g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2 \, e^{-2S/3} \right) \, + \, \text{brane terms}$$

- solve EoMs: S = 2ky, $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- SM at y=0 feels a Planck mass $M_P \simeq \frac{M_5^{3/2}}{k^{1/2}} \, e^{\pi k R} \simeq 10^{19} \; {\rm GeV}$
- but fundamental one is $M_5 \sim \text{TeV}$ for $kR \approx 10$ \implies hierarchy problem solved

- we want massless 5D gravity with clockwork metric $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- metric must be obtained dynamically!
- linear dilaton model (Jordan frame): [Antoniadis, Dimopoulos, Giveon, '01]

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \, e^S (\mathcal{R} \, + \, g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2) \, + \, \text{brane terms}$$

• go to Einstein frame by $g_{MN} \rightarrow e^{-2S/3} g_{MN}$:

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \left(\mathcal{R} \, - \, \frac{1}{3} g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2 \, e^{-2S/3} \right) \, + \, \text{brane terms}$$

- solve EoMs: S = 2ky, $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- SM at y=0 feels a Planck mass $M_P \simeq \frac{M_5^{3/2}}{k^{1/2}} e^{\pi k R} \simeq 10^{19} \ {\rm GeV}$
- but fundamental one is $M_5 \sim \text{TeV}$ for $kR \approx 10$ \implies hierarchy problem solved

- we want massless 5D gravity with clockwork metric $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- metric must be obtained dynamically!
- linear dilaton model (Jordan frame): [Antoniadis, Dimopoulos, Giveon, '01]

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \, e^S (\mathcal{R} \, + \, g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2) \, + \, {\sf brane terms}$$

ullet go to Einstein frame by $g_{MN}
ightarrow e^{-2S/3} g_{MN}$:

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \left(\mathcal{R} \, - \, \frac{1}{3} g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2 \, e^{-2S/3} \right) \, + \, \text{brane terms}$$

- solve EoMs: S = 2ky, $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- SM at y=0 feels a Planck mass $M_P \simeq \frac{M_5^{3/2}}{k^{1/2}} e^{\pi k R} \simeq 10^{19} \ {\rm GeV}$
- but fundamental one is $M_5 \sim \text{TeV}$ for $kR \approx 10$ \implies hierarchy problem solved

- we want massless 5D gravity with clockwork metric $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- metric must be obtained dynamically!
- linear dilaton model (Jordan frame): [Antoniadis, Dimopoulos, Giveon, '01]

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \, e^S (\mathcal{R} + g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2) \, + \, \text{brane terms}$$

• go to Einstein frame by $g_{MN} \rightarrow e^{-2S/3} g_{MN}$:

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \left(\mathcal{R} \, - \, \frac{1}{3} g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2 \, e^{-2S/3} \right) \, + \, \text{brane terms}$$

- solve EoMs: S = 2ky, $ds^2 = e^{\frac{4}{3}ky}(dx^2 + dy^2)$
- SM at y=0 feels a Planck mass $M_P \simeq \frac{M_5^{3/2}}{k^{1/2}} \, e^{\pi k R} \simeq 10^{19} \; {\rm GeV}$
- but fundamental one is $M_5 \sim \text{TeV}$ for $kR \approx 10$ \implies hierarchy problem solved

Robust clockwork

Einstein-frame action:

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \left(\mathcal{R} \, - \, \frac{1}{3} g^{MN} \partial_M S \, \partial_N S \, + \, 4k^2 \, e^{-2S/3} \right)$$

- a 5D cosmological constant dominates and **destroys** the clockwork solution \implies implicit additional tuning $\Lambda_{5D}/k^2 \lesssim 10^{-16}$ [Gludice, Katz, McCullough, Torre, Urbano, '17
- robust clockwork if **SUSY** in the bulk ($\Longrightarrow \Lambda_{5D} = 0$)

or

- robust clockwork without supersymmetry [DT, '18]:
 - additional D-5 flat dimensions $\sim L \ll R$
 - dilaton is the volume of these extra dimensions: $\sqrt{-g^{(D)}} = \sqrt{-g^{(5)}} \, e^{S(y)}$
 - in this setup GR in *D* dimensions **forbids** cosmological constant:
 - pure gravity with Λ_D
 - \longrightarrow linear dilaton action for $D \to \infty$, clockwork for D large enough

Robust clockwork

Einstein-frame action:

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \left(\mathcal{R} - \frac{1}{3} g^{MN} \partial_M S \, \partial_N S + 4k^2 \, e^{-2S/3} + \Lambda_{5D} \right)$$

- a 5D cosmological constant dominates and **destroys** the clockwork solution \implies implicit additional tuning $\Lambda_{5D}/k^2 \lesssim 10^{-16}$ [Giudice, Katz, McCullough, Torre, Urbano, '17]
- robust clockwork if **SUSY** in the bulk ($\Longrightarrow \Lambda_{5D} = 0$)

or

- robust clockwork without supersymmetry [DT, '18]:
 - additional D-5 flat dimensions $\sim L \ll R$
 - dilaton is the volume of these extra dimensions: $\sqrt{-g^{(D)}} = \sqrt{-g^{(5)}} \, e^{S(y)}$
 - in this setup GR in *D* dimensions **forbids** cosmological constant:
 - $\sqrt{-g^{(D)}} \Lambda_D \longrightarrow \sqrt{-g} e^{S(y)} 4k^2 \text{ in 5D}$
 - pure gravity with Λ_D
 - \longrightarrow linear dilaton action for $D \to \infty$, clockwork for D large enough

Robust clockwork

Einstein-frame action:

$$S = \int d^4x \, dy \sqrt{-g} \, \frac{M_5^3}{2} \left(\mathcal{R} - \frac{1}{3} g^{MN} \partial_M S \, \partial_N S + 4k^2 e^{-2S/3} + \Lambda_{5D} \right)$$

- a 5D cosmological constant dominates and **destroys** the clockwork solution \implies implicit additional tuning $\Lambda_{5D}/k^2 \lesssim 10^{-16}$ [Giudice, Katz, McCullough, Torre, Urbano, '17]
- robust clockwork if **SUSY** in the bulk ($\Longrightarrow \Lambda_{5D} = 0$)

or

- robust clockwork without supersymmetry [DT, '18]:
 - additional D-5 flat dimensions $\sim L \ll R$
 - **dilaton** is the **volume** of these extra dimensions: $\sqrt{-g^{(D)}} = \sqrt{-g^{(5)}} e^{S(y)}$
 - in this setup GR in *D* dimensions **forbids** cosmological constant:
 - $\sqrt{-g^{(D)}} \Lambda_D \longrightarrow \sqrt{-g} e^{S(y)} 4k^2 \text{ in 5D}$
 - pure gravity with Λ_D
 - \longrightarrow linear dilaton action for $D \to \infty$, clockwork for D large enough

Collider phenomenology

[Giudice, Katz, McCullough, Torre, Urbano, '17]

Collider phenomenology

[Giudice, Katz, McCullough, Torre, Urbano, '17]

Collider phenomenology

[Giudice, Katz, McCullough, Torre, Urbano, '17]

Preliminary - **novel** smoking-gun signatures:

- s-channel displaced vertices
- chains of displaced vertices
- long decay chains with many soft objects

Stay tuned:

[Giudice, Katz, McCullough, DT, Urbano, in prep.]

The End?

Many theory/pheno/cosmology developments on their way...

[Giudice, Kats, McCullough, DT, Urbano, in preparation]