γ_{5} in Dimensional Regularization: a Novel Approach

Ruggero Ferrari

INFN, Sezione di Milano, via Celoria 16
A new dimensional Regularization of γ_{5} is proposed. Cyclicity and Lorentz covariance are enforced. The extension to generic dimension is based on the integral representation of the trace of gamma's, presented in a previous paper (arXiv:1403.4212).

1. Introduction

Analytic continuation in the dimension D is very important for model construction and explicit calculations. We focus on the Trace . See [1]

$$
\begin{aligned}
& \operatorname{Tr}\left(\not p_{1} \not p_{2} \ldots \not p_{N-1} \not p_{N}\right)=\int d^{N} \bar{c} \exp \left(\sum_{i<j=1}^{N} \bar{c}_{i}\left(p_{i} p_{j}\right) \bar{c}_{j}\right) \\
& \operatorname{Tr}\left(\not \not 1 \not p_{2} \ldots \not p_{N-1} \not p_{N} \gamma_{\chi}\right)=i^{\frac{D(D-1)}{2}} \int^{D} d^{D} \xi d^{N} \bar{c} \\
& \exp \left(\sum_{i=1}^{N} \bar{c}_{i}\left(p_{i}\right) \mu \xi_{\mu}+\sum_{i<j=1}^{N} \bar{c}_{i}\left(p_{i} p_{j}\right) \bar{c}_{j}\right),
\end{aligned}
$$

For trace and Pfaffian Ref. [2]. Integral representation of the Pfaffian on Grassmannian variables [3].
2. Grassmann Variables

$$
\int d \xi_{\mu}=0, \quad \int d \xi_{\mu} \xi_{\nu}=\delta_{\mu \nu}, \quad \int d \bar{c}_{i}=0, \quad \int d \bar{c}_{i} \bar{c}_{j}=\delta_{i j} .
$$

Thus, for example, we have for any integer D

$$
\operatorname{Tr}\left(\not p_{1} \not p_{2}\right)=\int d \bar{c}_{2} d \bar{c}_{1} \exp \left[\bar{c}_{1}\left(p_{1}, p_{2}\right) \bar{c}_{2}\right]=\left(p_{1}, p_{2}\right)
$$

and for $D=4$

$$
\begin{aligned}
& \operatorname{Tr}\left(\not p 1 \not p_{2} \not p_{3} \not p_{4} \gamma_{\chi}\right)=i^{\frac{D(D-1)}{2}} \\
& \left.\int d^{D} \xi\left(\left(p_{1}\right)_{\mu} \xi_{\mu}\left(p_{2}\right)_{\nu} \xi_{\nu}\left(p_{3}\right)_{\rho} \xi_{\rho}\left(p_{4}\right)_{\sigma} \xi_{\sigma}\right)(-)^{\frac{D(D-1)}{2}}\right|_{D=4} \\
& =-\epsilon_{\mu \nu \rho \sigma}\left(p_{1}\right)_{\mu}\left(p_{2}\right)_{\nu}\left(p_{3}\right)_{\rho}\left(p_{4}\right)_{\sigma} .
\end{aligned}
$$

Nice Interpolation on Integer D ! See Part I
3. Many γ_{χ} 's

For instance two γ_{χ} 's are represented by

$$
\begin{align*}
& \operatorname{Tr}\left(\not p_{1} \cdots \not p_{k} \gamma_{\chi} \cdots \not p_{N} \gamma_{\chi}\right)=(-)^{\frac{D(D-1)}{2}} \int d^{D} \eta d^{(N-k)} \bar{c} d^{D} \xi d^{k} \bar{c} \\
& \exp \left(\sum_{i=1}^{N} \bar{c}_{i}\left(p_{i}\right)_{\mu} \eta_{\mu}+\xi_{\mu} \eta_{\mu}+\xi_{\mu} \sum_{i=k+1}^{N} \bar{c}_{i}\left(p_{i}\right)_{\mu}+\sum_{i=1}^{k} \bar{c}_{i}\left(p_{i}\right)_{\mu} \xi_{\mu}\right. \\
& \left.+\sum_{i<j=1}^{N} \bar{c}_{i}\left(p_{i} p_{j}\right) \bar{c}_{j}\right) \tag{1}
\end{align*}
$$

Cyclicity and Lorentz covariance are OK!.

PART I: Integer D

4. Pairing and Algebra

It is possible to integrate over the variables ξ, η, \ldots two by two (pairing). One gets for eq. (1)
$\operatorname{Tr}\left(\not p_{1} \ldots \not p_{k} \gamma_{\chi} \cdots \not p_{N} \gamma_{\chi}\right)=(-)^{(D-1)(N-k)} \operatorname{Tr}\left(\not p_{1} \ldots \not p_{k} \cdots \not p_{N}\right)$
General proof can be given for the algebra

$$
\begin{align*}
& \gamma_{\chi} \gamma_{\mu}=(-)^{D-1} \gamma_{\mu} \gamma_{\chi} \\
& \gamma_{\chi}^{2}=1 . \tag{2}
\end{align*}
$$

which interpolates over the integer values of D. But this result cannot be continued to complex values of D.
5. No Continuation for the Integer D Algebra

If

$$
\begin{align*}
& \gamma_{\chi} \gamma_{\mu}=q \gamma_{\mu} \gamma_{\chi} \\
& \Longrightarrow \gamma_{\chi} \gamma_{\mu}^{2}=q^{2} \gamma_{\mu}^{2} \gamma_{\chi} \\
& \Longrightarrow q^{2}=1 \tag{3}
\end{align*}
$$

Then the relations in eq. (2) cannot be continued in D :

$$
(-)^{D-1}=\exp (i \pi(D-1)) \Longrightarrow \exp (i 2 \pi(D-1)) \neq 1
$$

However successful calculations have been done using dimensional renormalization! Ref. [4] and [5].

PART II: Generalized Trace

6. Leaving Out the Integration over ξ

We split the integration over \bar{c} from the one over ξ. For a single γ_{χ} we introduce the Generalized Trace

$$
\begin{align*}
& R\left(\not \not 1 \not p_{2} \ldots \not p_{N-1} \not p_{N} \mid \xi\right)=\int d^{N} \bar{c} \exp \left(\sum_{i=1}^{N} \bar{c}_{i}\left(p_{i}\right)_{\mu} \xi_{\mu}\right. \\
& \left.+\sum_{i<j=1}^{N} \bar{c}_{i}\left(p_{i} p_{j}\right) \bar{c}_{j}\right) \tag{4}
\end{align*}
$$

Then the conventional trace is

$$
\begin{aligned}
& (i)^{\frac{D(D-1)}{2}} \int d^{D} \xi R\left(\not p_{1} \not p_{2} \ldots \not p_{N-1} \not p_{N} \mid \xi\right) \\
& =\operatorname{Tr}\left(\not p_{1} \not \not{ }_{2} \ldots \not{ }_{N} \ldots-1 \not p_{N} \gamma_{\chi}\right)
\end{aligned}
$$

7. Dimensional Renormalization on the Generalized Trace

Ansatz. The dimensional renormalization is performed on the Generalized Trace, i.e. before the integration over ξ. This means that the value of D is chosen after the pole subtraction: at the moment we integrate over the $\gamma_{\chi}-$ Grassmannian variable. At that moment the completely antisymmetric tensor might emerge if one γ_{χ} survived the pairing process.
8. Clifford Algebra, Cyclicity and Lorentz Covariance The Generalized Trace has many properties of the conventional trace. Some of them are slightly modified

1. Clifford algebra of the γ is valid
2. Lorentz covariance is valid
3. Cyclicity works in the form

$$
R\left(\not p_{1} \ldots \not p_{N-1}|\xi| \not p_{N}\right)=(-)^{N} R\left(\not p_{N} \not p_{1} \ldots \not p_{N-1} \mid \xi\right)
$$

and

$$
R\left(\xi\left|\not p_{1} \ldots \not p_{N-1}\right| \eta \mid \not p_{N}\right)=R\left(\not p_{1} \ldots \not p_{N-1}|\eta| \not p_{N} \mid-\xi\right) .
$$

9. Pairing on Generalized Trace

We consider the most general pairing setup. We evaluate

$$
\begin{align*}
& \operatorname{Tr}\left(\mathcal{A} \gamma_{\chi} \mathcal{B} \gamma_{\chi}\right)=(i)^{(D-1) D} \int d^{D} \xi d \mathcal{B} d^{D} \eta d \mathcal{A} \\
& \exp ((\mathcal{B}+\eta+\mathcal{A}) \xi+\mathcal{B} * \mathcal{B}+(\eta+\mathcal{A}) \mathcal{B}+\mathcal{A} \eta+\mathcal{A} * \mathcal{A}) \tag{5}
\end{align*}
$$

Thus we get the integration over the pair i.e. the elements of \mathcal{B} encapsulated between two γ_{χ} change sign in the pairing.

$$
\begin{equation*}
R(\mathcal{A}|\eta| \mathcal{B} \mid \xi)=\delta_{P} e^{\eta \xi} R(\mathcal{A}(-\mathcal{B})) \tag{6}
\end{equation*}
$$

Moreover, when the final integral is taken

$$
\begin{equation*}
\int d^{D} \xi d^{D} \eta e^{\eta \xi}=(-)^{\frac{D(D-1)}{2}} \tag{7}
\end{equation*}
$$

10. Expansion in Powers of ξ

The Generalized Trace has no explicit dependence on D. Thus we can expand it in powers of ξ by using

$$
\begin{align*}
& \exp \left(\sum_{i=1}^{N} \bar{c}_{i}\left(p_{i}\right) \xi\right)=\prod_{i=1}^{N} e^{\bar{c}_{i}\left(p_{i} \xi\right)}=\prod_{i=1}^{N}\left(1+\bar{c}_{i}\left(p_{i} \xi\right)\right)=1 \\
& +\sum_{i=1}^{N} \bar{c}_{i}\left(p_{i} \xi\right)+\sum_{i<j=1}^{N} \bar{c}_{i}\left(p_{i} \xi\right) \bar{c}_{j}\left(p_{j} \xi\right)+\sum_{i<j<k=1}^{N} \bar{c}_{i}\left(p_{i} \xi\right) \bar{c}_{j}\left(p_{j} \xi\right) \bar{c}_{k}\left(p_{k} \xi\right) \\
& +\ldots \tag{8}
\end{align*}
$$

In the last integration we fix D i.e. one of the above terms. Momenta appear as simple factors. No "completely antisymmetric tensor". All p_{j} 's appearing in $\left(p_{j}, \xi\right)$ are taken out of trace (emerging from the integration over \bar{c}).

11. Fundamental Formula

After the integration on \bar{c} present in the eq. (4) a typical expansion in terms of powers of ξ is given by

$$
\begin{equation*}
R\left(\not p_{1} \not p_{2} \ldots \not p_{N-1} \not p_{N} \mid \xi\right)=\sum_{\mathcal{P}} \delta_{\mathcal{P}} \operatorname{Tr}\left(\not p_{i_{1}} \ldots \not p_{i_{N-K}}\right)\left(p_{j_{1}}, \xi\right) \ldots\left(p_{j_{K}}, \xi\right) \tag{9}
\end{equation*}
$$

where the sum is over all partitions \mathcal{P} of the N integers in two mutually disjoint ordered sets $\left(i_{1}, \ldots, i_{N-K}\right)$ and $\left(j_{1}, \ldots, j_{K}\right)$.
The parity $\delta_{\mathcal{P}}$ counts the permutations needed to perform the integrations over $d \bar{c}_{j_{1}}, \ldots, d \bar{c}_{j_{K}}$. The quantity in eq. is the perfect tool to be continued in D and renormalized .

12. Conclusions

Good News: γ_{χ} survives Dimensional Regularization!

But: is the procedure consistent?
[1] R. Ferrari, "Managing γ_{5} in Dimensional Regularization and ABJ Anomaly," arXiv:1403.4212 [hep-th].
[2] S. Fubini and E. R. Caianiello, "On the Algorithm of Dirac spurs," Nuovo Cim. 9, 1218 (1952).
[3] A. M. Jaffe, A. Lesniewski and J. Weitsman, "Pfaffians On Hilbert Space," J. Funct. Anal. 83, 348 (1989).
[4] R. Ferrari, "Managing γ_{5} in Dimensional Regularization II: the Trace with more $\gamma_{5}, "$ arXiv:1503.07410 [hep-th].
[5] R. Ferrari and M. Raciti, "On effective Chern-Simons Term induced by a Local CPT-Violating Coupling using γ_{5} in Dimensional Regularization," arXiv:1510.04666 [hep-th].

